diff --git a/.github/workflows/docker-image.yml b/.github/workflows/docker-image.yml
index 669fb8a1e..2a5f497fd 100644
--- a/.github/workflows/docker-image.yml
+++ b/.github/workflows/docker-image.yml
@@ -3,10 +3,11 @@ name: Docker Build and Push
on:
push:
branches:
- - main # 推送到main分支时触发
+ - main
+ - debug # 新增 debug 分支触发
tags:
- - 'v*' # 推送v开头的tag时触发(例如v1.0.0)
- workflow_dispatch: # 允许手动触发
+ - 'v*'
+ workflow_dispatch:
jobs:
build-and-push:
@@ -24,15 +25,24 @@ jobs:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
+ - name: Determine Image Tags
+ id: tags
+ run: |
+ if [[ "${{ github.ref }}" == refs/tags/* ]]; then
+ echo "tags=${{ secrets.DOCKERHUB_USERNAME }}/maimbot:${{ github.ref_name }},${{ secrets.DOCKERHUB_USERNAME }}/maimbot:latest" >> $GITHUB_OUTPUT
+ elif [ "${{ github.ref }}" == "refs/heads/main" ]; then
+ echo "tags=${{ secrets.DOCKERHUB_USERNAME }}/maimbot:main,${{ secrets.DOCKERHUB_USERNAME }}/maimbot:latest" >> $GITHUB_OUTPUT
+ elif [ "${{ github.ref }}" == "refs/heads/debug" ]; then
+ echo "tags=${{ secrets.DOCKERHUB_USERNAME }}/maimbot:debug" >> $GITHUB_OUTPUT
+ fi
+
- name: Build and Push Docker Image
uses: docker/build-push-action@v5
with:
- context: . # Docker构建上下文路径
- file: ./Dockerfile # Dockerfile路径
- platforms: linux/amd64,linux/arm64 # 支持arm架构
- tags: |
- ${{ secrets.DOCKERHUB_USERNAME }}/maimbot:${{ github.ref_name }}
- ${{ secrets.DOCKERHUB_USERNAME }}/maimbot:latest
- push: true
- cache-from: type=registry,ref=${{ secrets.DOCKERHUB_USERNAME }}/maimbot:latest
- cache-to: type=inline
+ context: .
+ file: ./Dockerfile
+ platforms: linux/amd64,linux/arm64
+ tags: ${{ steps.tags.outputs.tags }}
+ push: true
+ cache-from: type=registry,ref=${{ secrets.DOCKERHUB_USERNAME }}/maimbot:buildcache
+ cache-to: type=registry,ref=${{ secrets.DOCKERHUB_USERNAME }}/maimbot:buildcache,mode=max
\ No newline at end of file
diff --git a/README.md b/README.md
index c09b33c49..7bfa465ae 100644
--- a/README.md
+++ b/README.md
@@ -42,22 +42,22 @@
## 🎯 功能介绍
### 💬 聊天功能
-- 支持关键词检索主动发言:对消息的话题topic进行识别,如果检测到麦麦存储过的话题就会主动进行发言,目前有bug,所以现在只会检测主题,不会进行存储
+- 支持关键词检索主动发言:对消息的话题topic进行识别,如果检测到麦麦存储过的话题就会主动进行发言
- 支持bot名字呼唤发言:检测到"麦麦"会主动发言,可配置
-- 使用硅基流动的api进行回复生成,可随机使用R1,V3,R1-distill等模型,未来将加入官网api支持
+- 支持多模型,多厂商自定义配置
- 动态的prompt构建器,更拟人
- 支持图片,转发消息,回复消息的识别
- 错别字和多条回复功能:麦麦可以随机生成错别字,会多条发送回复以及对消息进行reply
### 😊 表情包功能
-- 支持根据发言内容发送对应情绪的表情包:未完善,可以用
-- 会自动偷群友的表情包(未完善,暂时禁用)目前有bug
+- 支持根据发言内容发送对应情绪的表情包
+- 会自动偷群友的表情包
### 📅 日程功能
- 麦麦会自动生成一天的日程,实现更拟人的回复
### 🧠 记忆功能
-- 对聊天记录进行概括存储,在需要时调用,没写完
+- 对聊天记录进行概括存储,在需要时调用,待完善
### 📚 知识库功能
- 基于embedding模型的知识库,手动放入txt会自动识别,写完了,暂时禁用
diff --git a/config/bot_config_template.toml b/config/bot_config_template.toml
index 5ad837f6d..28ffb0ce3 100644
--- a/config/bot_config_template.toml
+++ b/config/bot_config_template.toml
@@ -11,7 +11,7 @@ prompt_schedule = "一个曾经学习地质,现在学习心理学和脑科学的
[message]
min_text_length = 2 # 与麦麦聊天时麦麦只会回答文本大于等于此数的消息
-max_context_size = 15 # 麦麦获得的上下文数量,超出数量后自动丢弃
+max_context_size = 15 # 麦麦获得的上文数量
emoji_chance = 0.2 # 麦麦使用表情包的概率
ban_words = [
# "403","张三"
@@ -31,6 +31,7 @@ model_r1_distill_probability = 0.1 # 麦麦回答时选择R1蒸馏模型的概
[memory]
build_memory_interval = 300 # 记忆构建间隔 单位秒
+forget_memory_interval = 300 # 记忆遗忘间隔 单位秒
[others]
enable_advance_output = true # 是否启用高级输出
diff --git a/src/plugins/chat/__init__.py b/src/plugins/chat/__init__.py
index ac04866a5..66824d986 100644
--- a/src/plugins/chat/__init__.py
+++ b/src/plugins/chat/__init__.py
@@ -98,7 +98,19 @@ async def monitor_relationships():
async def build_memory_task():
"""每30秒执行一次记忆构建"""
print("\033[1;32m[记忆构建]\033[0m 开始构建记忆...")
- await hippocampus.build_memory(chat_size=30)
+ await hippocampus.operation_build_memory(chat_size=30)
print("\033[1;32m[记忆构建]\033[0m 记忆构建完成")
+@scheduler.scheduled_job("interval", seconds=global_config.forget_memory_interval, id="forget_memory")
+async def forget_memory_task():
+ """每30秒执行一次记忆构建"""
+ print("\033[1;32m[记忆遗忘]\033[0m 开始遗忘记忆...")
+ await hippocampus.operation_forget_topic(percentage=0.1)
+ print("\033[1;32m[记忆遗忘]\033[0m 记忆遗忘完成")
+@scheduler.scheduled_job("interval", seconds=global_config.build_memory_interval + 10, id="build_memory")
+async def build_memory_task():
+ """每30秒执行一次记忆构建"""
+ print("\033[1;32m[记忆整合]\033[0m 开始整合")
+ await hippocampus.operation_merge_memory(percentage=0.1)
+ print("\033[1;32m[记忆整合]\033[0m 记忆整合完成")
diff --git a/src/plugins/chat/config.py b/src/plugins/chat/config.py
index 96c83dfe0..298683054 100644
--- a/src/plugins/chat/config.py
+++ b/src/plugins/chat/config.py
@@ -27,6 +27,7 @@ class BotConfig:
ban_user_id = set()
build_memory_interval: int = 60 # 记忆构建间隔(秒)
+ forget_memory_interval: int = 300 # 记忆遗忘间隔(秒)
EMOJI_CHECK_INTERVAL: int = 120 # 表情包检查间隔(分钟)
EMOJI_REGISTER_INTERVAL: int = 10 # 表情包注册间隔(分钟)
@@ -155,6 +156,7 @@ class BotConfig:
if "memory" in toml_dict:
memory_config = toml_dict["memory"]
config.build_memory_interval = memory_config.get("build_memory_interval", config.build_memory_interval)
+ config.forget_memory_interval = memory_config.get("forget_memory_interval", config.forget_memory_interval)
# 群组配置
if "groups" in toml_dict:
@@ -188,6 +190,6 @@ global_config = BotConfig.load_config(config_path=bot_config_path)
if not global_config.enable_advance_output:
- # logger.remove()
+ logger.remove()
pass
diff --git a/src/plugins/chat/del.message_send_control.py b/src/plugins/chat/del.message_send_control.py
deleted file mode 100644
index 30ade9cd4..000000000
--- a/src/plugins/chat/del.message_send_control.py
+++ /dev/null
@@ -1,251 +0,0 @@
-from typing import Union, List, Optional, Deque, Dict
-from nonebot.adapters.onebot.v11 import Bot, MessageSegment
-import asyncio
-import random
-import os
-from .message import Message, Message_Thinking, MessageSet
-from .cq_code import CQCode
-from collections import deque
-import time
-from .storage import MessageStorage
-from .config import global_config
-from .cq_code import cq_code_tool
-
-if os.name == "nt":
- from .message_visualizer import message_visualizer
-
-
-
-class SendTemp:
- """单个群组的临时消息队列管理器"""
- def __init__(self, group_id: int, max_size: int = 100):
- self.group_id = group_id
- self.max_size = max_size
- self.messages: Deque[Union[Message, Message_Thinking]] = deque(maxlen=max_size)
- self.last_send_time = 0
-
- def add(self, message: Message) -> None:
- """按时间顺序添加消息到队列"""
- if not self.messages:
- self.messages.append(message)
- return
-
- # 按时间顺序插入
- if message.time >= self.messages[-1].time:
- self.messages.append(message)
- return
-
- # 使用二分查找找到合适的插入位置
- messages_list = list(self.messages)
- left, right = 0, len(messages_list)
-
- while left < right:
- mid = (left + right) // 2
- if messages_list[mid].time < message.time:
- left = mid + 1
- else:
- right = mid
-
- # 重建消息队列,保持时间顺序
- new_messages = deque(maxlen=self.max_size)
- new_messages.extend(messages_list[:left])
- new_messages.append(message)
- new_messages.extend(messages_list[left:])
- self.messages = new_messages
- def get_earliest_message(self) -> Optional[Message]:
- """获取时间最早的消息"""
- message = self.messages.popleft() if self.messages else None
- return message
-
- def clear(self) -> None:
- """清空队列"""
- self.messages.clear()
-
- def get_all(self, group_id: Optional[int] = None) -> List[Union[Message, Message_Thinking]]:
- """获取所有待发送的消息"""
- if group_id is None:
- return list(self.messages)
- return [msg for msg in self.messages if msg.group_id == group_id]
-
- def peek_next(self) -> Optional[Union[Message, Message_Thinking]]:
- """查看下一条要发送的消息(不移除)"""
- return self.messages[0] if self.messages else None
-
- def has_messages(self) -> bool:
- """检查是否有待发送的消息"""
- return bool(self.messages)
-
- def count(self, group_id: Optional[int] = None) -> int:
- """获取待发送消息数量"""
- if group_id is None:
- return len(self.messages)
- return len([msg for msg in self.messages if msg.group_id == group_id])
-
- def get_last_send_time(self) -> float:
- """获取最后一次发送时间"""
- return self.last_send_time
-
- def update_send_time(self):
- """更新最后发送时间"""
- self.last_send_time = time.time()
-
-class SendTempContainer:
- """管理所有群组的消息缓存容器"""
- def __init__(self):
- self.temp_queues: Dict[int, SendTemp] = {}
-
- def get_queue(self, group_id: int) -> SendTemp:
- """获取或创建群组的消息队列"""
- if group_id not in self.temp_queues:
- self.temp_queues[group_id] = SendTemp(group_id)
- return self.temp_queues[group_id]
-
- def add_message(self, message: Message) -> None:
- """添加消息到对应群组的队列"""
- queue = self.get_queue(message.group_id)
- queue.add(message)
-
- def get_group_messages(self, group_id: int) -> List[Union[Message, Message_Thinking]]:
- """获取指定群组的所有待发送消息"""
- queue = self.get_queue(group_id)
- return queue.get_all()
-
- def has_messages(self, group_id: int) -> bool:
- """检查指定群组是否有待发送消息"""
- queue = self.get_queue(group_id)
- return queue.has_messages()
-
- def get_all_groups(self) -> List[int]:
- """获取所有有待发送消息的群组ID"""
- return list(self.temp_queues.keys())
-
- def update_thinking_message(self, message_obj: Union[Message, MessageSet]) -> bool:
- queue = self.get_queue(message_obj.group_id)
- # 使用列表解析找到匹配的消息索引
- matching_indices = [
- i for i, msg in enumerate(queue.messages)
- if msg.message_id == message_obj.message_id
- ]
-
- if not matching_indices:
- return False
-
- index = matching_indices[0] # 获取第一个匹配的索引
-
- # 将消息转换为列表以便修改
- messages = list(queue.messages)
-
- # 根据消息类型处理
- if isinstance(message_obj, MessageSet):
- messages.pop(index)
- # 在原位置插入新消息组
- for i, single_message in enumerate(message_obj.messages):
- messages.insert(index + i, single_message)
- # print(f"\033[1;34m[调试]\033[0m 添加消息组中的第{i+1}条消息: {single_message}")
- else:
- # 直接替换原消息
- messages[index] = message_obj
- # print(f"\033[1;34m[调试]\033[0m 已更新消息: {message_obj}")
-
- # 重建队列
- queue.messages.clear()
- for msg in messages:
- queue.messages.append(msg)
-
- return True
-
-
-class MessageSendControl:
- """消息发送控制器"""
- def __init__(self):
- self.typing_speed = (0.1, 0.3) # 每个字符的打字时间范围(秒)
- self.message_interval = (0.5, 1) # 多条消息间的间隔时间范围(秒)
- self.max_retry = 3 # 最大重试次数
- self.send_temp_container = SendTempContainer()
- self._running = True
- self._paused = False
- self._current_bot = None
- self.storage = MessageStorage() # 添加存储实例
- try:
- message_visualizer.start()
- except(NameError):
- pass
-
- async def process_group_messages(self, group_id: int):
- queue = self.send_temp_container.get_queue(group_id)
- if queue.has_messages():
- message = queue.peek_next()
- # 处理消息的逻辑
- if isinstance(message, Message_Thinking):
- message.update_thinking_time()
- thinking_time = message.thinking_time
- if message.interupt:
- print(f"\033[1;34m[调试]\033[0m 思考不打算回复,移除")
- queue.get_earliest_message()
- return
- elif thinking_time < 90: # 最少思考2秒
- if int(thinking_time) % 15 == 0:
- print(f"\033[1;34m[调试]\033[0m 消息正在思考中,已思考{thinking_time:.1f}秒")
- return
- else:
- print(f"\033[1;34m[调试]\033[0m 思考消息超时,移除")
- queue.get_earliest_message() # 移除超时的思考消息
- return
- elif isinstance(message, Message):
- message = queue.get_earliest_message()
- if message and message.processed_plain_text:
- print(f"- 群组: {group_id} - 内容: {message.processed_plain_text}")
- cost_time = round(time.time(), 2) - message.time
- if cost_time > 40:
- message.processed_plain_text = cq_code_tool.create_reply_cq(message.message_id) + message.processed_plain_text
- cur_time = time.time()
- await self._current_bot.send_group_msg(
- group_id=group_id,
- message=str(message.processed_plain_text),
- auto_escape=False
- )
- cost_time = round(time.time(), 2) - cur_time
- print(f"\033[1;34m[调试]\033[0m 消息发送时间: {cost_time}秒")
- current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(message.time))
- print(f"\033[1;32m群 {group_id} 消息, 用户 {global_config.BOT_NICKNAME}, 时间: {current_time}:\033[0m {str(message.processed_plain_text)}")
-
- if message.is_emoji:
- message.processed_plain_text = "[表情包]"
- await self.storage.store_message(message, None)
- else:
- await self.storage.store_message(message, None)
-
-
-
- queue.update_send_time()
- if queue.has_messages():
- await asyncio.sleep(
- random.uniform(
- self.message_interval[0],
- self.message_interval[1]
- )
- )
-
- async def start_processor(self, bot: Bot):
- """启动消息处理器"""
- self._current_bot = bot
-
- while self._running:
- await asyncio.sleep(1.5)
- tasks = []
- for group_id in self.send_temp_container.get_all_groups():
- tasks.append(self.process_group_messages(group_id))
-
- # 并行处理所有群组的消息
- await asyncio.gather(*tasks)
- try:
- message_visualizer.update_content(self.send_temp_container)
- except(NameError):
- pass
-
- def set_typing_speed(self, min_speed: float, max_speed: float):
- """设置打字速度范围"""
- self.typing_speed = (min_speed, max_speed)
-
-# 创建全局实例
-message_sender_control = MessageSendControl()
diff --git a/src/plugins/chat/del.message_stream.py b/src/plugins/chat/del.message_stream.py
deleted file mode 100644
index 07809caa7..000000000
--- a/src/plugins/chat/del.message_stream.py
+++ /dev/null
@@ -1,271 +0,0 @@
-from typing import List, Optional, Dict
-from .message import Message
-import time
-from collections import deque
-from datetime import datetime, timedelta
-import os
-import json
-import asyncio
-
-class MessageStream:
- """单个群组的消息流容器"""
- def __init__(self, group_id: int, max_size: int = 1000):
- self.group_id = group_id
- self.messages = deque(maxlen=max_size)
- self.max_size = max_size
- self.last_save_time = time.time()
-
- # 确保日志目录存在
- self.log_dir = os.path.join("log", str(self.group_id))
- os.makedirs(self.log_dir, exist_ok=True)
-
- # 启动自动保存任务
- asyncio.create_task(self._auto_save())
-
- async def _auto_save(self):
- """每30秒自动保存一次消息记录"""
- while True:
- await asyncio.sleep(30) # 等待30秒
- await self.save_to_log()
-
- async def save_to_log(self):
- """将消息保存到日志文件"""
- try:
- current_time = time.time()
- # 只有有新消息时才保存
- if not self.messages or self.last_save_time == current_time:
- return
-
- # 生成日志文件名 (使用当前日期)
- date_str = time.strftime("%Y-%m-%d", time.localtime(current_time))
- log_file = os.path.join(self.log_dir, f"chat_{date_str}.log")
-
- # 获取需要保存的新消息
- new_messages = [
- msg for msg in self.messages
- if msg.time > self.last_save_time
- ]
-
- if not new_messages:
- return
-
- # 将消息转换为可序列化的格式
- message_logs = []
- for msg in new_messages:
- message_logs.append({
- "time": time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(msg.time)),
- "user_id": msg.user_id,
- "user_nickname": msg.user_nickname,
- "user_cardname": msg.user_cardname,
- "message_id": msg.message_id,
- "raw_message": msg.raw_message,
- "processed_text": msg.processed_plain_text
- })
-
- # 追加写入日志文件
- with open(log_file, "a", encoding="utf-8") as f:
- for log in message_logs:
- f.write(json.dumps(log, ensure_ascii=False) + "\n")
-
- self.last_save_time = current_time
-
- except Exception as e:
- print(f"\033[1;31m[错误]\033[0m 保存群 {self.group_id} 的消息日志失败: {str(e)}")
-
- def add_message(self, message: Message) -> None:
- """按时间顺序添加新消息到队列
-
- 使用改进的二分查找算法来保持消息的时间顺序,同时优化内存使用。
-
- Args:
- message: Message对象,要添加的新消息
- """
-
- # 空队列或消息应该添加到末尾的情况
- if (not self.messages or
- message.time >= self.messages[-1].time):
- self.messages.append(message)
- return
-
- # 消息应该添加到开头的情况
- if message.time <= self.messages[0].time:
- self.messages.appendleft(message)
- return
-
- # 使用二分查找在现有队列中找到合适的插入位置
- left, right = 0, len(self.messages) - 1
- while left <= right:
- mid = (left + right) // 2
- if self.messages[mid].time < message.time:
- left = mid + 1
- else:
- right = mid - 1
-
- temp = list(self.messages)
- temp.insert(left, message)
-
- # 如果超出最大长度,移除多余的消息
- if len(temp) > self.max_size:
- temp = temp[-self.max_size:]
-
- # 重建队列
- self.messages = deque(temp, maxlen=self.max_size)
-
- async def get_recent_messages_from_db(self, count: int = 10) -> List[Message]:
- """从数据库中获取最近的消息记录
-
- Args:
- count: 需要获取的消息数量
-
- Returns:
- List[Message]: 最近的消息列表
- """
- try:
- from ...common.database import Database
- db = Database.get_instance()
-
- # 从数据库中查询最近的消息
- recent_messages = list(db.db.messages.find(
- {"group_id": self.group_id},
- # {
- # "time": 1,
- # "user_id": 1,
- # "user_nickname": 1,
- # # "user_cardname": 1,
- # "message_id": 1,
- # "raw_message": 1,
- # "processed_text": 1
- # }
- ).sort("time", -1).limit(count))
-
- if not recent_messages:
- return []
-
- # 转换为 Message 对象
- from .message import Message
- messages = []
- for msg_data in recent_messages:
- try:
- msg = Message(
- time=msg_data["time"],
- user_id=msg_data["user_id"],
- user_nickname=msg_data.get("user_nickname", ""),
- user_cardname=msg_data.get("user_cardname", ""),
- message_id=msg_data["message_id"],
- raw_message=msg_data["raw_message"],
- processed_plain_text=msg_data.get("processed_text", ""),
- group_id=self.group_id
- )
- messages.append(msg)
- except KeyError:
- print("[WARNING] 数据库中存在无效的消息")
- continue
-
- return list(reversed(messages)) # 返回按时间正序的消息
-
- except Exception as e:
- print(f"\033[1;31m[错误]\033[0m 从数据库获取群 {self.group_id} 的最近消息记录失败: {str(e)}")
- return []
-
- def get_recent_messages(self, count: int = 10) -> List[Message]:
- """获取最近的n条消息(从内存队列)"""
- print(f"\033[1;34m[调试]\033[0m 从内存获取群 {self.group_id} 的最近{count}条消息记录")
- return list(self.messages)[-count:]
-
- def get_messages_in_timerange(self,
- start_time: Optional[float] = None,
- end_time: Optional[float] = None) -> List[Message]:
- """获取时间范围内的消息"""
- if start_time is None:
- start_time = time.time() - 3600
- if end_time is None:
- end_time = time.time()
-
- return [
- msg for msg in self.messages
- if start_time <= msg.time <= end_time
- ]
-
- def get_user_messages(self, user_id: int, count: int = 10) -> List[Message]:
- """获取特定用户的最近消息"""
- user_messages = [msg for msg in self.messages if msg.user_id == user_id]
- return user_messages[-count:]
-
- def clear_old_messages(self, hours: int = 24) -> None:
- """清理旧消息"""
- cutoff_time = time.time() - (hours * 3600)
- self.messages = deque(
- [msg for msg in self.messages if msg.time > cutoff_time],
- maxlen=self.max_size
- )
-
-class MessageStreamContainer:
- """管理所有群组的消息流容器"""
- def __init__(self, max_size: int = 1000):
- self.streams: Dict[int, MessageStream] = {}
- self.max_size = max_size
-
- async def save_all_logs(self):
- """保存所有群组的消息日志"""
- for stream in self.streams.values():
- await stream.save_to_log()
-
- def add_message(self, message: Message) -> None:
- """添加消息到对应群组的消息流"""
- if not message.group_id:
- return
-
- if message.group_id not in self.streams:
- self.streams[message.group_id] = MessageStream(message.group_id, self.max_size)
-
- self.streams[message.group_id].add_message(message)
-
- def get_stream(self, group_id: int) -> Optional[MessageStream]:
- """获取特定群组的消息流"""
- return self.streams.get(group_id)
-
- def get_all_streams(self) -> Dict[int, MessageStream]:
- """获取所有群组的消息流"""
- return self.streams
-
- def clear_old_messages(self, hours: int = 24) -> None:
- """清理所有群组的旧消息"""
- for stream in self.streams.values():
- stream.clear_old_messages(hours)
-
- def get_group_stats(self, group_id: int) -> Dict:
- """获取群组的消息统计信息"""
- stream = self.streams.get(group_id)
- if not stream:
- return {
- "total_messages": 0,
- "unique_users": 0,
- "active_hours": [],
- "most_active_user": None
- }
-
- messages = stream.messages
- user_counts = {}
- hour_counts = {}
-
- for msg in messages:
- user_counts[msg.user_id] = user_counts.get(msg.user_id, 0) + 1
- hour = datetime.fromtimestamp(msg.time).hour
- hour_counts[hour] = hour_counts.get(hour, 0) + 1
-
- most_active_user = max(user_counts.items(), key=lambda x: x[1])[0] if user_counts else None
- active_hours = sorted(
- hour_counts.items(),
- key=lambda x: x[1],
- reverse=True
- )[:5]
-
- return {
- "total_messages": len(messages),
- "unique_users": len(user_counts),
- "active_hours": active_hours,
- "most_active_user": most_active_user
- }
-
-# 创建全局实例
-message_stream_container = MessageStreamContainer()
diff --git a/src/plugins/chat/del.message_visualizer.py b/src/plugins/chat/del.message_visualizer.py
deleted file mode 100644
index 0469af8f6..000000000
--- a/src/plugins/chat/del.message_visualizer.py
+++ /dev/null
@@ -1,138 +0,0 @@
-import subprocess
-import threading
-import queue
-import os
-import time
-from typing import Dict
-from .message import Message_Thinking
-
-class MessageVisualizer:
- def __init__(self):
- self.process = None
- self.message_queue = queue.Queue()
- self.is_running = False
- self.content_file = "message_queue_content.txt"
-
- def start(self):
- if self.process is None:
- # 创建用于显示的批处理文件
- with open("message_queue_window.bat", "w", encoding="utf-8") as f:
- f.write('@echo off\n')
- f.write('chcp 65001\n') # 设置UTF-8编码
- f.write('title Message Queue Visualizer\n')
- f.write('echo Waiting for message queue updates...\n')
- f.write(':loop\n')
- f.write('if exist "queue_update.txt" (\n')
- f.write(' type "queue_update.txt" > "message_queue_content.txt"\n')
- f.write(' del "queue_update.txt"\n')
- f.write(' cls\n')
- f.write(' type "message_queue_content.txt"\n')
- f.write(')\n')
- f.write('timeout /t 1 /nobreak >nul\n')
- f.write('goto loop\n')
-
- # 清空内容文件
- with open(self.content_file, "w", encoding="utf-8") as f:
- f.write("")
-
- # 启动新窗口
- startupinfo = subprocess.STARTUPINFO()
- startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW
- self.process = subprocess.Popen(
- ['cmd', '/c', 'start', 'message_queue_window.bat'],
- shell=True,
- startupinfo=startupinfo
- )
- self.is_running = True
-
- # 启动处理线程
- threading.Thread(target=self._process_messages, daemon=True).start()
-
- def _process_messages(self):
- while self.is_running:
- try:
- # 获取新消息
- text = self.message_queue.get(timeout=1)
- # 写入更新文件
- with open("queue_update.txt", "w", encoding="utf-8") as f:
- f.write(text)
- except queue.Empty:
- continue
- except Exception as e:
- print(f"处理队列可视化内容时出错: {e}")
-
- def update_content(self, send_temp_container):
- """更新显示内容"""
- if not self.is_running:
- return
-
- current_time = time.strftime("%Y-%m-%d %H:%M:%S")
- display_text = f"Message Queue Status - {current_time}\n"
- display_text += "=" * 50 + "\n\n"
-
- # 遍历所有群组的队列
- for group_id, queue in send_temp_container.temp_queues.items():
- display_text += f"\n{'='*20} 群组: {queue.group_id} {'='*20}\n"
- display_text += f"消息队列长度: {len(queue.messages)}\n"
- display_text += f"最后发送时间: {time.strftime('%H:%M:%S', time.localtime(queue.last_send_time))}\n"
- display_text += "\n消息队列内容:\n"
-
- # 显示队列中的消息
- if not queue.messages:
- display_text += " [空队列]\n"
- else:
- for i, msg in enumerate(queue.messages):
- msg_time = time.strftime("%H:%M:%S", time.localtime(msg.time))
- display_text += f"\n--- 消息 {i+1} ---\n"
-
- if isinstance(msg, Message_Thinking):
- display_text += f"类型: \033[1;33m思考中消息\033[0m\n"
- display_text += f"时间: {msg_time}\n"
- display_text += f"消息ID: {msg.message_id}\n"
- display_text += f"群组: {msg.group_id}\n"
- display_text += f"用户: {msg.user_nickname}({msg.user_id})\n"
- display_text += f"内容: {msg.thinking_text}\n"
- display_text += f"思考时间: {int(msg.thinking_time)}秒\n"
- else:
- display_text += f"类型: 普通消息\n"
- display_text += f"时间: {msg_time}\n"
- display_text += f"消息ID: {msg.message_id}\n"
- display_text += f"群组: {msg.group_id}\n"
- display_text += f"用户: {msg.user_nickname}({msg.user_id})\n"
- if hasattr(msg, 'is_emoji') and msg.is_emoji:
- display_text += f"内容: [表情包消息]\n"
- else:
- # 显示原始消息和处理后的消息
- display_text += f"原始内容: {msg.raw_message[:50]}...\n"
- display_text += f"处理后内容: {msg.processed_plain_text[:50]}...\n"
-
- if msg.reply_message:
- display_text += f"回复消息: {str(msg.reply_message)[:50]}...\n"
-
- display_text += f"\n{'-' * 50}\n"
-
- # 添加统计信息
- display_text += "\n总体统计:\n"
- display_text += f"活跃群组数: {len(send_temp_container.temp_queues)}\n"
- total_messages = sum(len(q.messages) for q in send_temp_container.temp_queues.values())
- display_text += f"总消息数: {total_messages}\n"
- thinking_messages = sum(
- sum(1 for msg in q.messages if isinstance(msg, Message_Thinking))
- for q in send_temp_container.temp_queues.values()
- )
- display_text += f"思考中消息数: {thinking_messages}\n"
-
- self.message_queue.put(display_text)
-
- def stop(self):
- self.is_running = False
- if self.process:
- self.process.terminate()
- self.process = None
- # 清理文件
- for file in ["message_queue_window.bat", "message_queue_content.txt", "queue_update.txt"]:
- if os.path.exists(file):
- os.remove(file)
-
-# 创建全局单例
-message_visualizer = MessageVisualizer()
diff --git a/src/plugins/chat/willing_manager.py b/src/plugins/chat/willing_manager.py
index f90889f77..ab8c5ee25 100644
--- a/src/plugins/chat/willing_manager.py
+++ b/src/plugins/chat/willing_manager.py
@@ -9,7 +9,7 @@ class WillingManager:
async def _decay_reply_willing(self):
"""定期衰减回复意愿"""
while True:
- await asyncio.sleep(3)
+ await asyncio.sleep(5)
for group_id in self.group_reply_willing:
self.group_reply_willing[group_id] = max(0, self.group_reply_willing[group_id] * 0.6)
@@ -39,11 +39,11 @@ class WillingManager:
if interested_rate > 0.65:
print(f"兴趣度: {interested_rate}, 当前意愿: {current_willing}")
- current_willing += interested_rate-0.5
+ current_willing += interested_rate-0.6
self.group_reply_willing[group_id] = min(current_willing, 3.0)
- reply_probability = max((current_willing - 0.5) * 2, 0)
+ reply_probability = max((current_willing - 0.55) * 1.9, 0)
if group_id not in config.talk_allowed_groups:
current_willing = 0
reply_probability = 0
@@ -65,7 +65,7 @@ class WillingManager:
"""发送消息后提高群组的回复意愿"""
current_willing = self.group_reply_willing.get(group_id, 0)
if current_willing < 1:
- self.group_reply_willing[group_id] = min(1, current_willing + 0.3)
+ self.group_reply_willing[group_id] = min(1, current_willing + 0.2)
async def ensure_started(self):
"""确保衰减任务已启动"""
diff --git a/src/plugins/memory_system/draw_memory.py b/src/plugins/memory_system/draw_memory.py
index ddb11d574..fad3f5f30 100644
--- a/src/plugins/memory_system/draw_memory.py
+++ b/src/plugins/memory_system/draw_memory.py
@@ -22,63 +22,6 @@ from src.common.database import Database # 使用正确的导入语法
env_path = os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))), '.env.dev')
load_dotenv(env_path)
-class LLMModel:
- def __init__(self, model_name=os.getenv("SILICONFLOW_MODEL_V3"), **kwargs):
- self.model_name = model_name
- self.params = kwargs
- self.api_key = os.getenv("SILICONFLOW_KEY")
- self.base_url = os.getenv("SILICONFLOW_BASE_URL")
-
- async def generate_response(self, prompt: str) -> Tuple[str, str]:
- """根据输入的提示生成模型的响应"""
- headers = {
- "Authorization": f"Bearer {self.api_key}",
- "Content-Type": "application/json"
- }
-
- # 构建请求体
- data = {
- "model": self.model_name,
- "messages": [{"role": "user", "content": prompt}],
- "temperature": 0.5,
- **self.params
- }
-
- # 发送请求到完整的chat/completions端点
- api_url = f"{self.base_url.rstrip('/')}/chat/completions"
-
- max_retries = 3
- base_wait_time = 15
-
- for retry in range(max_retries):
- try:
- async with aiohttp.ClientSession() as session:
- async with session.post(api_url, headers=headers, json=data) as response:
- if response.status == 429:
- wait_time = base_wait_time * (2 ** retry) # 指数退避
- print(f"遇到请求限制(429),等待{wait_time}秒后重试...")
- await asyncio.sleep(wait_time)
- continue
-
- response.raise_for_status() # 检查其他响应状态
-
- result = await response.json()
- if "choices" in result and len(result["choices"]) > 0:
- content = result["choices"][0]["message"]["content"]
- reasoning_content = result["choices"][0]["message"].get("reasoning_content", "")
- return content, reasoning_content
- return "没有返回结果", ""
-
- except Exception as e:
- if retry < max_retries - 1: # 如果还有重试机会
- wait_time = base_wait_time * (2 ** retry)
- print(f"请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
- await asyncio.sleep(wait_time)
- else:
- return f"请求失败: {str(e)}", ""
-
- return "达到最大重试次数,请求仍然失败", ""
-
class Memory_graph:
def __init__(self):
@@ -232,19 +175,10 @@ def main():
)
memory_graph = Memory_graph()
- # 创建LLM模型实例
-
memory_graph.load_graph_from_db()
- # 展示两种不同的可视化方式
- print("\n按连接数量着色的图谱:")
- # visualize_graph(memory_graph, color_by_memory=False)
- visualize_graph_lite(memory_graph, color_by_memory=False)
- print("\n按记忆数量着色的图谱:")
- # visualize_graph(memory_graph, color_by_memory=True)
- visualize_graph_lite(memory_graph, color_by_memory=True)
-
- # memory_graph.save_graph_to_db()
+ # 只显示一次优化后的图形
+ visualize_graph_lite(memory_graph)
while True:
query = input("请输入新的查询概念(输入'退出'以结束):")
@@ -327,7 +261,7 @@ def visualize_graph(memory_graph: Memory_graph, color_by_memory: bool = False):
nx.draw(G, pos,
with_labels=True,
node_color=node_colors,
- node_size=2000,
+ node_size=200,
font_size=10,
font_family='SimHei',
font_weight='bold')
@@ -353,7 +287,7 @@ def visualize_graph_lite(memory_graph: Memory_graph, color_by_memory: bool = Fal
memory_items = H.nodes[node].get('memory_items', [])
memory_count = len(memory_items) if isinstance(memory_items, list) else (1 if memory_items else 0)
degree = H.degree(node)
- if memory_count <= 2 or degree <= 2:
+ if memory_count < 5 or degree < 2: # 改为小于2而不是小于等于2
nodes_to_remove.append(node)
H.remove_nodes_from(nodes_to_remove)
@@ -366,55 +300,55 @@ def visualize_graph_lite(memory_graph: Memory_graph, color_by_memory: bool = Fal
# 保存图到本地
nx.write_gml(H, "memory_graph.gml") # 保存为 GML 格式
- # 根据连接条数或记忆数量设置节点颜色
+ # 计算节点大小和颜色
node_colors = []
- nodes = list(H.nodes()) # 获取图中实际的节点列表
+ node_sizes = []
+ nodes = list(H.nodes())
- if color_by_memory:
- # 计算每个节点的记忆数量
- memory_counts = []
- for node in nodes:
- memory_items = H.nodes[node].get('memory_items', [])
- if isinstance(memory_items, list):
- count = len(memory_items)
- else:
- count = 1 if memory_items else 0
- memory_counts.append(count)
- max_memories = max(memory_counts) if memory_counts else 1
+ # 获取最大记忆数和最大度数用于归一化
+ max_memories = 1
+ max_degree = 1
+ for node in nodes:
+ memory_items = H.nodes[node].get('memory_items', [])
+ memory_count = len(memory_items) if isinstance(memory_items, list) else (1 if memory_items else 0)
+ degree = H.degree(node)
+ max_memories = max(max_memories, memory_count)
+ max_degree = max(max_degree, degree)
+
+ # 计算每个节点的大小和颜色
+ for node in nodes:
+ # 计算节点大小(基于记忆数量)
+ memory_items = H.nodes[node].get('memory_items', [])
+ memory_count = len(memory_items) if isinstance(memory_items, list) else (1 if memory_items else 0)
+ # 使用指数函数使变化更明显
+ ratio = memory_count / max_memories
+ size = 500 + 5000 * (ratio ** 2) # 使用平方函数使差异更明显
+ node_sizes.append(size)
- for count in memory_counts:
- # 使用不同的颜色方案:红色表示记忆多,蓝色表示记忆少
- if max_memories > 0:
- intensity = min(1.0, count / max_memories)
- color = (intensity, 0, 1.0 - intensity) # 从蓝色渐变到红色
- else:
- color = (0, 0, 1) # 如果没有记忆,则为蓝色
- node_colors.append(color)
- else:
- # 使用原来的连接数量着色方案
- max_degree = max(H.degree(), key=lambda x: x[1])[1] if H.degree() else 1
- for node in nodes:
- degree = H.degree(node)
- if max_degree > 0:
- red = min(1.0, degree / max_degree)
- blue = 1.0 - red
- color = (red, 0, blue)
- else:
- color = (0, 0, 1)
- node_colors.append(color)
+ # 计算节点颜色(基于连接数)
+ degree = H.degree(node)
+ # 红色分量随着度数增加而增加
+ red = min(1.0, degree / max_degree)
+ # 蓝色分量随着度数减少而增加
+ blue = 1.0 - red
+ color = (red, 0, blue)
+ node_colors.append(color)
# 绘制图形
plt.figure(figsize=(12, 8))
- pos = nx.spring_layout(H, k=1, iterations=50)
+ pos = nx.spring_layout(H, k=1.5, iterations=50) # 增加k值使节点分布更开
nx.draw(H, pos,
with_labels=True,
node_color=node_colors,
- node_size=2000,
+ node_size=node_sizes,
font_size=10,
font_family='SimHei',
- font_weight='bold')
+ font_weight='bold',
+ edge_color='gray',
+ width=0.5,
+ alpha=0.7)
- title = '记忆图谱可视化 - ' + ('按记忆数量着色' if color_by_memory else '按连接数量着色')
+ title = '记忆图谱可视化 - 节点大小表示记忆数量,颜色表示连接数'
plt.title(title, fontsize=16, fontfamily='SimHei')
plt.show()
diff --git a/src/plugins/memory_system/memory.py b/src/plugins/memory_system/memory.py
index e0095dada..9ad740844 100644
--- a/src/plugins/memory_system/memory.py
+++ b/src/plugins/memory_system/memory.py
@@ -17,7 +17,12 @@ class Memory_graph:
self.db = Database.get_instance()
def connect_dot(self, concept1, concept2):
- self.G.add_edge(concept1, concept2)
+ # 如果边已存在,增加 strength
+ if self.G.has_edge(concept1, concept2):
+ self.G[concept1][concept2]['strength'] = self.G[concept1][concept2].get('strength', 1) + 1
+ else:
+ # 如果是新边,初始化 strength 为 1
+ self.G.add_edge(concept1, concept2, strength=1)
def add_dot(self, concept, memory):
if concept in self.G:
@@ -38,9 +43,7 @@ class Memory_graph:
if concept in self.G:
# 从图中获取节点数据
node_data = self.G.nodes[concept]
- # print(node_data)
- # 创建新的Memory_dot对象
- return concept,node_data
+ return concept, node_data
return None
def get_related_item(self, topic, depth=1):
@@ -52,7 +55,6 @@ class Memory_graph:
# 获取相邻节点
neighbors = list(self.G.neighbors(topic))
- # print(f"第一层: {topic}")
# 获取当前节点的记忆项
node_data = self.get_dot(topic)
@@ -69,7 +71,6 @@ class Memory_graph:
if depth >= 2:
# 获取相邻节点的记忆项
for neighbor in neighbors:
- # print(f"第二层: {neighbor}")
node_data = self.get_dot(neighbor)
if node_data:
concept, data = node_data
@@ -87,79 +88,38 @@ class Memory_graph:
# 返回所有节点对应的 Memory_dot 对象
return [self.get_dot(node) for node in self.G.nodes()]
- def save_graph_to_db(self):
- # 保存节点
- for node in self.G.nodes(data=True):
- concept = node[0]
- memory_items = node[1].get('memory_items', [])
+ def forget_topic(self, topic):
+ """随机删除指定话题中的一条记忆,如果话题没有记忆则移除该话题节点"""
+ if topic not in self.G:
+ return None
- # 查找是否存在同名节点
- existing_node = self.db.db.graph_data.nodes.find_one({'concept': concept})
- if existing_node:
- # 如果存在,合并memory_items并去重
- existing_items = existing_node.get('memory_items', [])
- if not isinstance(existing_items, list):
- existing_items = [existing_items] if existing_items else []
-
- # 合并并去重
- all_items = list(set(existing_items + memory_items))
-
- # 更新节点
- self.db.db.graph_data.nodes.update_one(
- {'concept': concept},
- {'$set': {'memory_items': all_items}}
- )
- else:
- # 如果不存在,创建新节点
- node_data = {
- 'concept': concept,
- 'memory_items': memory_items
- }
- self.db.db.graph_data.nodes.insert_one(node_data)
+ # 获取话题节点数据
+ node_data = self.G.nodes[topic]
- # 保存边
- for edge in self.G.edges():
- source, target = edge
+ # 如果节点存在memory_items
+ if 'memory_items' in node_data:
+ memory_items = node_data['memory_items']
- # 查找是否存在同样的边
- existing_edge = self.db.db.graph_data.edges.find_one({
- 'source': source,
- 'target': target
- })
-
- if existing_edge:
- # 如果存在,增加num属性
- num = existing_edge.get('num', 1) + 1
- self.db.db.graph_data.edges.update_one(
- {'source': source, 'target': target},
- {'$set': {'num': num}}
- )
- else:
- # 如果不存在,创建新边
- edge_data = {
- 'source': source,
- 'target': target,
- 'num': 1
- }
- self.db.db.graph_data.edges.insert_one(edge_data)
-
- def load_graph_from_db(self):
- # 清空当前图
- self.G.clear()
- # 加载节点
- nodes = self.db.db.graph_data.nodes.find()
- for node in nodes:
- memory_items = node.get('memory_items', [])
+ # 确保memory_items是列表
if not isinstance(memory_items, list):
memory_items = [memory_items] if memory_items else []
- self.G.add_node(node['concept'], memory_items=memory_items)
- # 加载边
- edges = self.db.db.graph_data.edges.find()
- for edge in edges:
- self.G.add_edge(edge['source'], edge['target'], num=edge.get('num', 1))
-
-
-
+
+ # 如果有记忆项可以删除
+ if memory_items:
+ # 随机选择一个记忆项删除
+ removed_item = random.choice(memory_items)
+ memory_items.remove(removed_item)
+
+ # 更新节点的记忆项
+ if memory_items:
+ self.G.nodes[topic]['memory_items'] = memory_items
+ else:
+ # 如果没有记忆项了,删除整个节点
+ self.G.remove_node(topic)
+
+ return removed_item
+
+ return None
# 海马体
@@ -169,23 +129,33 @@ class Hippocampus:
self.llm_model = LLM_request(model = global_config.llm_normal,temperature=0.5)
self.llm_model_small = LLM_request(model = global_config.llm_normal_minor,temperature=0.5)
+ def calculate_node_hash(self, concept, memory_items):
+ """计算节点的特征值"""
+ if not isinstance(memory_items, list):
+ memory_items = [memory_items] if memory_items else []
+ sorted_items = sorted(memory_items)
+ content = f"{concept}:{'|'.join(sorted_items)}"
+ return hash(content)
+
+ def calculate_edge_hash(self, source, target):
+ """计算边的特征值"""
+ nodes = sorted([source, target])
+ return hash(f"{nodes[0]}:{nodes[1]}")
+
def get_memory_sample(self,chat_size=20,time_frequency:dict={'near':2,'mid':4,'far':3}):
current_timestamp = datetime.datetime.now().timestamp()
chat_text = []
#短期:1h 中期:4h 长期:24h
for _ in range(time_frequency.get('near')): # 循环10次
random_time = current_timestamp - random.randint(1, 3600) # 随机时间
- # print(f"获得 最近 随机时间戳对应的时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(random_time))}")
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
chat_text.append(chat_)
for _ in range(time_frequency.get('mid')): # 循环10次
random_time = current_timestamp - random.randint(3600, 3600*4) # 随机时间
- # print(f"获得 最近 随机时间戳对应的时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(random_time))}")
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
chat_text.append(chat_)
for _ in range(time_frequency.get('far')): # 循环10次
random_time = current_timestamp - random.randint(3600*4, 3600*24) # 随机时间
- # print(f"获得 最近 随机时间戳对应的时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(random_time))}")
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
chat_text.append(chat_)
return chat_text
@@ -207,8 +177,8 @@ class Hippocampus:
topic_what_response = await self.llm_model_small.generate_response(topic_what_prompt)
compressed_memory.add((topic.strip(), topic_what_response[0])) # 将话题和记忆作为元组存储
return compressed_memory
-
- async def build_memory(self,chat_size=12):
+
+ async def operation_build_memory(self,chat_size=12):
#最近消息获取频率
time_frequency = {'near':1,'mid':2,'far':2}
memory_sample = self.get_memory_sample(chat_size,time_frequency)
@@ -236,7 +206,247 @@ class Hippocampus:
self.memory_graph.connect_dot(split_topic, other_split_topic)
else:
print(f"空消息 跳过")
- self.memory_graph.save_graph_to_db()
+ self.sync_memory_to_db()
+
+ def sync_memory_to_db(self):
+ """检查并同步内存中的图结构与数据库"""
+ # 获取数据库中所有节点和内存中所有节点
+ db_nodes = list(self.memory_graph.db.db.graph_data.nodes.find())
+ memory_nodes = list(self.memory_graph.G.nodes(data=True))
+
+ # 转换数据库节点为字典格式,方便查找
+ db_nodes_dict = {node['concept']: node for node in db_nodes}
+
+ # 检查并更新节点
+ for concept, data in memory_nodes:
+ memory_items = data.get('memory_items', [])
+ if not isinstance(memory_items, list):
+ memory_items = [memory_items] if memory_items else []
+
+ # 计算内存中节点的特征值
+ memory_hash = self.calculate_node_hash(concept, memory_items)
+
+ if concept not in db_nodes_dict:
+ # 数据库中缺少的节点,添加
+ node_data = {
+ 'concept': concept,
+ 'memory_items': memory_items,
+ 'hash': memory_hash
+ }
+ self.memory_graph.db.db.graph_data.nodes.insert_one(node_data)
+ else:
+ # 获取数据库中节点的特征值
+ db_node = db_nodes_dict[concept]
+ db_hash = db_node.get('hash', None)
+
+ # 如果特征值不同,则更新节点
+ if db_hash != memory_hash:
+ self.memory_graph.db.db.graph_data.nodes.update_one(
+ {'concept': concept},
+ {'$set': {
+ 'memory_items': memory_items,
+ 'hash': memory_hash
+ }}
+ )
+
+ # 检查并删除数据库中多余的节点
+ memory_concepts = set(node[0] for node in memory_nodes)
+ for db_node in db_nodes:
+ if db_node['concept'] not in memory_concepts:
+ self.memory_graph.db.db.graph_data.nodes.delete_one({'concept': db_node['concept']})
+
+ # 处理边的信息
+ db_edges = list(self.memory_graph.db.db.graph_data.edges.find())
+ memory_edges = list(self.memory_graph.G.edges())
+
+ # 创建边的哈希值字典
+ db_edge_dict = {}
+ for edge in db_edges:
+ edge_hash = self.calculate_edge_hash(edge['source'], edge['target'])
+ db_edge_dict[(edge['source'], edge['target'])] = {
+ 'hash': edge_hash,
+ 'strength': edge.get('strength', 1)
+ }
+
+ # 检查并更新边
+ for source, target in memory_edges:
+ edge_hash = self.calculate_edge_hash(source, target)
+ edge_key = (source, target)
+ strength = self.memory_graph.G[source][target].get('strength', 1)
+
+ if edge_key not in db_edge_dict:
+ # 添加新边
+ edge_data = {
+ 'source': source,
+ 'target': target,
+ 'strength': strength,
+ 'hash': edge_hash
+ }
+ self.memory_graph.db.db.graph_data.edges.insert_one(edge_data)
+ else:
+ # 检查边的特征值是否变化
+ if db_edge_dict[edge_key]['hash'] != edge_hash:
+ self.memory_graph.db.db.graph_data.edges.update_one(
+ {'source': source, 'target': target},
+ {'$set': {
+ 'hash': edge_hash,
+ 'strength': strength
+ }}
+ )
+
+ # 删除多余的边
+ memory_edge_set = set(memory_edges)
+ for edge_key in db_edge_dict:
+ if edge_key not in memory_edge_set:
+ source, target = edge_key
+ self.memory_graph.db.db.graph_data.edges.delete_one({
+ 'source': source,
+ 'target': target
+ })
+
+ def sync_memory_from_db(self):
+ """从数据库同步数据到内存中的图结构"""
+ # 清空当前图
+ self.memory_graph.G.clear()
+
+ # 从数据库加载所有节点
+ nodes = self.memory_graph.db.db.graph_data.nodes.find()
+ for node in nodes:
+ concept = node['concept']
+ memory_items = node.get('memory_items', [])
+ # 确保memory_items是列表
+ if not isinstance(memory_items, list):
+ memory_items = [memory_items] if memory_items else []
+ # 添加节点到图中
+ self.memory_graph.G.add_node(concept, memory_items=memory_items)
+
+ # 从数据库加载所有边
+ edges = self.memory_graph.db.db.graph_data.edges.find()
+ for edge in edges:
+ source = edge['source']
+ target = edge['target']
+ strength = edge.get('strength', 1) # 获取 strength,默认为 1
+ # 只有当源节点和目标节点都存在时才添加边
+ if source in self.memory_graph.G and target in self.memory_graph.G:
+ self.memory_graph.G.add_edge(source, target, strength=strength)
+
+ async def operation_forget_topic(self, percentage=0.1):
+ """随机选择图中一定比例的节点进行检查,根据条件决定是否遗忘"""
+ # 获取所有节点
+ all_nodes = list(self.memory_graph.G.nodes())
+ # 计算要检查的节点数量
+ check_count = max(1, int(len(all_nodes) * percentage))
+ # 随机选择节点
+ nodes_to_check = random.sample(all_nodes, check_count)
+
+ forgotten_nodes = []
+ for node in nodes_to_check:
+ # 获取节点的连接数
+ connections = self.memory_graph.G.degree(node)
+
+ # 获取节点的内容条数
+ memory_items = self.memory_graph.G.nodes[node].get('memory_items', [])
+ if not isinstance(memory_items, list):
+ memory_items = [memory_items] if memory_items else []
+ content_count = len(memory_items)
+
+ # 检查连接强度
+ weak_connections = True
+ if connections > 1: # 只有当连接数大于1时才检查强度
+ for neighbor in self.memory_graph.G.neighbors(node):
+ strength = self.memory_graph.G[node][neighbor].get('strength', 1)
+ if strength > 2:
+ weak_connections = False
+ break
+
+ # 如果满足遗忘条件
+ if (connections <= 1 and weak_connections) or content_count <= 2:
+ removed_item = self.memory_graph.forget_topic(node)
+ if removed_item:
+ forgotten_nodes.append((node, removed_item))
+ print(f"遗忘节点 {node} 的记忆: {removed_item}")
+
+ # 同步到数据库
+ if forgotten_nodes:
+ self.sync_memory_to_db()
+ print(f"完成遗忘操作,共遗忘 {len(forgotten_nodes)} 个节点的记忆")
+ else:
+ print("本次检查没有节点满足遗忘条件")
+
+ async def merge_memory(self, topic):
+ """
+ 对指定话题的记忆进行合并压缩
+
+ Args:
+ topic: 要合并的话题节点
+ """
+ # 获取节点的记忆项
+ memory_items = self.memory_graph.G.nodes[topic].get('memory_items', [])
+ if not isinstance(memory_items, list):
+ memory_items = [memory_items] if memory_items else []
+
+ # 如果记忆项不足,直接返回
+ if len(memory_items) < 10:
+ return
+
+ # 随机选择10条记忆
+ selected_memories = random.sample(memory_items, 10)
+
+ # 拼接成文本
+ merged_text = "\n".join(selected_memories)
+ print(f"\n[合并记忆] 话题: {topic}")
+ print(f"选择的记忆:\n{merged_text}")
+
+ # 使用memory_compress生成新的压缩记忆
+ compressed_memories = await self.memory_compress(merged_text, 0.1)
+
+ # 从原记忆列表中移除被选中的记忆
+ for memory in selected_memories:
+ memory_items.remove(memory)
+
+ # 添加新的压缩记忆
+ for _, compressed_memory in compressed_memories:
+ memory_items.append(compressed_memory)
+ print(f"添加压缩记忆: {compressed_memory}")
+
+ # 更新节点的记忆项
+ self.memory_graph.G.nodes[topic]['memory_items'] = memory_items
+ print(f"完成记忆合并,当前记忆数量: {len(memory_items)}")
+
+ async def operation_merge_memory(self, percentage=0.1):
+ """
+ 随机检查一定比例的节点,对内容数量超过100的节点进行记忆合并
+
+ Args:
+ percentage: 要检查的节点比例,默认为0.1(10%)
+ """
+ # 获取所有节点
+ all_nodes = list(self.memory_graph.G.nodes())
+ # 计算要检查的节点数量
+ check_count = max(1, int(len(all_nodes) * percentage))
+ # 随机选择节点
+ nodes_to_check = random.sample(all_nodes, check_count)
+
+ merged_nodes = []
+ for node in nodes_to_check:
+ # 获取节点的内容条数
+ memory_items = self.memory_graph.G.nodes[node].get('memory_items', [])
+ if not isinstance(memory_items, list):
+ memory_items = [memory_items] if memory_items else []
+ content_count = len(memory_items)
+
+ # 如果内容数量超过100,进行合并
+ if content_count > 100:
+ print(f"\n检查节点: {node}, 当前记忆数量: {content_count}")
+ await self.merge_memory(node)
+ merged_nodes.append(node)
+
+ # 同步到数据库
+ if merged_nodes:
+ self.sync_memory_to_db()
+ print(f"\n完成记忆合并操作,共处理 {len(merged_nodes)} 个节点")
+ else:
+ print("\n本次检查没有需要合并的节点")
def segment_text(text):
@@ -268,10 +478,10 @@ Database.initialize(
)
#创建记忆图
memory_graph = Memory_graph()
-#加载数据库中存储的记忆图
-memory_graph.load_graph_from_db()
#创建海马体
hippocampus = Hippocampus(memory_graph)
+#从数据库加载记忆图
+hippocampus.sync_memory_from_db()
end_time = time.time()
print(f"\033[32m[加载海马体耗时: {end_time - start_time:.2f} 秒]\033[0m")
\ No newline at end of file
diff --git a/src/plugins/memory_system/memory_make.py b/src/plugins/memory_system/memory_make.py
deleted file mode 100644
index d1757b246..000000000
--- a/src/plugins/memory_system/memory_make.py
+++ /dev/null
@@ -1,463 +0,0 @@
-# -*- coding: utf-8 -*-
-import sys
-import jieba
-import networkx as nx
-import matplotlib.pyplot as plt
-import math
-from collections import Counter
-import datetime
-import random
-import time
-import os
-# from chat.config import global_config
-sys.path.append("C:/GitHub/MaiMBot") # 添加项目根目录到 Python 路径
-from src.common.database import Database # 使用正确的导入语法
-from src.plugins.memory_system.llm_module import LLMModel
-
-def calculate_information_content(text):
- """计算文本的信息量(熵)"""
- # 统计字符频率
- char_count = Counter(text)
- total_chars = len(text)
-
- # 计算熵
- entropy = 0
- for count in char_count.values():
- probability = count / total_chars
- entropy -= probability * math.log2(probability)
-
- return entropy
-
-def get_cloest_chat_from_db(db, length: int, timestamp: str):
- """从数据库中获取最接近指定时间戳的聊天记录"""
- chat_text = ''
- closest_record = db.db.messages.find_one({"time": {"$lte": timestamp}}, sort=[('time', -1)])
-
- if closest_record:
- closest_time = closest_record['time']
- group_id = closest_record['group_id'] # 获取groupid
- # 获取该时间戳之后的length条消息,且groupid相同
- chat_record = list(db.db.messages.find({"time": {"$gt": closest_time}, "group_id": group_id}).sort('time', 1).limit(length))
- for record in chat_record:
- time_str = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(record['time'])))
- chat_text += f'[{time_str}] {record["user_nickname"] or "用户" + str(record["user_id"])}: {record["processed_plain_text"]}\n'
- return chat_text
-
- return ''
-
-class Memory_graph:
- def __init__(self):
- self.G = nx.Graph() # 使用 networkx 的图结构
- self.db = Database.get_instance()
-
- def connect_dot(self, concept1, concept2):
- self.G.add_edge(concept1, concept2)
-
- def add_dot(self, concept, memory):
- if concept in self.G:
- # 如果节点已存在,将新记忆添加到现有列表中
- if 'memory_items' in self.G.nodes[concept]:
- if not isinstance(self.G.nodes[concept]['memory_items'], list):
- # 如果当前不是列表,将其转换为列表
- self.G.nodes[concept]['memory_items'] = [self.G.nodes[concept]['memory_items']]
- self.G.nodes[concept]['memory_items'].append(memory)
- else:
- self.G.nodes[concept]['memory_items'] = [memory]
- else:
- # 如果是新节点,创建新的记忆列表
- self.G.add_node(concept, memory_items=[memory])
-
- def get_dot(self, concept):
- # 检查节点是否存在于图中
- if concept in self.G:
- # 从图中获取节点数据
- node_data = self.G.nodes[concept]
- # print(node_data)
- # 创建新的Memory_dot对象
- return concept,node_data
- return None
-
- def get_related_item(self, topic, depth=1):
- if topic not in self.G:
- return [], []
-
- first_layer_items = []
- second_layer_items = []
-
- # 获取相邻节点
- neighbors = list(self.G.neighbors(topic))
- # print(f"第一层: {topic}")
-
- # 获取当前节点的记忆项
- node_data = self.get_dot(topic)
- if node_data:
- concept, data = node_data
- if 'memory_items' in data:
- memory_items = data['memory_items']
- if isinstance(memory_items, list):
- first_layer_items.extend(memory_items)
- else:
- first_layer_items.append(memory_items)
-
- # 只在depth=2时获取第二层记忆
- if depth >= 2:
- # 获取相邻节点的记忆项
- for neighbor in neighbors:
- # print(f"第二层: {neighbor}")
- node_data = self.get_dot(neighbor)
- if node_data:
- concept, data = node_data
- if 'memory_items' in data:
- memory_items = data['memory_items']
- if isinstance(memory_items, list):
- second_layer_items.extend(memory_items)
- else:
- second_layer_items.append(memory_items)
-
- return first_layer_items, second_layer_items
-
- def store_memory(self):
- for node in self.G.nodes():
- dot_data = {
- "concept": node
- }
- self.db.db.store_memory_dots.insert_one(dot_data)
-
- @property
- def dots(self):
- # 返回所有节点对应的 Memory_dot 对象
- return [self.get_dot(node) for node in self.G.nodes()]
-
-
- def get_random_chat_from_db(self, length: int, timestamp: str):
- # 从数据库中根据时间戳获取离其最近的聊天记录
- chat_text = ''
- closest_record = self.db.db.messages.find_one({"time": {"$lte": timestamp}}, sort=[('time', -1)]) # 调试输出
-
- # print(f"距离time最近的消息时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(closest_record['time'])))}")
-
- if closest_record:
- closest_time = closest_record['time']
- group_id = closest_record['group_id'] # 获取groupid
- # 获取该时间戳之后的length条消息,且groupid相同
- chat_record = list(self.db.db.messages.find({"time": {"$gt": closest_time}, "group_id": group_id}).sort('time', 1).limit(length))
- for record in chat_record:
- if record:
- time_str = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(record['time'])))
- try:
- displayname="[(%s)%s]%s" % (record["user_id"],record["user_nickname"],record["user_cardname"])
- except:
- displayname=record["user_nickname"] or "用户" + str(record["user_id"])
- chat_text += f'[{time_str}] {displayname}: {record["processed_plain_text"]}\n' # 添加发送者和时间信息
- return chat_text
-
- return [] # 如果没有找到记录,返回空列表
-
- def save_graph_to_db(self):
- # 保存节点
- for node in self.G.nodes(data=True):
- concept = node[0]
- memory_items = node[1].get('memory_items', [])
-
- # 查找是否存在同名节点
- existing_node = self.db.db.graph_data.nodes.find_one({'concept': concept})
- if existing_node:
- # 如果存在,合并memory_items并去重
- existing_items = existing_node.get('memory_items', [])
- if not isinstance(existing_items, list):
- existing_items = [existing_items] if existing_items else []
-
- # 合并并去重
- all_items = list(set(existing_items + memory_items))
-
- # 更新节点
- self.db.db.graph_data.nodes.update_one(
- {'concept': concept},
- {'$set': {'memory_items': all_items}}
- )
- else:
- # 如果不存在,创建新节点
- node_data = {
- 'concept': concept,
- 'memory_items': memory_items
- }
- self.db.db.graph_data.nodes.insert_one(node_data)
-
- # 保存边
- for edge in self.G.edges():
- source, target = edge
-
- # 查找是否存在同样的边
- existing_edge = self.db.db.graph_data.edges.find_one({
- 'source': source,
- 'target': target
- })
-
- if existing_edge:
- # 如果存在,增加num属性
- num = existing_edge.get('num', 1) + 1
- self.db.db.graph_data.edges.update_one(
- {'source': source, 'target': target},
- {'$set': {'num': num}}
- )
- else:
- # 如果不存在,创建新边
- edge_data = {
- 'source': source,
- 'target': target,
- 'num': 1
- }
- self.db.db.graph_data.edges.insert_one(edge_data)
-
- def load_graph_from_db(self):
- # 清空当前图
- self.G.clear()
- # 加载节点
- nodes = self.db.db.graph_data.nodes.find()
- for node in nodes:
- memory_items = node.get('memory_items', [])
- if not isinstance(memory_items, list):
- memory_items = [memory_items] if memory_items else []
- self.G.add_node(node['concept'], memory_items=memory_items)
- # 加载边
- edges = self.db.db.graph_data.edges.find()
- for edge in edges:
- self.G.add_edge(edge['source'], edge['target'], num=edge.get('num', 1))
-
-# 海马体
-class Hippocampus:
- def __init__(self,memory_graph:Memory_graph):
- self.memory_graph = memory_graph
- self.llm_model = LLMModel()
- self.llm_model_small = LLMModel(model_name="deepseek-ai/DeepSeek-V2.5")
-
- def get_memory_sample(self,chat_size=20,time_frequency:dict={'near':2,'mid':4,'far':3}):
- current_timestamp = datetime.datetime.now().timestamp()
- chat_text = []
- #短期:1h 中期:4h 长期:24h
- for _ in range(time_frequency.get('near')): # 循环10次
- random_time = current_timestamp - random.randint(1, 3600) # 随机时间
- chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
- chat_text.append(chat_)
- for _ in range(time_frequency.get('mid')): # 循环10次
- random_time = current_timestamp - random.randint(3600, 3600*4) # 随机时间
- chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
- chat_text.append(chat_)
- for _ in range(time_frequency.get('far')): # 循环10次
- random_time = current_timestamp - random.randint(3600*4, 3600*24) # 随机时间
- chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
- chat_text.append(chat_)
- return chat_text
-
- def build_memory(self,chat_size=12):
- #最近消息获取频率
- time_frequency = {'near':1,'mid':2,'far':2}
- memory_sample = self.get_memory_sample(chat_size,time_frequency)
-
- #加载进度可视化
- for i, input_text in enumerate(memory_sample, 1):
- progress = (i / len(memory_sample)) * 100
- bar_length = 30
- filled_length = int(bar_length * i // len(memory_sample))
- bar = '█' * filled_length + '-' * (bar_length - filled_length)
- print(f"\n进度: [{bar}] {progress:.1f}% ({i}/{len(memory_sample)})")
- # print(f"第{i}条消息: {input_text}")
- if input_text:
- # 生成压缩后记忆
- first_memory = set()
- first_memory = self.memory_compress(input_text, 2.5)
- #将记忆加入到图谱中
- for topic, memory in first_memory:
- topics = segment_text(topic)
- print(f"\033[1;34m话题\033[0m: {topic},节点: {topics}, 记忆: {memory}")
- for split_topic in topics:
- self.memory_graph.add_dot(split_topic,memory)
- for split_topic in topics:
- for other_split_topic in topics:
- if split_topic != other_split_topic:
- self.memory_graph.connect_dot(split_topic, other_split_topic)
- else:
- print(f"空消息 跳过")
-
- self.memory_graph.save_graph_to_db()
-
- def memory_compress(self, input_text, rate=1):
- information_content = calculate_information_content(input_text)
- print(f"文本的信息量(熵): {information_content:.4f} bits")
- topic_num = max(1, min(5, int(information_content * rate / 4)))
- topic_prompt = find_topic(input_text, topic_num)
- topic_response = self.llm_model.generate_response(topic_prompt)
- # 检查 topic_response 是否为元组
- if isinstance(topic_response, tuple):
- topics = topic_response[0].split(",") # 假设第一个元素是我们需要的字符串
- else:
- topics = topic_response.split(",")
- compressed_memory = set()
- for topic in topics:
- topic_what_prompt = topic_what(input_text,topic)
- topic_what_response = self.llm_model_small.generate_response(topic_what_prompt)
- compressed_memory.add((topic.strip(), topic_what_response[0])) # 将话题和记忆作为元组存储
- return compressed_memory
-
-def segment_text(text):
- seg_text = list(jieba.cut(text))
- return seg_text
-
-def find_topic(text, topic_num):
- prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个话题,帮我列出来,用逗号隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要告诉我其他内容。'
- return prompt
-
-def topic_what(text, topic):
- prompt = f'这是一段文字:{text}。我想知道这记忆里有什么关于{topic}的话题,帮我总结成一句自然的话,可以包含时间和人物。只输出这句话就好'
- return prompt
-
-def visualize_graph(memory_graph: Memory_graph, color_by_memory: bool = False):
- # 设置中文字体
- plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
- plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
-
- G = memory_graph.G
-
- # 创建一个新图用于可视化
- H = G.copy()
-
- # 移除只有一条记忆的节点和连接数少于3的节点
- nodes_to_remove = []
- for node in H.nodes():
- memory_items = H.nodes[node].get('memory_items', [])
- memory_count = len(memory_items) if isinstance(memory_items, list) else (1 if memory_items else 0)
- degree = H.degree(node)
- if memory_count <= 1 or degree <= 2:
- nodes_to_remove.append(node)
-
- H.remove_nodes_from(nodes_to_remove)
-
- # 如果过滤后没有节点,则返回
- if len(H.nodes()) == 0:
- print("过滤后没有符合条件的节点可显示")
- return
-
- # 保存图到本地
- nx.write_gml(H, "memory_graph.gml") # 保存为 GML 格式
-
- # 根据连接条数或记忆数量设置节点颜色
- node_colors = []
- nodes = list(H.nodes()) # 获取图中实际的节点列表
-
- if color_by_memory:
- # 计算每个节点的记忆数量
- memory_counts = []
- for node in nodes:
- memory_items = H.nodes[node].get('memory_items', [])
- if isinstance(memory_items, list):
- count = len(memory_items)
- else:
- count = 1 if memory_items else 0
- memory_counts.append(count)
- max_memories = max(memory_counts) if memory_counts else 1
-
- for count in memory_counts:
- # 使用不同的颜色方案:红色表示记忆多,蓝色表示记忆少
- if max_memories > 0:
- intensity = min(1.0, count / max_memories)
- color = (intensity, 0, 1.0 - intensity) # 从蓝色渐变到红色
- else:
- color = (0, 0, 1) # 如果没有记忆,则为蓝色
- node_colors.append(color)
- else:
- # 使用原来的连接数量着色方案
- max_degree = max(H.degree(), key=lambda x: x[1])[1] if H.degree() else 1
- for node in nodes:
- degree = H.degree(node)
- if max_degree > 0:
- red = min(1.0, degree / max_degree)
- blue = 1.0 - red
- color = (red, 0, blue)
- else:
- color = (0, 0, 1)
- node_colors.append(color)
-
- # 绘制图形
- plt.figure(figsize=(12, 8))
- pos = nx.spring_layout(H, k=1, iterations=50)
- nx.draw(H, pos,
- with_labels=True,
- node_color=node_colors,
- node_size=2000,
- font_size=10,
- font_family='SimHei',
- font_weight='bold')
-
- title = '记忆图谱可视化 - ' + ('按记忆数量着色' if color_by_memory else '按连接数量着色')
- plt.title(title, fontsize=16, fontfamily='SimHei')
- plt.show()
-
-def main():
- # 初始化数据库
- Database.initialize(
- host= os.getenv("MONGODB_HOST"),
- port= int(os.getenv("MONGODB_PORT")),
- db_name= os.getenv("DATABASE_NAME"),
- username= os.getenv("MONGODB_USERNAME"),
- password= os.getenv("MONGODB_PASSWORD"),
- auth_source=os.getenv("MONGODB_AUTH_SOURCE")
- )
-
- start_time = time.time()
-
- # 创建记忆图
- memory_graph = Memory_graph()
- # 加载数据库中存储的记忆图
- memory_graph.load_graph_from_db()
- # 创建海马体
- hippocampus = Hippocampus(memory_graph)
-
- end_time = time.time()
- print(f"\033[32m[加载海马体耗时: {end_time - start_time:.2f} 秒]\033[0m")
-
- # 构建记忆
- hippocampus.build_memory(chat_size=25)
-
- # 展示两种不同的可视化方式
- print("\n按连接数量着色的图谱:")
- visualize_graph(memory_graph, color_by_memory=False)
-
- print("\n按记忆数量着色的图谱:")
- visualize_graph(memory_graph, color_by_memory=True)
-
- # 交互式查询
- while True:
- query = input("请输入新的查询概念(输入'退出'以结束):")
- if query.lower() == '退出':
- break
- items_list = memory_graph.get_related_item(query)
- if items_list:
- for memory_item in items_list:
- print(memory_item)
- else:
- print("未找到相关记忆。")
-
- while True:
- query = input("请输入问题:")
-
- if query.lower() == '退出':
- break
-
- topic_prompt = find_topic(query, 3)
- topic_response = hippocampus.llm_model.generate_response(topic_prompt)
- # 检查 topic_response 是否为元组
- if isinstance(topic_response, tuple):
- topics = topic_response[0].split(",") # 假设第一个元素是我们需要的字符串
- else:
- topics = topic_response.split(",")
- print(topics)
-
- for keyword in topics:
- items_list = memory_graph.get_related_item(keyword)
- if items_list:
- print(items_list)
-
-if __name__ == "__main__":
- main()
-
-
diff --git a/src/plugins/memory_system/memory_manual_build.py b/src/plugins/memory_system/memory_manual_build.py
new file mode 100644
index 000000000..66933dd04
--- /dev/null
+++ b/src/plugins/memory_system/memory_manual_build.py
@@ -0,0 +1,805 @@
+# -*- coding: utf-8 -*-
+import sys
+import jieba
+import networkx as nx
+import matplotlib.pyplot as plt
+import math
+from collections import Counter
+import datetime
+import random
+import time
+import os
+from dotenv import load_dotenv
+import pymongo
+from loguru import logger
+from pathlib import Path
+from snownlp import SnowNLP
+# from chat.config import global_config
+sys.path.append("C:/GitHub/MaiMBot") # 添加项目根目录到 Python 路径
+from src.common.database import Database
+from src.plugins.memory_system.offline_llm import LLMModel
+
+# 获取当前文件的目录
+current_dir = Path(__file__).resolve().parent
+# 获取项目根目录(上三层目录)
+project_root = current_dir.parent.parent.parent
+# env.dev文件路径
+env_path = project_root / ".env.dev"
+
+# 加载环境变量
+if env_path.exists():
+ logger.info(f"从 {env_path} 加载环境变量")
+ load_dotenv(env_path)
+else:
+ logger.warning(f"未找到环境变量文件: {env_path}")
+ logger.info("将使用默认配置")
+
+class Database:
+ _instance = None
+ db = None
+
+ @classmethod
+ def get_instance(cls):
+ if cls._instance is None:
+ cls._instance = cls()
+ return cls._instance
+
+ def __init__(self):
+ if not Database.db:
+ Database.initialize(
+ host=os.getenv("MONGODB_HOST"),
+ port=int(os.getenv("MONGODB_PORT")),
+ db_name=os.getenv("DATABASE_NAME"),
+ username=os.getenv("MONGODB_USERNAME"),
+ password=os.getenv("MONGODB_PASSWORD"),
+ auth_source=os.getenv("MONGODB_AUTH_SOURCE")
+ )
+
+ @classmethod
+ def initialize(cls, host, port, db_name, username=None, password=None, auth_source="admin"):
+ try:
+ if username and password:
+ uri = f"mongodb://{username}:{password}@{host}:{port}/{db_name}?authSource={auth_source}"
+ else:
+ uri = f"mongodb://{host}:{port}"
+
+ client = pymongo.MongoClient(uri)
+ cls.db = client[db_name]
+ # 测试连接
+ client.server_info()
+ logger.success("MongoDB连接成功!")
+
+ except Exception as e:
+ logger.error(f"初始化MongoDB失败: {str(e)}")
+ raise
+
+
+
+def calculate_information_content(text):
+ """计算文本的信息量(熵)"""
+ char_count = Counter(text)
+ total_chars = len(text)
+
+ entropy = 0
+ for count in char_count.values():
+ probability = count / total_chars
+ entropy -= probability * math.log2(probability)
+
+ return entropy
+
+def get_cloest_chat_from_db(db, length: int, timestamp: str):
+ """从数据库中获取最接近指定时间戳的聊天记录"""
+ chat_text = ''
+ closest_record = db.db.messages.find_one({"time": {"$lte": timestamp}}, sort=[('time', -1)])
+
+ if closest_record:
+ closest_time = closest_record['time']
+ group_id = closest_record['group_id'] # 获取groupid
+ # 获取该时间戳之后的length条消息,且groupid相同
+ chat_record = list(db.db.messages.find({"time": {"$gt": closest_time}, "group_id": group_id}).sort('time', 1).limit(length))
+ for record in chat_record:
+ chat_text += record["detailed_plain_text"]
+ return chat_text
+
+ return ''
+
+class Memory_graph:
+ def __init__(self):
+ self.G = nx.Graph() # 使用 networkx 的图结构
+ self.db = Database.get_instance()
+
+ def connect_dot(self, concept1, concept2):
+ # 如果边已存在,增加 strength
+ if self.G.has_edge(concept1, concept2):
+ self.G[concept1][concept2]['strength'] = self.G[concept1][concept2].get('strength', 1) + 1
+ else:
+ # 如果是新边,初始化 strength 为 1
+ self.G.add_edge(concept1, concept2, strength=1)
+
+ def add_dot(self, concept, memory):
+ if concept in self.G:
+ # 如果节点已存在,将新记忆添加到现有列表中
+ if 'memory_items' in self.G.nodes[concept]:
+ if not isinstance(self.G.nodes[concept]['memory_items'], list):
+ # 如果当前不是列表,将其转换为列表
+ self.G.nodes[concept]['memory_items'] = [self.G.nodes[concept]['memory_items']]
+ self.G.nodes[concept]['memory_items'].append(memory)
+ else:
+ self.G.nodes[concept]['memory_items'] = [memory]
+ else:
+ # 如果是新节点,创建新的记忆列表
+ self.G.add_node(concept, memory_items=[memory])
+
+ def get_dot(self, concept):
+ # 检查节点是否存在于图中
+ if concept in self.G:
+ # 从图中获取节点数据
+ node_data = self.G.nodes[concept]
+ return concept, node_data
+ return None
+
+ def get_related_item(self, topic, depth=1):
+ if topic not in self.G:
+ return [], []
+
+ first_layer_items = []
+ second_layer_items = []
+
+ # 获取相邻节点
+ neighbors = list(self.G.neighbors(topic))
+
+ # 获取当前节点的记忆项
+ node_data = self.get_dot(topic)
+ if node_data:
+ concept, data = node_data
+ if 'memory_items' in data:
+ memory_items = data['memory_items']
+ if isinstance(memory_items, list):
+ first_layer_items.extend(memory_items)
+ else:
+ first_layer_items.append(memory_items)
+
+ # 只在depth=2时获取第二层记忆
+ if depth >= 2:
+ # 获取相邻节点的记忆项
+ for neighbor in neighbors:
+ node_data = self.get_dot(neighbor)
+ if node_data:
+ concept, data = node_data
+ if 'memory_items' in data:
+ memory_items = data['memory_items']
+ if isinstance(memory_items, list):
+ second_layer_items.extend(memory_items)
+ else:
+ second_layer_items.append(memory_items)
+
+ return first_layer_items, second_layer_items
+
+ @property
+ def dots(self):
+ # 返回所有节点对应的 Memory_dot 对象
+ return [self.get_dot(node) for node in self.G.nodes()]
+
+# 海马体
+class Hippocampus:
+ def __init__(self, memory_graph: Memory_graph):
+ self.memory_graph = memory_graph
+ self.llm_model = LLMModel()
+ self.llm_model_small = LLMModel(model_name="deepseek-ai/DeepSeek-V2.5")
+
+ def get_memory_sample(self, chat_size=20, time_frequency:dict={'near':2,'mid':4,'far':3}):
+ current_timestamp = datetime.datetime.now().timestamp()
+ chat_text = []
+ #短期:1h 中期:4h 长期:24h
+ for _ in range(time_frequency.get('near')): # 循环10次
+ random_time = current_timestamp - random.randint(1, 3600) # 随机时间
+ chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
+ chat_text.append(chat_)
+ for _ in range(time_frequency.get('mid')): # 循环10次
+ random_time = current_timestamp - random.randint(3600, 3600*4) # 随机时间
+ chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
+ chat_text.append(chat_)
+ for _ in range(time_frequency.get('far')): # 循环10次
+ random_time = current_timestamp - random.randint(3600*4, 3600*24) # 随机时间
+ chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
+ chat_text.append(chat_)
+ return chat_text
+
+ def calculate_topic_num(self,text, compress_rate):
+ """计算文本的话题数量"""
+ information_content = calculate_information_content(text)
+ topic_by_length = text.count('\n')*compress_rate
+ topic_by_information_content = max(1, min(5, int((information_content-3) * 2)))
+ topic_num = int((topic_by_length + topic_by_information_content)/2)
+ print(f"topic_by_length: {topic_by_length}, topic_by_information_content: {topic_by_information_content}, topic_num: {topic_num}")
+ return topic_num
+
+ async def memory_compress(self, input_text, compress_rate=0.1):
+ print(input_text)
+
+ #获取topics
+ topic_num = self.calculate_topic_num(input_text, compress_rate)
+ topics_response = await self.llm_model_small.generate_response_async(self.find_topic_llm(input_text, topic_num))
+ topics = topics_response[0].split(",")
+ print(f"话题: {topics}")
+
+ # 创建所有话题的请求任务
+ tasks = []
+ for topic in topics:
+ topic_what_prompt = self.topic_what(input_text, topic)
+ # 创建异步任务
+ task = self.llm_model_small.generate_response_async(topic_what_prompt)
+ tasks.append((topic.strip(), task))
+
+ # 等待所有任务完成
+ compressed_memory = set()
+ for topic, task in tasks:
+ response = await task
+ if response:
+ compressed_memory.add((topic, response[0]))
+
+ return compressed_memory
+
+ async def operation_build_memory(self, chat_size=12):
+ #最近消息获取频率
+ time_frequency = {'near':1,'mid':2,'far':2}
+ memory_sample = self.get_memory_sample(chat_size,time_frequency)
+
+ for i, input_text in enumerate(memory_sample, 1):
+ #加载进度可视化
+ progress = (i / len(memory_sample)) * 100
+ bar_length = 30
+ filled_length = int(bar_length * i // len(memory_sample))
+ bar = '█' * filled_length + '-' * (bar_length - filled_length)
+ print(f"\n进度: [{bar}] {progress:.1f}% ({i}/{len(memory_sample)})")
+
+ if input_text:
+ # 生成压缩后记忆 ,表现为 (话题,记忆) 的元组
+ compressed_memory = set()
+ compress_rate = 0.15
+ compressed_memory = await self.memory_compress(input_text,compress_rate)
+ print(f"\033[1;33m压缩后记忆数量\033[0m: {len(compressed_memory)}")
+
+ #将记忆加入到图谱中
+ for topic, memory in compressed_memory:
+ # 将jieba分词结果转换为列表以便多次使用
+ topics = list(jieba.cut(topic))
+ print(f"\033[1;34m话题\033[0m: {topic}")
+ print(f"\033[1;34m分词结果\033[0m: {topics}")
+ print(f"\033[1;34m记忆\033[0m: {memory}")
+
+ # 如果分词结果少于2个词,跳过连接
+ if len(topics) < 2:
+ print(f"\033[1;31m分词结果少于2个词,跳过连接\033[0m")
+ # 仍然添加单个节点
+ for split_topic in topics:
+ self.memory_graph.add_dot(split_topic, memory)
+ continue
+
+ # 先添加所有节点
+ for split_topic in topics:
+ print(f"\033[1;32m添加节点\033[0m: {split_topic}")
+ self.memory_graph.add_dot(split_topic, memory)
+
+ # 再添加节点之间的连接
+ for i, split_topic in enumerate(topics):
+ for j, other_split_topic in enumerate(topics):
+ if i < j: # 只连接一次,避免重复连接
+ print(f"\033[1;32m连接节点\033[0m: {split_topic} 和 {other_split_topic}")
+ self.memory_graph.connect_dot(split_topic, other_split_topic)
+ else:
+ print(f"空消息 跳过")
+
+ # 每处理完一条消息就同步一次到数据库
+ self.sync_memory_to_db_2()
+
+ def sync_memory_from_db(self):
+ """
+ 从数据库同步数据到内存中的图结构
+ 将清空当前内存中的图,并从数据库重新加载所有节点和边
+ """
+ # 清空当前图
+ self.memory_graph.G.clear()
+
+ # 从数据库加载所有节点
+ nodes = self.memory_graph.db.db.graph_data.nodes.find()
+ for node in nodes:
+ concept = node['concept']
+ memory_items = node.get('memory_items', [])
+ # 确保memory_items是列表
+ if not isinstance(memory_items, list):
+ memory_items = [memory_items] if memory_items else []
+ # 添加节点到图中
+ self.memory_graph.G.add_node(concept, memory_items=memory_items)
+
+ # 从数据库加载所有边
+ edges = self.memory_graph.db.db.graph_data.edges.find()
+ for edge in edges:
+ source = edge['source']
+ target = edge['target']
+ strength = edge.get('strength', 1) # 获取 strength,默认为 1
+ # 只有当源节点和目标节点都存在时才添加边
+ if source in self.memory_graph.G and target in self.memory_graph.G:
+ self.memory_graph.G.add_edge(source, target, strength=strength)
+
+ logger.success("从数据库同步记忆图谱完成")
+
+ def calculate_node_hash(self, concept, memory_items):
+ """
+ 计算节点的特征值
+ """
+ if not isinstance(memory_items, list):
+ memory_items = [memory_items] if memory_items else []
+ # 将记忆项排序以确保相同内容生成相同的哈希值
+ sorted_items = sorted(memory_items)
+ # 组合概念和记忆项生成特征值
+ content = f"{concept}:{'|'.join(sorted_items)}"
+ return hash(content)
+
+ def calculate_edge_hash(self, source, target):
+ """
+ 计算边的特征值
+ """
+ # 对源节点和目标节点排序以确保相同的边生成相同的哈希值
+ nodes = sorted([source, target])
+ return hash(f"{nodes[0]}:{nodes[1]}")
+
+ def sync_memory_to_db_2(self):
+ """
+ 检查并同步内存中的图结构与数据库
+ 使用特征值(哈希值)快速判断是否需要更新
+ """
+ # 获取数据库中所有节点和内存中所有节点
+ db_nodes = list(self.memory_graph.db.db.graph_data.nodes.find())
+ memory_nodes = list(self.memory_graph.G.nodes(data=True))
+
+ # 转换数据库节点为字典格式,方便查找
+ db_nodes_dict = {node['concept']: node for node in db_nodes}
+
+ # 检查并更新节点
+ for concept, data in memory_nodes:
+ memory_items = data.get('memory_items', [])
+ if not isinstance(memory_items, list):
+ memory_items = [memory_items] if memory_items else []
+
+ # 计算内存中节点的特征值
+ memory_hash = self.calculate_node_hash(concept, memory_items)
+
+ if concept not in db_nodes_dict:
+ # 数据库中缺少的节点,添加
+ logger.info(f"添加新节点: {concept}")
+ node_data = {
+ 'concept': concept,
+ 'memory_items': memory_items,
+ 'hash': memory_hash
+ }
+ self.memory_graph.db.db.graph_data.nodes.insert_one(node_data)
+ else:
+ # 获取数据库中节点的特征值
+ db_node = db_nodes_dict[concept]
+ db_hash = db_node.get('hash', None)
+
+ # 如果特征值不同,则更新节点
+ if db_hash != memory_hash:
+ logger.info(f"更新节点内容: {concept}")
+ self.memory_graph.db.db.graph_data.nodes.update_one(
+ {'concept': concept},
+ {'$set': {
+ 'memory_items': memory_items,
+ 'hash': memory_hash
+ }}
+ )
+
+ # 检查并删除数据库中多余的节点
+ memory_concepts = set(node[0] for node in memory_nodes)
+ for db_node in db_nodes:
+ if db_node['concept'] not in memory_concepts:
+ logger.info(f"删除多余节点: {db_node['concept']}")
+ self.memory_graph.db.db.graph_data.nodes.delete_one({'concept': db_node['concept']})
+
+ # 处理边的信息
+ db_edges = list(self.memory_graph.db.db.graph_data.edges.find())
+ memory_edges = list(self.memory_graph.G.edges())
+
+ # 创建边的哈希值字典
+ db_edge_dict = {}
+ for edge in db_edges:
+ edge_hash = self.calculate_edge_hash(edge['source'], edge['target'])
+ db_edge_dict[(edge['source'], edge['target'])] = {
+ 'hash': edge_hash,
+ 'num': edge.get('num', 1)
+ }
+
+ # 检查并更新边
+ for source, target in memory_edges:
+ edge_hash = self.calculate_edge_hash(source, target)
+ edge_key = (source, target)
+
+ if edge_key not in db_edge_dict:
+ # 添加新边
+ logger.info(f"添加新边: {source} - {target}")
+ edge_data = {
+ 'source': source,
+ 'target': target,
+ 'num': 1,
+ 'hash': edge_hash
+ }
+ self.memory_graph.db.db.graph_data.edges.insert_one(edge_data)
+ else:
+ # 检查边的特征值是否变化
+ if db_edge_dict[edge_key]['hash'] != edge_hash:
+ logger.info(f"更新边: {source} - {target}")
+ self.memory_graph.db.db.graph_data.edges.update_one(
+ {'source': source, 'target': target},
+ {'$set': {'hash': edge_hash}}
+ )
+
+ # 删除多余的边
+ memory_edge_set = set(memory_edges)
+ for edge_key in db_edge_dict:
+ if edge_key not in memory_edge_set:
+ source, target = edge_key
+ logger.info(f"删除多余边: {source} - {target}")
+ self.memory_graph.db.db.graph_data.edges.delete_one({
+ 'source': source,
+ 'target': target
+ })
+
+ logger.success("完成记忆图谱与数据库的差异同步")
+
+ def find_topic_llm(self,text, topic_num):
+ prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个话题,帮我列出来,用逗号隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要告诉我其他内容。'
+ return prompt
+
+ def topic_what(self,text, topic):
+ prompt = f'这是一段文字:{text}。我想知道这记忆里有什么关于{topic}的话题,帮我总结成一句自然的话,可以包含时间和人物,以及具体的观点。只输出这句话就好'
+ return prompt
+
+ def remove_node_from_db(self, topic):
+ """
+ 从数据库中删除指定节点及其相关的边
+
+ Args:
+ topic: 要删除的节点概念
+ """
+ # 删除节点
+ self.memory_graph.db.db.graph_data.nodes.delete_one({'concept': topic})
+ # 删除所有涉及该节点的边
+ self.memory_graph.db.db.graph_data.edges.delete_many({
+ '$or': [
+ {'source': topic},
+ {'target': topic}
+ ]
+ })
+
+ def forget_topic(self, topic):
+ """
+ 随机删除指定话题中的一条记忆,如果话题没有记忆则移除该话题节点
+ 只在内存中的图上操作,不直接与数据库交互
+
+ Args:
+ topic: 要删除记忆的话题
+
+ Returns:
+ removed_item: 被删除的记忆项,如果没有删除任何记忆则返回 None
+ """
+ if topic not in self.memory_graph.G:
+ return None
+
+ # 获取话题节点数据
+ node_data = self.memory_graph.G.nodes[topic]
+
+ # 如果节点存在memory_items
+ if 'memory_items' in node_data:
+ memory_items = node_data['memory_items']
+
+ # 确保memory_items是列表
+ if not isinstance(memory_items, list):
+ memory_items = [memory_items] if memory_items else []
+
+ # 如果有记忆项可以删除
+ if memory_items:
+ # 随机选择一个记忆项删除
+ removed_item = random.choice(memory_items)
+ memory_items.remove(removed_item)
+
+ # 更新节点的记忆项
+ if memory_items:
+ self.memory_graph.G.nodes[topic]['memory_items'] = memory_items
+ else:
+ # 如果没有记忆项了,删除整个节点
+ self.memory_graph.G.remove_node(topic)
+
+ return removed_item
+
+ return None
+
+ async def operation_forget_topic(self, percentage=0.1):
+ """
+ 随机选择图中一定比例的节点进行检查,根据条件决定是否遗忘
+
+ Args:
+ percentage: 要检查的节点比例,默认为0.1(10%)
+ """
+ # 获取所有节点
+ all_nodes = list(self.memory_graph.G.nodes())
+ # 计算要检查的节点数量
+ check_count = max(1, int(len(all_nodes) * percentage))
+ # 随机选择节点
+ nodes_to_check = random.sample(all_nodes, check_count)
+
+ forgotten_nodes = []
+ for node in nodes_to_check:
+ # 获取节点的连接数
+ connections = self.memory_graph.G.degree(node)
+
+ # 获取节点的内容条数
+ memory_items = self.memory_graph.G.nodes[node].get('memory_items', [])
+ if not isinstance(memory_items, list):
+ memory_items = [memory_items] if memory_items else []
+ content_count = len(memory_items)
+
+ # 检查连接强度
+ weak_connections = True
+ if connections > 1: # 只有当连接数大于1时才检查强度
+ for neighbor in self.memory_graph.G.neighbors(node):
+ strength = self.memory_graph.G[node][neighbor].get('strength', 1)
+ if strength > 2:
+ weak_connections = False
+ break
+
+ # 如果满足遗忘条件
+ if (connections <= 1 and weak_connections) or content_count <= 2:
+ removed_item = self.forget_topic(node)
+ if removed_item:
+ forgotten_nodes.append((node, removed_item))
+ logger.info(f"遗忘节点 {node} 的记忆: {removed_item}")
+
+ # 同步到数据库
+ if forgotten_nodes:
+ self.sync_memory_to_db_2()
+ logger.info(f"完成遗忘操作,共遗忘 {len(forgotten_nodes)} 个节点的记忆")
+ else:
+ logger.info("本次检查没有节点满足遗忘条件")
+
+ async def merge_memory(self, topic):
+ """
+ 对指定话题的记忆进行合并压缩
+
+ Args:
+ topic: 要合并的话题节点
+ """
+ # 获取节点的记忆项
+ memory_items = self.memory_graph.G.nodes[topic].get('memory_items', [])
+ if not isinstance(memory_items, list):
+ memory_items = [memory_items] if memory_items else []
+
+ # 如果记忆项不足,直接返回
+ if len(memory_items) < 10:
+ return
+
+ # 随机选择10条记忆
+ selected_memories = random.sample(memory_items, 10)
+
+ # 拼接成文本
+ merged_text = "\n".join(selected_memories)
+ print(f"\n[合并记忆] 话题: {topic}")
+ print(f"选择的记忆:\n{merged_text}")
+
+ # 使用memory_compress生成新的压缩记忆
+ compressed_memories = await self.memory_compress(merged_text, 0.1)
+
+ # 从原记忆列表中移除被选中的记忆
+ for memory in selected_memories:
+ memory_items.remove(memory)
+
+ # 添加新的压缩记忆
+ for _, compressed_memory in compressed_memories:
+ memory_items.append(compressed_memory)
+ print(f"添加压缩记忆: {compressed_memory}")
+
+ # 更新节点的记忆项
+ self.memory_graph.G.nodes[topic]['memory_items'] = memory_items
+ print(f"完成记忆合并,当前记忆数量: {len(memory_items)}")
+
+ async def operation_merge_memory(self, percentage=0.1):
+ """
+ 随机检查一定比例的节点,对内容数量超过100的节点进行记忆合并
+
+ Args:
+ percentage: 要检查的节点比例,默认为0.1(10%)
+ """
+ # 获取所有节点
+ all_nodes = list(self.memory_graph.G.nodes())
+ # 计算要检查的节点数量
+ check_count = max(1, int(len(all_nodes) * percentage))
+ # 随机选择节点
+ nodes_to_check = random.sample(all_nodes, check_count)
+
+ merged_nodes = []
+ for node in nodes_to_check:
+ # 获取节点的内容条数
+ memory_items = self.memory_graph.G.nodes[node].get('memory_items', [])
+ if not isinstance(memory_items, list):
+ memory_items = [memory_items] if memory_items else []
+ content_count = len(memory_items)
+
+ # 如果内容数量超过100,进行合并
+ if content_count > 100:
+ print(f"\n检查节点: {node}, 当前记忆数量: {content_count}")
+ await self.merge_memory(node)
+ merged_nodes.append(node)
+
+ # 同步到数据库
+ if merged_nodes:
+ self.sync_memory_to_db_2()
+ print(f"\n完成记忆合并操作,共处理 {len(merged_nodes)} 个节点")
+ else:
+ print("\n本次检查没有需要合并的节点")
+
+
+def visualize_graph_lite(memory_graph: Memory_graph, color_by_memory: bool = False):
+ # 设置中文字体
+ plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
+ plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
+
+ G = memory_graph.G
+
+ # 创建一个新图用于可视化
+ H = G.copy()
+
+ # 计算节点大小和颜色
+ node_colors = []
+ node_sizes = []
+ nodes = list(H.nodes())
+
+ # 获取最大记忆数用于归一化节点大小
+ max_memories = 1
+ for node in nodes:
+ memory_items = H.nodes[node].get('memory_items', [])
+ memory_count = len(memory_items) if isinstance(memory_items, list) else (1 if memory_items else 0)
+ max_memories = max(max_memories, memory_count)
+
+ # 计算每个节点的大小和颜色
+ for node in nodes:
+ # 计算节点大小(基于记忆数量)
+ memory_items = H.nodes[node].get('memory_items', [])
+ memory_count = len(memory_items) if isinstance(memory_items, list) else (1 if memory_items else 0)
+ # 使用指数函数使变化更明显
+ ratio = memory_count / max_memories
+ size = 500 + 5000 * (ratio ** 2) # 使用平方函数使差异更明显
+ node_sizes.append(size)
+
+ # 计算节点颜色(基于连接数)
+ degree = H.degree(node)
+ if degree >= 30:
+ node_colors.append((1.0, 0, 0)) # 亮红色 (#FF0000)
+ else:
+ # 将1-10映射到0-1的范围
+ color_ratio = (degree - 1) / 29.0 if degree > 1 else 0
+ # 使用蓝到红的渐变
+ red = min(0.9, color_ratio)
+ blue = max(0.0, 1.0 - color_ratio)
+ node_colors.append((red, 0, blue))
+
+ # 获取边的权重和透明度
+ edge_colors = []
+ max_strength = 1
+
+ # 找出最大强度值
+ for (u, v) in H.edges():
+ strength = H[u][v].get('strength', 1)
+ max_strength = max(max_strength, strength)
+
+ # 创建边权重字典用于布局
+ edge_weights = {}
+
+ # 计算每条边的透明度和权重
+ for (u, v) in H.edges():
+ strength = H[u][v].get('strength', 1)
+ # 将强度映射到透明度范围 [0.05, 0.8]
+ alpha = 0.02 + 0.55 * (strength / max_strength)
+ # 使用统一的蓝色,但透明度不同
+ edge_colors.append((0, 0, 1, alpha))
+ # 设置边的权重(强度越大,权重越大,节点间距离越小)
+ edge_weights[(u, v)] = strength
+
+ # 绘制图形
+ plt.figure(figsize=(20, 16)) # 增加图形尺寸
+ # 调整弹簧布局参数,使用边权重影响布局
+ pos = nx.spring_layout(H,
+ k=2.0, # 增加节点间斥力
+ iterations=100, # 增加迭代次数
+ scale=2.0, # 增加布局尺寸
+ weight='strength') # 使用边的strength属性作为权重
+
+ nx.draw(H, pos,
+ with_labels=True,
+ node_color=node_colors,
+ node_size=node_sizes,
+ font_size=8, # 稍微减小字体大小
+ font_family='SimHei',
+ font_weight='bold',
+ edge_color=edge_colors,
+ width=1.5) # 统一的边宽度
+
+ title = '记忆图谱可视化 - 节点大小表示记忆数量\n节点颜色:蓝(弱连接)到红(强连接)渐变,边的透明度表示连接强度\n连接强度越大的节点距离越近'
+ plt.title(title, fontsize=16, fontfamily='SimHei')
+ plt.show()
+
+async def main():
+ # 初始化数据库
+ logger.info("正在初始化数据库连接...")
+ db = Database.get_instance()
+ start_time = time.time()
+
+ test_pare = {'do_build_memory':False,'do_forget_topic':True,'do_visualize_graph':True,'do_query':False,'do_merge_memory':True}
+
+ # 创建记忆图
+ memory_graph = Memory_graph()
+
+ # 创建海马体
+ hippocampus = Hippocampus(memory_graph)
+
+ # 从数据库同步数据
+ hippocampus.sync_memory_from_db()
+
+ end_time = time.time()
+ logger.info(f"\033[32m[加载海马体耗时: {end_time - start_time:.2f} 秒]\033[0m")
+
+ # 构建记忆
+ if test_pare['do_build_memory']:
+ logger.info("开始构建记忆...")
+ chat_size = 25
+ await hippocampus.operation_build_memory(chat_size=chat_size)
+
+ end_time = time.time()
+ logger.info(f"\033[32m[构建记忆耗时: {end_time - start_time:.2f} 秒,chat_size={chat_size},chat_count = {chat_size}]\033[0m")
+
+ if test_pare['do_forget_topic']:
+ logger.info("开始遗忘记忆...")
+ await hippocampus.operation_forget_topic(percentage=0.1)
+
+ end_time = time.time()
+ logger.info(f"\033[32m[遗忘记忆耗时: {end_time - start_time:.2f} 秒]\033[0m")
+
+ if test_pare['do_merge_memory']:
+ logger.info("开始合并记忆...")
+ await hippocampus.operation_merge_memory(percentage=0.1)
+
+ end_time = time.time()
+ logger.info(f"\033[32m[合并记忆耗时: {end_time - start_time:.2f} 秒]\033[0m")
+
+ if test_pare['do_visualize_graph']:
+ # 展示优化后的图形
+ logger.info("生成记忆图谱可视化...")
+ print("\n生成优化后的记忆图谱:")
+ visualize_graph_lite(memory_graph)
+
+ if test_pare['do_query']:
+ # 交互式查询
+ while True:
+ query = input("\n请输入新的查询概念(输入'退出'以结束):")
+ if query.lower() == '退出':
+ break
+
+ items_list = memory_graph.get_related_item(query)
+ if items_list:
+ first_layer, second_layer = items_list
+ if first_layer:
+ print("\n直接相关的记忆:")
+ for item in first_layer:
+ print(f"- {item}")
+ if second_layer:
+ print("\n间接相关的记忆:")
+ for item in second_layer:
+ print(f"- {item}")
+ else:
+ print("未找到相关记忆。")
+
+
+if __name__ == "__main__":
+ import asyncio
+ asyncio.run(main())
+
+
diff --git a/src/plugins/memory_system/llm_module_memory_make.py b/src/plugins/memory_system/offline_llm.py
similarity index 50%
rename from src/plugins/memory_system/llm_module_memory_make.py
rename to src/plugins/memory_system/offline_llm.py
index 41a5d7c0f..5e877dceb 100644
--- a/src/plugins/memory_system/llm_module_memory_make.py
+++ b/src/plugins/memory_system/offline_llm.py
@@ -2,28 +2,23 @@ import os
import requests
from typing import Tuple, Union
import time
-from nonebot import get_driver
import aiohttp
import asyncio
from loguru import logger
-from src.plugins.chat.config import BotConfig, global_config
-
-driver = get_driver()
-config = driver.config
class LLMModel:
- def __init__(self, model_name=global_config.SILICONFLOW_MODEL_V3, **kwargs):
+ def __init__(self, model_name="deepseek-ai/DeepSeek-V3", **kwargs):
self.model_name = model_name
self.params = kwargs
- self.api_key = config.siliconflow_key
- self.base_url = config.siliconflow_base_url
+ self.api_key = os.getenv("SILICONFLOW_KEY")
+ self.base_url = os.getenv("SILICONFLOW_BASE_URL")
if not self.api_key or not self.base_url:
raise ValueError("环境变量未正确加载:SILICONFLOW_KEY 或 SILICONFLOW_BASE_URL 未设置")
logger.info(f"API URL: {self.base_url}") # 使用 logger 记录 base_url
- async def generate_response(self, prompt: str) -> Tuple[str, str]:
+ def generate_response(self, prompt: str) -> Union[str, Tuple[str, str]]:
"""根据输入的提示生成模型的响应"""
headers = {
"Authorization": f"Bearer {self.api_key}",
@@ -47,7 +42,60 @@ class LLMModel:
for retry in range(max_retries):
try:
- async with aiohttp.ClientSession() as session:
+ response = requests.post(api_url, headers=headers, json=data)
+
+ if response.status_code == 429:
+ wait_time = base_wait_time * (2 ** retry) # 指数退避
+ logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
+ time.sleep(wait_time)
+ continue
+
+ response.raise_for_status() # 检查其他响应状态
+
+ result = response.json()
+ if "choices" in result and len(result["choices"]) > 0:
+ content = result["choices"][0]["message"]["content"]
+ reasoning_content = result["choices"][0]["message"].get("reasoning_content", "")
+ return content, reasoning_content
+ return "没有返回结果", ""
+
+ except Exception as e:
+ if retry < max_retries - 1: # 如果还有重试机会
+ wait_time = base_wait_time * (2 ** retry)
+ logger.error(f"[回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
+ time.sleep(wait_time)
+ else:
+ logger.error(f"请求失败: {str(e)}")
+ return f"请求失败: {str(e)}", ""
+
+ logger.error("达到最大重试次数,请求仍然失败")
+ return "达到最大重试次数,请求仍然失败", ""
+
+ async def generate_response_async(self, prompt: str) -> Union[str, Tuple[str, str]]:
+ """异步方式根据输入的提示生成模型的响应"""
+ headers = {
+ "Authorization": f"Bearer {self.api_key}",
+ "Content-Type": "application/json"
+ }
+
+ # 构建请求体
+ data = {
+ "model": self.model_name,
+ "messages": [{"role": "user", "content": prompt}],
+ "temperature": 0.5,
+ **self.params
+ }
+
+ # 发送请求到完整的 chat/completions 端点
+ api_url = f"{self.base_url.rstrip('/')}/chat/completions"
+ logger.info(f"Request URL: {api_url}") # 记录请求的 URL
+
+ max_retries = 3
+ base_wait_time = 15
+
+ async with aiohttp.ClientSession() as session:
+ for retry in range(max_retries):
+ try:
async with session.post(api_url, headers=headers, json=data) as response:
if response.status == 429:
wait_time = base_wait_time * (2 ** retry) # 指数退避
@@ -63,15 +111,15 @@ class LLMModel:
reasoning_content = result["choices"][0]["message"].get("reasoning_content", "")
return content, reasoning_content
return "没有返回结果", ""
-
- except Exception as e:
- if retry < max_retries - 1: # 如果还有重试机会
- wait_time = base_wait_time * (2 ** retry)
- logger.error(f"[回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
- await asyncio.sleep(wait_time)
- else:
- logger.error(f"请求失败: {str(e)}")
- return f"请求失败: {str(e)}", ""
-
- logger.error("达到最大重试次数,请求仍然失败")
- return "达到最大重试次数,请求仍然失败", ""
+
+ except Exception as e:
+ if retry < max_retries - 1: # 如果还有重试机会
+ wait_time = base_wait_time * (2 ** retry)
+ logger.error(f"[回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
+ await asyncio.sleep(wait_time)
+ else:
+ logger.error(f"请求失败: {str(e)}")
+ return f"请求失败: {str(e)}", ""
+
+ logger.error("达到最大重试次数,请求仍然失败")
+ return "达到最大重试次数,请求仍然失败", ""
diff --git a/src/plugins/models/utils_model.py b/src/plugins/models/utils_model.py
index 4741d2596..3ba873d74 100644
--- a/src/plugins/models/utils_model.py
+++ b/src/plugins/models/utils_model.py
@@ -60,8 +60,15 @@ class LLM_request:
result = await response.json()
if "choices" in result and len(result["choices"]) > 0:
- content = result["choices"][0]["message"]["content"]
- reasoning_content = result["choices"][0]["message"].get("reasoning_content", "")
+ message = result["choices"][0]["message"]
+ content = message.get("content", "")
+ think_match = None
+ reasoning_content = message.get("reasoning_content", "")
+ if not reasoning_content:
+ think_match = re.search(r'(.*?)', content, re.DOTALL)
+ if think_match:
+ reasoning_content = think_match.group(1).strip()
+ content = re.sub(r'.*?', '', content, flags=re.DOTALL).strip()
return content, reasoning_content
return "没有返回结果", ""