fix:更名和小bug修复

This commit is contained in:
SengokuCola
2025-04-22 21:59:23 +08:00
parent 1482133005
commit 8d50a381e4
21 changed files with 852 additions and 468 deletions

View File

@@ -0,0 +1,896 @@
import asyncio
import time
import traceback
from typing import List, Optional, Dict, Any, TYPE_CHECKING
import json
from src.plugins.chat.message import MessageRecv, BaseMessageInfo, MessageThinking, MessageSending
from src.plugins.chat.message import MessageSet, Seg # Local import needed after move
from src.plugins.chat.chat_stream import ChatStream
from src.plugins.chat.message import UserInfo
from src.heart_flow.heartflow import heartflow, SubHeartflow
from src.plugins.chat.chat_stream import chat_manager
from src.common.logger import get_module_logger, LogConfig, PFC_STYLE_CONFIG # 引入 DEFAULT_CONFIG
from src.plugins.models.utils_model import LLMRequest
from src.config.config import global_config
from src.plugins.chat.utils_image import image_path_to_base64 # Local import needed after move
from src.plugins.utils.timer_calculater import Timer # <--- Import Timer
INITIAL_DURATION = 60.0
# 定义日志配置 (使用 loguru 格式)
interest_log_config = LogConfig(
console_format=PFC_STYLE_CONFIG["console_format"], # 使用默认控制台格式
file_format=PFC_STYLE_CONFIG["file_format"], # 使用默认文件格式
)
logger = get_module_logger("PFCLoop", config=interest_log_config) # Logger Name Changed
# Forward declaration for type hinting
if TYPE_CHECKING:
from .heartFC_controler import HeartFCController
PLANNER_TOOL_DEFINITION = [
{
"type": "function",
"function": {
"name": "decide_reply_action",
"description": "根据当前聊天内容和上下文,决定机器人是否应该回复以及如何回复。",
"parameters": {
"type": "object",
"properties": {
"action": {
"type": "string",
"enum": ["no_reply", "text_reply", "emoji_reply"],
"description": "决定采取的行动:'no_reply'(不回复), 'text_reply'(文本回复, 可选附带表情) 或 'emoji_reply'(仅表情回复)。",
},
"reasoning": {"type": "string", "description": "做出此决定的简要理由。"},
"emoji_query": {
"type": "string",
"description": "如果行动是'emoji_reply',指定表情的主题或概念。如果行动是'text_reply'且希望在文本后追加表情,也在此指定表情主题。",
},
},
"required": ["action", "reasoning"],
},
},
}
]
class PFChatting:
"""
管理一个连续的Plan-Filter-Check (现在改为Plan-Replier-Sender)循环
用于在特定聊天流中生成回复,由计时器控制。
只要计时器>0循环就会继续。
"""
def __init__(self, chat_id: str, heartfc_controller_instance: "HeartFCController"):
"""
初始化PFChatting实例。
Args:
chat_id: The identifier for the chat stream (e.g., stream_id).
heartfc_controller_instance: 访问共享资源和方法的主HeartFCController实例。
"""
self.heartfc_controller = heartfc_controller_instance # Store the controller instance
self.stream_id: str = chat_id
self.chat_stream: Optional[ChatStream] = None
self.sub_hf: Optional[SubHeartflow] = None
self._initialized = False
self._init_lock = asyncio.Lock() # Ensure initialization happens only once
self._processing_lock = asyncio.Lock() # 确保只有一个 Plan-Replier-Sender 周期在运行
self._timer_lock = asyncio.Lock() # 用于安全更新计时器
# Access LLM config through the controller
self.planner_llm = LLMRequest(
model=global_config.llm_normal,
temperature=global_config.llm_normal["temp"],
max_tokens=1000,
request_type="action_planning",
)
# Internal state for loop control
self._loop_timer: float = 0.0 # Remaining time for the loop in seconds
self._loop_active: bool = False # Is the loop currently running?
self._loop_task: Optional[asyncio.Task] = None # Stores the main loop task
self._trigger_count_this_activation: int = 0 # Counts triggers within an active period
self._initial_duration: float = INITIAL_DURATION # 首次触发增加的时间
self._last_added_duration: float = self._initial_duration # <--- 新增:存储上次增加的时间
def _get_log_prefix(self) -> str:
"""获取日志前缀,包含可读的流名称"""
stream_name = chat_manager.get_stream_name(self.stream_id) or self.stream_id
return f"[{stream_name}]"
async def _initialize(self) -> bool:
"""
懒初始化以使用提供的标识符解析chat_stream和sub_hf。
确保实例已准备好处理触发器。
"""
async with self._init_lock:
if self._initialized:
return True
log_prefix = self._get_log_prefix() # 获取前缀
try:
self.chat_stream = chat_manager.get_stream(self.stream_id)
if not self.chat_stream:
logger.error(f"{log_prefix} 获取ChatStream失败。")
return False
self.sub_hf = heartflow.get_subheartflow(self.stream_id)
if not self.sub_hf:
logger.warning(f"{log_prefix} 获取SubHeartflow失败。一些功能可能受限。")
self._initialized = True
logger.info(f"麦麦感觉到了激发了PFChatting{log_prefix} 初始化成功。")
return True
except Exception as e:
logger.error(f"{log_prefix} 初始化失败: {e}")
logger.error(traceback.format_exc())
return False
async def add_time(self):
"""
为麦麦添加时间,麦麦有兴趣时,时间增加。
"""
log_prefix = self._get_log_prefix()
if not self._initialized:
if not await self._initialize():
logger.error(f"{log_prefix} 无法添加时间: 未初始化。")
return
async with self._timer_lock:
duration_to_add: float = 0.0
if not self._loop_active: # First trigger for this activation cycle
duration_to_add = self._initial_duration # 使用初始值
self._last_added_duration = duration_to_add # 更新上次增加的值
self._trigger_count_this_activation = 1 # Start counting
logger.info(
f"{log_prefix} 麦麦有兴趣! #{self._trigger_count_this_activation}. 麦麦打算聊: {duration_to_add:.2f}s."
)
else: # Loop is already active, apply 50% reduction
self._trigger_count_this_activation += 1
duration_to_add = self._last_added_duration * 0.5
if duration_to_add < 1.5:
duration_to_add = 1.5
# Update _last_added_duration only if it's >= 0.5 to prevent it from becoming too small
self._last_added_duration = duration_to_add
logger.info(
f"{log_prefix} 麦麦兴趣增加! #{self._trigger_count_this_activation}. 想继续聊: {duration_to_add:.2f}s, 麦麦还能聊: {self._loop_timer:.1f}s."
)
# 添加计算出的时间
new_timer_value = self._loop_timer + duration_to_add
# Add max timer duration limit? e.g., max(0, min(new_timer_value, 300))
self._loop_timer = max(0, new_timer_value)
# Log less frequently, e.g., every 10 seconds or significant change?
# if self._trigger_count_this_activation % 5 == 0:
# logger.info(f"{log_prefix} 麦麦现在想聊{self._loop_timer:.1f}秒")
# Start the loop if it wasn't active and timer is positive
if not self._loop_active and self._loop_timer > 0:
self._loop_active = True
if self._loop_task and not self._loop_task.done():
logger.warning(f"{log_prefix} 发现意外的循环任务正在进行。取消它。")
self._loop_task.cancel()
self._loop_task = asyncio.create_task(self._run_pf_loop())
self._loop_task.add_done_callback(self._handle_loop_completion)
elif self._loop_active:
logger.trace(f"{log_prefix} 循环已经激活。计时器延长。")
def _handle_loop_completion(self, task: asyncio.Task):
"""当 _run_pf_loop 任务完成时执行的回调。"""
log_prefix = self._get_log_prefix()
try:
exception = task.exception()
if exception:
logger.error(f"{log_prefix} PFChatting: 麦麦脱离了聊天(异常): {exception}")
logger.error(traceback.format_exc()) # Log full traceback for exceptions
else:
logger.debug(f"{log_prefix} PFChatting: 麦麦脱离了聊天 (正常完成)")
except asyncio.CancelledError:
logger.info(f"{log_prefix} PFChatting: 麦麦脱离了聊天(任务取消)")
finally:
self._loop_active = False
self._loop_task = None
self._last_added_duration = self._initial_duration
self._trigger_count_this_activation = 0
if self._processing_lock.locked():
logger.warning(f"{log_prefix} PFChatting: 处理锁在循环结束时仍被锁定,强制释放。")
self._processing_lock.release()
# Remove instance from controller's dict? Only if it's truly done.
# Consider if loop can be restarted vs instance destroyed.
# asyncio.create_task(self.heartfc_controller._remove_heartFC_chat_instance(self.stream_id)) # Example cleanup
async def _run_pf_loop(self):
"""
主循环,当计时器>0时持续进行计划并可能回复消息
管理每个循环周期的处理锁
"""
log_prefix = self._get_log_prefix()
logger.info(f"{log_prefix} PFChatting: 麦麦打算好好聊聊 (定时器: {self._loop_timer:.1f}s)")
try:
thinking_id = ""
while True:
cycle_timers = {} # <--- Initialize timers dict for this cycle
if self.heartfc_controller.MessageManager().check_if_sending_message_exist(self.stream_id, thinking_id):
# logger.info(f"{log_prefix} PFChatting: 11111111111111111111111111111111麦麦还在发消息等会再规划")
await asyncio.sleep(1)
continue
else:
# logger.info(f"{log_prefix} PFChatting: 11111111111111111111111111111111麦麦不发消息了开始规划")
pass
async with self._timer_lock:
current_timer = self._loop_timer
if current_timer <= 0:
logger.info(
f"{log_prefix} PFChatting: 聊太久了,麦麦打算休息一下 (计时器为 {current_timer:.1f}s)。退出PFChatting。"
)
break
# 记录循环周期开始时间,用于计时和休眠计算
loop_cycle_start_time = time.monotonic()
action_taken_this_cycle = False
acquired_lock = False
planner_start_db_time = 0.0 # 初始化
try:
with Timer("Total Cycle", cycle_timers) as _total_timer: # <--- Start total cycle timer
# Use try_acquire pattern or timeout?
await self._processing_lock.acquire()
acquired_lock = True
# logger.debug(f"{log_prefix} PFChatting: 循环获取到处理锁")
# 在规划前记录数据库时间戳
planner_start_db_time = time.time()
# --- Planner --- #
planner_result = {}
with Timer("Planner", cycle_timers): # <--- Start Planner timer
planner_result = await self._planner()
action = planner_result.get("action", "error")
reasoning = planner_result.get("reasoning", "Planner did not provide reasoning.")
emoji_query = planner_result.get("emoji_query", "")
# current_mind = planner_result.get("current_mind", "[Mind unavailable]")
# send_emoji_from_tools = planner_result.get("send_emoji_from_tools", "") # Emoji from tools
observed_messages = planner_result.get("observed_messages", [])
llm_error = planner_result.get("llm_error", False)
if llm_error:
logger.error(f"{log_prefix} Planner LLM 失败,跳过本周期回复尝试。理由: {reasoning}")
# Optionally add a longer sleep?
action_taken_this_cycle = False # Ensure no action is counted
# Continue to timer decrement and sleep
elif action == "text_reply":
logger.debug(f"{log_prefix} PFChatting: 麦麦决定回复文本. 理由: {reasoning}")
action_taken_this_cycle = True
anchor_message = await self._get_anchor_message(observed_messages)
if not anchor_message:
logger.error(f"{log_prefix} 循环: 无法获取锚点消息用于回复. 跳过周期.")
else:
# --- Create Thinking Message (Moved) ---
thinking_id = await self._create_thinking_message(anchor_message)
if not thinking_id:
logger.error(f"{log_prefix} 循环: 无法创建思考ID. 跳过周期.")
else:
replier_result = None
try:
# --- Replier Work --- #
with Timer("Replier", cycle_timers): # <--- Start Replier timer
replier_result = await self._replier_work(
anchor_message=anchor_message,
thinking_id=thinking_id,
reason=reasoning,
)
except Exception as e_replier:
logger.error(f"{log_prefix} 循环: 回复器工作失败: {e_replier}")
self._cleanup_thinking_message(thinking_id)
if replier_result:
# --- Sender Work --- #
try:
with Timer("Sender", cycle_timers): # <--- Start Sender timer
await self._sender(
thinking_id=thinking_id,
anchor_message=anchor_message,
response_set=replier_result,
send_emoji=emoji_query,
)
# logger.info(f"{log_prefix} 循环: 发送器完成成功.")
except Exception as e_sender:
logger.error(f"{log_prefix} 循环: 发送器失败: {e_sender}")
# _sender should handle cleanup, but double check
# self._cleanup_thinking_message(thinking_id)
else:
logger.warning(f"{log_prefix} 循环: 回复器未产生结果. 跳过发送.")
self._cleanup_thinking_message(thinking_id)
elif action == "emoji_reply":
logger.info(
f"{log_prefix} PFChatting: 麦麦决定回复表情 ('{emoji_query}'). 理由: {reasoning}"
)
action_taken_this_cycle = True
anchor = await self._get_anchor_message(observed_messages)
if anchor:
try:
# --- Handle Emoji (Moved) --- #
with Timer("Emoji Handler", cycle_timers): # <--- Start Emoji timer
await self._handle_emoji(anchor, [], emoji_query)
except Exception as e_emoji:
logger.error(f"{log_prefix} 循环: 发送表情失败: {e_emoji}")
else:
logger.warning(f"{log_prefix} 循环: 无法发送表情, 无法获取锚点.")
action_taken_this_cycle = True # 即使发送失败Planner 也决策了动作
elif action == "no_reply":
logger.info(f"{log_prefix} PFChatting: 麦麦决定不回复. 原因: {reasoning}")
action_taken_this_cycle = False # 标记为未执行动作
# --- 新增:等待新消息 ---
logger.debug(f"{log_prefix} PFChatting: 开始等待新消息 (自 {planner_start_db_time})...")
observation = None
if self.sub_hf:
observation = self.sub_hf._get_primary_observation()
if observation:
with Timer("Wait New Msg", cycle_timers): # <--- Start Wait timer
wait_start_time = time.monotonic()
while True:
# 检查计时器是否耗尽
async with self._timer_lock:
if self._loop_timer <= 0:
logger.info(f"{log_prefix} PFChatting: 等待新消息时计时器耗尽。")
break # 计时器耗尽,退出等待
# 检查是否有新消息
has_new = await observation.has_new_messages_since(planner_start_db_time)
if has_new:
logger.info(f"{log_prefix} PFChatting: 检测到新消息,结束等待。")
break # 收到新消息,退出等待
# 检查等待是否超时(例如,防止无限等待)
if time.monotonic() - wait_start_time > 60: # 等待60秒示例
logger.warning(f"{log_prefix} PFChatting: 等待新消息超时60秒")
break # 超时退出
# 等待一段时间再检查
try:
await asyncio.sleep(1.5) # 检查间隔
except asyncio.CancelledError:
logger.info(f"{log_prefix} 等待新消息的 sleep 被中断。")
raise # 重新抛出取消错误,以便外层循环处理
else:
logger.warning(f"{log_prefix} PFChatting: 无法获取 Observation 实例,无法等待新消息。")
# --- 等待结束 ---
elif action == "error": # Action specifically set to error by planner
logger.error(f"{log_prefix} PFChatting: Planner返回错误状态. 原因: {reasoning}")
action_taken_this_cycle = False
else: # Unknown action from planner
logger.warning(
f"{log_prefix} PFChatting: Planner返回未知动作 '{action}'. 原因: {reasoning}"
)
action_taken_this_cycle = False
# --- Print Timer Results --- #
if cycle_timers: # 先检查cycle_timers是否非空
timer_strings = []
for name, elapsed in cycle_timers.items():
# 直接格式化存储在字典中的浮点数 elapsed
formatted_time = f"{elapsed * 1000:.2f}毫秒" if elapsed < 1 else f"{elapsed:.2f}"
timer_strings.append(f"{name}: {formatted_time}")
if timer_strings: # 如果有有效计时器数据才打印
logger.debug(
f"{log_prefix} 该次决策耗时: {'; '.join(timer_strings)}"
)
# --- Timer Decrement --- #
cycle_duration = time.monotonic() - loop_cycle_start_time
except Exception as e_cycle:
logger.error(f"{log_prefix} 循环周期执行时发生错误: {e_cycle}")
logger.error(traceback.format_exc())
if acquired_lock and self._processing_lock.locked():
self._processing_lock.release()
acquired_lock = False
logger.warning(f"{log_prefix} 由于循环周期中的错误释放了处理锁.")
finally:
if acquired_lock:
self._processing_lock.release()
logger.trace(f"{log_prefix} 循环释放了处理锁.")
async with self._timer_lock:
self._loop_timer -= cycle_duration
# Log timer decrement less aggressively
if cycle_duration > 0.1 or not action_taken_this_cycle:
logger.debug(
f"{log_prefix} PFChatting: 周期耗时 {cycle_duration:.2f}s. 剩余时间: {self._loop_timer:.1f}s."
)
# --- Delay --- #
try:
sleep_duration = 0.0
if not action_taken_this_cycle and cycle_duration < 1.5:
sleep_duration = 1.5 - cycle_duration
elif cycle_duration < 0.2:
sleep_duration = 0.2
if sleep_duration > 0:
# logger.debug(f"{log_prefix} Sleeping for {sleep_duration:.2f}s")
await asyncio.sleep(sleep_duration)
except asyncio.CancelledError:
logger.info(f"{log_prefix} Sleep interrupted, loop likely cancelling.")
break
except asyncio.CancelledError:
logger.info(f"{log_prefix} PFChatting: 麦麦的聊天主循环被取消了")
except Exception as e_loop_outer:
logger.error(f"{log_prefix} PFChatting: 麦麦的聊天主循环意外出错: {e_loop_outer}")
logger.error(traceback.format_exc())
finally:
# State reset is primarily handled by _handle_loop_completion callback
logger.info(f"{log_prefix} PFChatting: 麦麦的聊天主循环结束。")
async def _planner(self) -> Dict[str, Any]:
"""
规划器 (Planner): 使用LLM根据上下文决定是否和如何回复。
"""
log_prefix = self._get_log_prefix()
observed_messages: List[dict] = []
tool_result_info = {}
get_mid_memory_id = []
# send_emoji_from_tools = "" # Emoji suggested by tools
current_mind: Optional[str] = None
llm_error = False # Flag for LLM failure
try:
observation = self.sub_hf._get_primary_observation()
await observation.observe()
observed_messages = observation.talking_message
observed_messages_str = observation.talking_message_str
except Exception as e:
logger.error(f"{log_prefix}[Planner] 获取观察信息时出错: {e}")
# --- 结束获取观察信息 --- #
# --- (Moved from _replier_work) 1. 思考前使用工具 --- #
try:
# Access tool_user via controller
tool_result = await self.heartfc_controller.tool_user.use_tool(
message_txt=observed_messages_str, sub_heartflow=self.sub_hf
)
if tool_result.get("used_tools", False):
tool_result_info = tool_result.get("structured_info", {})
logger.debug(f"{log_prefix}[Planner] 规划前工具结果: {tool_result_info}")
get_mid_memory_id = [
mem["content"] for mem in tool_result_info.get("mid_chat_mem", []) if "content" in mem
]
except Exception as e_tool:
logger.error(f"{log_prefix}[Planner] 规划前工具使用失败: {e_tool}")
# --- 结束工具使用 --- #
# --- (Moved from _replier_work) 2. SubHeartflow 思考 --- #
try:
current_mind, _past_mind = await self.sub_hf.do_thinking_before_reply(
extra_info=tool_result_info,
obs_id=get_mid_memory_id,
)
# logger.debug(f"{log_prefix}[Planner] SubHF Mind: {current_mind}")
except Exception as e_subhf:
logger.error(f"{log_prefix}[Planner] SubHeartflow 思考失败: {e_subhf}")
current_mind = "[思考时出错]"
# --- 结束 SubHeartflow 思考 --- #
# --- 使用 LLM 进行决策 --- #
action = "no_reply" # Default action
emoji_query = "" # Default emoji query (used if action is emoji_reply or text_reply with emoji)
reasoning = "默认决策或获取决策失败"
try:
prompt = await self._build_planner_prompt(observed_messages_str, current_mind)
payload = {
"model": self.planner_llm.model_name,
"messages": [{"role": "user", "content": prompt}],
"tools": PLANNER_TOOL_DEFINITION,
"tool_choice": {"type": "function", "function": {"name": "decide_reply_action"}},
}
response = await self.planner_llm._execute_request(
endpoint="/chat/completions", payload=payload, prompt=prompt
)
if len(response) == 3:
_, _, tool_calls = response
if tool_calls and isinstance(tool_calls, list) and len(tool_calls) > 0:
tool_call = tool_calls[0]
if (
tool_call.get("type") == "function"
and tool_call.get("function", {}).get("name") == "decide_reply_action"
):
try:
arguments = json.loads(tool_call["function"]["arguments"])
action = arguments.get("action", "no_reply")
reasoning = arguments.get("reasoning", "未提供理由")
# Planner explicitly provides emoji query if action is emoji_reply or text_reply wants emoji
emoji_query = arguments.get("emoji_query", "")
logger.debug(
f"{log_prefix}[Planner] LLM Prompt: {prompt}\n决策: {action}, 理由: {reasoning}, EmojiQuery: '{emoji_query}'"
)
except json.JSONDecodeError as json_e:
logger.error(
f"{log_prefix}[Planner] 解析工具参数失败: {json_e}. Args: {tool_call['function'].get('arguments')}"
)
action = "error"
reasoning = "工具参数解析失败"
llm_error = True
except Exception as parse_e:
logger.error(f"{log_prefix}[Planner] 处理工具参数时出错: {parse_e}")
action = "error"
reasoning = "处理工具参数时出错"
llm_error = True
else:
logger.warning(
f"{log_prefix}[Planner] LLM 未按预期调用 'decide_reply_action' 工具。Tool calls: {tool_calls}"
)
action = "error"
reasoning = "LLM未调用预期工具"
llm_error = True
else:
logger.warning(f"{log_prefix}[Planner] LLM 响应中未包含有效的工具调用。Tool calls: {tool_calls}")
action = "error"
reasoning = "LLM响应无工具调用"
llm_error = True
else:
logger.warning(f"{log_prefix}[Planner] LLM 未返回预期的工具调用响应。Response parts: {len(response)}")
action = "error"
reasoning = "LLM响应格式错误"
llm_error = True
except Exception as llm_e:
logger.error(f"{log_prefix}[Planner] Planner LLM 调用失败: {llm_e}")
# logger.error(traceback.format_exc()) # Maybe too verbose for loop?
action = "error"
reasoning = f"LLM 调用失败: {llm_e}"
llm_error = True
# --- 结束 LLM 决策 --- #
return {
"action": action,
"reasoning": reasoning,
"emoji_query": emoji_query, # Explicit query from Planner/LLM
"current_mind": current_mind,
# "send_emoji_from_tools": send_emoji_from_tools, # Emoji suggested by tools (used as fallback)
"observed_messages": observed_messages,
"llm_error": llm_error,
}
async def _get_anchor_message(self, observed_messages: List[dict]) -> Optional[MessageRecv]:
"""
重构观察到的最后一条消息作为回复的锚点,
如果重构失败或观察为空,则创建一个占位符。
"""
try:
# last_msg_dict = None
# if observed_messages:
# last_msg_dict = observed_messages[-1]
# if last_msg_dict:
# try:
# anchor_message = MessageRecv(last_msg_dict) # 移除 chat_stream 参数
# anchor_message.update_chat_stream(self.chat_stream) # 添加 update_chat_stream 调用
# if not (
# anchor_message
# and anchor_message.message_info
# and anchor_message.message_info.message_id
# and anchor_message.message_info.user_info
# ):
# raise ValueError("重构的 MessageRecv 缺少必要信息.")
# # logger.debug(f"{self._get_log_prefix()} 重构的锚点消息: ID={anchor_message.message_info.message_id}")
# return anchor_message
# except Exception as e_reconstruct:
# logger.warning(
# f"{self._get_log_prefix()} 从观察到的消息重构 MessageRecv 失败: {e_reconstruct}. 创建占位符."
# )
# --- Create Placeholder --- #
placeholder_id = f"mid_pf_{int(time.time() * 1000)}"
placeholder_user = UserInfo(
user_id="system_trigger", user_nickname="System Trigger", platform=self.chat_stream.platform
)
placeholder_msg_info = BaseMessageInfo(
message_id=placeholder_id,
platform=self.chat_stream.platform,
group_info=self.chat_stream.group_info,
user_info=placeholder_user,
time=time.time(),
)
placeholder_msg_dict = {
"message_info": placeholder_msg_info.to_dict(),
"processed_plain_text": "[System Trigger Context]",
"raw_message": "",
"time": placeholder_msg_info.time,
}
anchor_message = MessageRecv(placeholder_msg_dict)
anchor_message.update_chat_stream(self.chat_stream)
logger.info(
f"{self._get_log_prefix()} Created placeholder anchor message: ID={anchor_message.message_info.message_id}"
)
return anchor_message
except Exception as e:
logger.error(f"{self._get_log_prefix()} Error getting/creating anchor message: {e}")
logger.error(traceback.format_exc())
return None
def _cleanup_thinking_message(self, thinking_id: str):
"""Safely removes the thinking message."""
log_prefix = self._get_log_prefix()
try:
# Access MessageManager via controller
container = self.heartfc_controller.MessageManager().get_container(self.stream_id)
container.remove_message(thinking_id, msg_type=MessageThinking)
logger.debug(f"{log_prefix} Cleaned up thinking message {thinking_id}.")
except Exception as e:
logger.error(f"{log_prefix} Error cleaning up thinking message {thinking_id}: {e}")
# --- 发送器 (Sender) --- #
async def _sender(
self,
thinking_id: str,
anchor_message: MessageRecv,
response_set: List[str],
send_emoji: str, # Emoji query decided by planner or tools
):
"""
发送器 (Sender): 使用本类的方法发送生成的回复。
处理相关的操作,如发送表情和更新关系。
"""
log_prefix = self._get_log_prefix()
first_bot_msg: Optional[MessageSending] = None
# 尝试发送回复消息
first_bot_msg = await self._send_response_messages(anchor_message, response_set, thinking_id)
if first_bot_msg:
# --- 处理关联表情(如果指定) --- #
if send_emoji:
logger.info(f"{log_prefix}[Sender-{thinking_id}] 正在发送关联表情: '{send_emoji}'")
# 优先使用first_bot_msg作为锚点否则回退到原始锚点
emoji_anchor = first_bot_msg if first_bot_msg else anchor_message
await self._handle_emoji(emoji_anchor, response_set, send_emoji)
else:
# logger.warning(f"{log_prefix}[Sender-{thinking_id}] 发送回复失败(_send_response_messages返回None)。思考消息{thinking_id}可能已被移除。")
# 无需清理因为_send_response_messages返回None意味着已处理/已删除
raise RuntimeError("发送回复失败_send_response_messages返回None")
async def shutdown(self):
"""
Gracefully shuts down the PFChatting instance by cancelling the active loop task.
"""
log_prefix = self._get_log_prefix()
logger.info(f"{log_prefix} Shutting down PFChatting...")
if self._loop_task and not self._loop_task.done():
logger.info(f"{log_prefix} Cancelling active PF loop task.")
self._loop_task.cancel()
try:
await asyncio.wait_for(self._loop_task, timeout=1.0) # Shorter timeout?
except asyncio.CancelledError:
logger.info(f"{log_prefix} PF loop task cancelled successfully.")
except asyncio.TimeoutError:
logger.warning(f"{log_prefix} Timeout waiting for PF loop task cancellation.")
except Exception as e:
logger.error(f"{log_prefix} Error during loop task cancellation: {e}")
else:
logger.info(f"{log_prefix} No active PF loop task found to cancel.")
self._loop_active = False
self._loop_task = None
if self._processing_lock.locked():
logger.warning(f"{log_prefix} Releasing processing lock during shutdown.")
self._processing_lock.release()
logger.info(f"{log_prefix} PFChatting shutdown complete.")
async def _build_planner_prompt(self, observed_messages_str: str, current_mind: Optional[str]) -> str:
"""构建 Planner LLM 的提示词"""
prompt = f"你的名字是 {global_config.BOT_NICKNAME}。是一个女大二学生正在QQ聊天正在决定是否以及如何回应当前的聊天。\n"
if observed_messages_str:
prompt += "观察到的最新聊天内容如下 (最近的消息在最后)\n---\n"
prompt += observed_messages_str
prompt += "\n---"
else:
prompt += "当前没有观察到新的聊天内容。\n"
prompt += "\n看了以上内容,你产生的内心想法是:"
if current_mind:
prompt += f"\n---\n{current_mind}\n---\n\n"
else:
prompt += " [没有特别的想法] \n\n"
prompt += (
"请结合你的内心想法和观察到的聊天内容,分析情况并使用 'decide_reply_action' 工具来决定你的最终行动。\n"
"决策依据:\n"
"1. 如果聊天内容无聊、与你无关、或者你的内心想法认为不适合回复(例如在讨论你不懂或不感兴趣的话题),选择 'no_reply'\n"
"2. 如果聊天内容值得回应,且适合用文字表达(参考你的内心想法),选择 'text_reply'。如果你有情绪想表达,想在文字后追加一个表达情绪的表情,请同时提供 'emoji_query' (例如:'开心的''惊讶的')。\n"
"3. 如果聊天内容或你的内心想法适合用一个表情来回应(例如表示赞同、惊讶、无语等),选择 'emoji_reply' 并提供表情主题 'emoji_query'\n"
"4. 如果最后一条消息是你自己发的,并且之后没有人回复你,通常选择 'no_reply',除非有特殊原因需要追问。\n"
"5. 除非大家都在这么做,或者有特殊理由,否则不要重复别人刚刚说过的话或简单附和。\n"
"6. 表情包是用来表达情绪的,不要直接回复或评价别人的表情包,而是根据对话内容和情绪选择是否用表情回应。\n"
"7. 如果观察到的内容只有你自己的发言,选择 'no_reply'\n"
"8. 不要回复你自己的话,不要把自己的话当做别人说的。\n"
"必须调用 'decide_reply_action' 工具并提供 'action''reasoning'。如果选择了 'emoji_reply' 或者选择了 'text_reply' 并想追加表情,则必须提供 'emoji_query'"
)
return prompt
# --- 回复器 (Replier) 的定义 --- #
async def _replier_work(
self,
reason: str,
anchor_message: MessageRecv,
thinking_id: str,
) -> Optional[List[str]]:
"""
回复器 (Replier): 核心逻辑用于生成回复。
"""
log_prefix = self._get_log_prefix()
response_set: Optional[List[str]] = None
try:
# --- Generate Response with LLM --- #
# Access gpt instance via controller
gpt_instance = self.heartfc_controller.gpt
# logger.debug(f"{log_prefix}[Replier-{thinking_id}] Calling LLM to generate response...")
# Ensure generate_response has access to current_mind if it's crucial context
response_set = await gpt_instance.generate_response(
reason,
anchor_message, # Pass anchor_message positionally (matches 'message' parameter)
thinking_id, # Pass thinking_id positionally
)
if not response_set:
logger.warning(f"{log_prefix}[Replier-{thinking_id}] LLM生成了一个空回复集。")
return None
# --- 准备并返回结果 --- #
# logger.info(f"{log_prefix}[Replier-{thinking_id}] 成功生成了回复集: {' '.join(response_set)[:50]}...")
return response_set
except Exception as e:
logger.error(f"{log_prefix}[Replier-{thinking_id}] Unexpected error in replier_work: {e}")
logger.error(traceback.format_exc())
return None
# --- Methods moved from HeartFCController start ---
async def _create_thinking_message(self, anchor_message: Optional[MessageRecv]) -> Optional[str]:
"""创建思考消息 (尝试锚定到 anchor_message)"""
if not anchor_message or not anchor_message.chat_stream:
logger.error(f"{self._get_log_prefix()} 无法创建思考消息,缺少有效的锚点消息或聊天流。")
return None
chat = anchor_message.chat_stream
messageinfo = anchor_message.message_info
bot_user_info = UserInfo(
user_id=global_config.BOT_QQ,
user_nickname=global_config.BOT_NICKNAME,
platform=messageinfo.platform,
)
thinking_time_point = round(time.time(), 2)
thinking_id = "mt" + str(thinking_time_point)
thinking_message = MessageThinking(
message_id=thinking_id,
chat_stream=chat,
bot_user_info=bot_user_info,
reply=anchor_message, # 回复的是锚点消息
thinking_start_time=thinking_time_point,
)
# Access MessageManager via controller
self.heartfc_controller.MessageManager().add_message(thinking_message)
return thinking_id
async def _send_response_messages(
self, anchor_message: Optional[MessageRecv], response_set: List[str], thinking_id: str
) -> Optional[MessageSending]:
"""发送回复消息 (尝试锚定到 anchor_message)"""
if not anchor_message or not anchor_message.chat_stream:
logger.error(f"{self._get_log_prefix()} 无法发送回复,缺少有效的锚点消息或聊天流。")
return None
chat = anchor_message.chat_stream
container = self.heartfc_controller.MessageManager().get_container(chat.stream_id)
thinking_message = None
# 移除思考消息
for msg in container.messages[:]: # Iterate over a copy
if isinstance(msg, MessageThinking) and msg.message_info.message_id == thinking_id:
thinking_message = msg
container.messages.remove(msg) # Remove the message directly here
logger.debug(f"{self._get_log_prefix()} Removed thinking message {thinking_id} via iteration.")
break
if not thinking_message:
stream_name = chat_manager.get_stream_name(chat.stream_id) or chat.stream_id # 获取流名称
logger.warning(f"[{stream_name}] {thinking_id},思考太久了,超时被移除")
return None
thinking_start_time = thinking_message.thinking_start_time
message_set = MessageSet(chat, thinking_id)
mark_head = False
first_bot_msg = None
bot_user_info = UserInfo(
user_id=global_config.BOT_QQ,
user_nickname=global_config.BOT_NICKNAME,
platform=anchor_message.message_info.platform,
)
for msg_text in response_set:
message_segment = Seg(type="text", data=msg_text)
bot_message = MessageSending(
message_id=thinking_id, # 使用 thinking_id 作为批次标识
chat_stream=chat,
bot_user_info=bot_user_info,
sender_info=anchor_message.message_info.user_info, # 发送给锚点消息的用户
message_segment=message_segment,
reply=anchor_message, # 回复锚点消息
is_head=not mark_head,
is_emoji=False,
thinking_start_time=thinking_start_time,
)
if not mark_head:
mark_head = True
first_bot_msg = bot_message
message_set.add_message(bot_message)
self.heartfc_controller.MessageManager().add_message(message_set)
return first_bot_msg
async def _handle_emoji(self, anchor_message: Optional[MessageRecv], response_set: List[str], send_emoji: str = ""):
"""处理表情包 (尝试锚定到 anchor_message)"""
if not anchor_message or not anchor_message.chat_stream:
logger.error(f"{self._get_log_prefix()} 无法处理表情包,缺少有效的锚点消息或聊天流。")
return
chat = anchor_message.chat_stream
# Access emoji_manager via controller
emoji_manager_instance = self.heartfc_controller.emoji_manager
if send_emoji:
emoji_raw = await emoji_manager_instance.get_emoji_for_text(send_emoji)
else:
emoji_text_source = "".join(response_set) if response_set else ""
emoji_raw = await emoji_manager_instance.get_emoji_for_text(emoji_text_source)
if emoji_raw:
emoji_path, _description = emoji_raw
emoji_cq = image_path_to_base64(emoji_path)
thinking_time_point = round(time.time(), 2)
message_segment = Seg(type="emoji", data=emoji_cq)
bot_user_info = UserInfo(
user_id=global_config.BOT_QQ,
user_nickname=global_config.BOT_NICKNAME,
platform=anchor_message.message_info.platform,
)
bot_message = MessageSending(
message_id="me" + str(thinking_time_point), # 使用不同的 ID 前缀?
chat_stream=chat,
bot_user_info=bot_user_info,
sender_info=anchor_message.message_info.user_info,
message_segment=message_segment,
reply=anchor_message, # 回复锚点消息
is_head=False,
is_emoji=True,
)
# Access MessageManager via controller
self.heartfc_controller.MessageManager().add_message(bot_message)