This commit is contained in:
SengokuCola
2025-07-12 01:26:30 +08:00
17 changed files with 2996 additions and 18 deletions

View File

@@ -119,7 +119,7 @@ class ExpressionLearner:
min_len = min(len(s1), len(s2))
if min_len < 5:
return False
same = sum(1 for a, b in zip(s1, s2) if a == b)
same = sum(1 for a, b in zip(s1, s2, strict=False) if a == b)
return same / min_len > 0.8
async def learn_and_store_expression(self) -> List[Tuple[str, str, str]]:

View File

@@ -120,7 +120,6 @@ class HeartFCMessageReceiver:
chat_mood = mood_manager.get_mood_by_chat_id(subheartflow.chat_id)
asyncio.create_task(chat_mood.update_mood_by_message(message, interested_rate))
# 7. 日志记录
mes_name = chat.group_info.group_name if chat.group_info else "私聊"
# current_time = time.strftime("%H:%M:%S", time.localtime(message.message_info.time))

View File

@@ -59,7 +59,7 @@ EMBEDDING_SIM_THRESHOLD = 0.99
def cosine_similarity(a, b):
# 计算余弦相似度
dot = sum(x * y for x, y in zip(a, b))
dot = sum(x * y for x, y in zip(a, b, strict=False))
norm_a = math.sqrt(sum(x * x for x in a))
norm_b = math.sqrt(sum(x * x for x in b))
if norm_a == 0 or norm_b == 0:
@@ -285,7 +285,7 @@ class EmbeddingStore:
distances = list(distances.flatten())
result = [
(self.idx2hash[str(int(idx))], float(sim))
for (idx, sim) in zip(indices, distances)
for (idx, sim) in zip(indices, distances, strict=False)
if idx in range(len(self.idx2hash))
]

View File

@@ -819,7 +819,7 @@ class EntorhinalCortex:
timestamps = sample_scheduler.get_timestamp_array()
# 使用 translate_timestamp_to_human_readable 并指定 mode="normal"
readable_timestamps = [translate_timestamp_to_human_readable(ts, mode="normal") for ts in timestamps]
for _, readable_timestamp in zip(timestamps, readable_timestamps):
for _, readable_timestamp in zip(timestamps, readable_timestamps, strict=False):
logger.debug(f"回忆往事: {readable_timestamp}")
chat_samples = []
for timestamp in timestamps:

View File

@@ -299,7 +299,7 @@ class ActionModifier:
task_results = await asyncio.gather(*tasks, return_exceptions=True)
# 处理结果并更新缓存
for _, (action_name, result) in enumerate(zip(task_names, task_results)):
for _, (action_name, result) in enumerate(zip(task_names, task_results, strict=False)):
if isinstance(result, Exception):
logger.error(f"{self.log_prefix}LLM判定action {action_name} 时出错: {result}")
results[action_name] = False

View File

@@ -845,7 +845,7 @@ def weighted_sample_no_replacement(items, weights, k) -> list:
2. 不会重复选中同一个元素
"""
selected = []
pool = list(zip(items, weights))
pool = list(zip(items, weights, strict=False))
for _ in range(min(k, len(pool))):
total = sum(w for _, w in pool)
r = random.uniform(0, total)

View File

@@ -363,7 +363,7 @@ class ChineseTypoGenerator:
else:
# 处理多字词的单字替换
word_result = []
for _, (char, py) in enumerate(zip(word, word_pinyin)):
for _, (char, py) in enumerate(zip(word, word_pinyin, strict=False)):
# 词中的字替换概率降低
word_error_rate = self.error_rate * (0.7 ** (len(word) - 1))

View File

@@ -94,7 +94,7 @@ class ConfigBase:
raise TypeError(
f"Expected {len(field_type_args)} items for {field_type.__name__}, got {len(value)}"
)
return tuple(cls._convert_field(item, arg) for item, arg in zip(value, field_type_args))
return tuple(cls._convert_field(item, arg) for item, arg in zip(value, field_type_args, strict=False))
if field_origin_type is dict:
# 检查提供的value是否为dict

View File

@@ -247,7 +247,7 @@ def weighted_sample_no_replacement(items, weights, k) -> list:
2. 不会重复选中同一个元素
"""
selected = []
pool = list(zip(items, weights))
pool = list(zip(items, weights, strict=False))
for _ in range(min(k, len(pool))):
total = sum(w for _, w in pool)
r = random.uniform(0, total)

View File

@@ -142,7 +142,6 @@ class NoReplyAction(BaseAction):
)
return False, f"不回复动作执行失败: {e}"
@classmethod
def reset_consecutive_count(cls):
"""重置连续计数器"""

View File

@@ -54,7 +54,7 @@ class SearchKnowledgeTool(BaseTool):
@staticmethod
def _cosine_similarity(vec1: List[float], vec2: List[float]) -> float:
"""计算两个向量之间的余弦相似度"""
dot_product = sum(p * q for p, q in zip(vec1, vec2))
dot_product = sum(p * q for p, q in zip(vec1, vec2, strict=False))
magnitude1 = math.sqrt(sum(p * p for p in vec1))
magnitude2 = math.sqrt(sum(q * q for q in vec2))
if magnitude1 == 0 or magnitude2 == 0: