feat:为心流增加知识和知识缓存
This commit is contained in:
@@ -8,6 +8,9 @@ import time
|
||||
from src.plugins.schedule.schedule_generator import bot_schedule
|
||||
from src.plugins.memory_system.Hippocampus import HippocampusManager
|
||||
from src.common.logger import get_module_logger, LogConfig, SUB_HEARTFLOW_STYLE_CONFIG # noqa: E402
|
||||
from src.plugins.chat.utils import get_embedding
|
||||
from src.common.database import db
|
||||
from typing import Union
|
||||
|
||||
subheartflow_config = LogConfig(
|
||||
# 使用海马体专用样式
|
||||
@@ -53,6 +56,8 @@ class SubHeartflow:
|
||||
self.is_active = False
|
||||
|
||||
self.observations: list[Observation] = []
|
||||
|
||||
self.running_knowledges = []
|
||||
|
||||
def add_observation(self, observation: Observation):
|
||||
"""添加一个新的observation对象到列表中,如果已存在相同id的observation则不添加"""
|
||||
@@ -98,49 +103,49 @@ class SubHeartflow:
|
||||
logger.info(f"子心流 {self.subheartflow_id} 已经5分钟没有激活,正在销毁...")
|
||||
break # 退出循环,销毁自己
|
||||
|
||||
async def do_a_thinking(self):
|
||||
current_thinking_info = self.current_mind
|
||||
mood_info = self.current_state.mood
|
||||
# async def do_a_thinking(self):
|
||||
# current_thinking_info = self.current_mind
|
||||
# mood_info = self.current_state.mood
|
||||
|
||||
observation = self.observations[0]
|
||||
chat_observe_info = observation.observe_info
|
||||
# print(f"chat_observe_info:{chat_observe_info}")
|
||||
# observation = self.observations[0]
|
||||
# chat_observe_info = observation.observe_info
|
||||
# # print(f"chat_observe_info:{chat_observe_info}")
|
||||
|
||||
# 调取记忆
|
||||
related_memory = await HippocampusManager.get_instance().get_memory_from_text(
|
||||
text=chat_observe_info, max_memory_num=2, max_memory_length=2, max_depth=3, fast_retrieval=False
|
||||
)
|
||||
# # 调取记忆
|
||||
# related_memory = await HippocampusManager.get_instance().get_memory_from_text(
|
||||
# text=chat_observe_info, max_memory_num=2, max_memory_length=2, max_depth=3, fast_retrieval=False
|
||||
# )
|
||||
|
||||
if related_memory:
|
||||
related_memory_info = ""
|
||||
for memory in related_memory:
|
||||
related_memory_info += memory[1]
|
||||
else:
|
||||
related_memory_info = ""
|
||||
# if related_memory:
|
||||
# related_memory_info = ""
|
||||
# for memory in related_memory:
|
||||
# related_memory_info += memory[1]
|
||||
# else:
|
||||
# related_memory_info = ""
|
||||
|
||||
# print(f"相关记忆:{related_memory_info}")
|
||||
# # print(f"相关记忆:{related_memory_info}")
|
||||
|
||||
schedule_info = bot_schedule.get_current_num_task(num=1, time_info=False)
|
||||
# schedule_info = bot_schedule.get_current_num_task(num=1, time_info=False)
|
||||
|
||||
prompt = ""
|
||||
prompt += f"你刚刚在做的事情是:{schedule_info}\n"
|
||||
# prompt += f"麦麦的总体想法是:{self.main_heartflow_info}\n\n"
|
||||
prompt += f"你{self.personality_info}\n"
|
||||
if related_memory_info:
|
||||
prompt += f"你想起来你之前见过的回忆:{related_memory_info}。\n以上是你的回忆,不一定是目前聊天里的人说的,也不一定是现在发生的事情,请记住。\n"
|
||||
prompt += f"刚刚你的想法是{current_thinking_info}。\n"
|
||||
prompt += "-----------------------------------\n"
|
||||
prompt += f"现在你正在上网,和qq群里的网友们聊天,群里正在聊的话题是:{chat_observe_info}\n"
|
||||
prompt += f"你现在{mood_info}\n"
|
||||
prompt += "现在你接下去继续思考,产生新的想法,不要分点输出,输出连贯的内心独白,不要太长,"
|
||||
prompt += "但是记得结合上述的消息,要记得维持住你的人设,关注聊天和新内容,不要思考太多:"
|
||||
reponse, reasoning_content = await self.llm_model.generate_response_async(prompt)
|
||||
# prompt = ""
|
||||
# prompt += f"你刚刚在做的事情是:{schedule_info}\n"
|
||||
# # prompt += f"麦麦的总体想法是:{self.main_heartflow_info}\n\n"
|
||||
# prompt += f"你{self.personality_info}\n"
|
||||
# if related_memory_info:
|
||||
# prompt += f"你想起来你之前见过的回忆:{related_memory_info}。\n以上是你的回忆,不一定是目前聊天里的人说的,也不一定是现在发生的事情,请记住。\n"
|
||||
# prompt += f"刚刚你的想法是{current_thinking_info}。\n"
|
||||
# prompt += "-----------------------------------\n"
|
||||
# prompt += f"现在你正在上网,和qq群里的网友们聊天,群里正在聊的话题是:{chat_observe_info}\n"
|
||||
# prompt += f"你现在{mood_info}\n"
|
||||
# prompt += "现在你接下去继续思考,产生新的想法,不要分点输出,输出连贯的内心独白,不要太长,"
|
||||
# prompt += "但是记得结合上述的消息,要记得维持住你的人设,关注聊天和新内容,不要思考太多:"
|
||||
# reponse, reasoning_content = await self.llm_model.generate_response_async(prompt)
|
||||
|
||||
self.update_current_mind(reponse)
|
||||
# self.update_current_mind(reponse)
|
||||
|
||||
self.current_mind = reponse
|
||||
logger.debug(f"prompt:\n{prompt}\n")
|
||||
logger.info(f"麦麦的脑内状态:{self.current_mind}")
|
||||
# self.current_mind = reponse
|
||||
# logger.debug(f"prompt:\n{prompt}\n")
|
||||
# logger.info(f"麦麦的脑内状态:{self.current_mind}")
|
||||
|
||||
async def do_observe(self):
|
||||
observation = self.observations[0]
|
||||
@@ -166,6 +171,13 @@ class SubHeartflow:
|
||||
else:
|
||||
related_memory_info = ""
|
||||
|
||||
related_info,grouped_results = await self.get_prompt_info(chat_observe_info + message_txt, 0.4)
|
||||
print(related_info)
|
||||
for topic, results in grouped_results.items():
|
||||
for result in results:
|
||||
print(result)
|
||||
self.running_knowledges.append(result)
|
||||
|
||||
# print(f"相关记忆:{related_memory_info}")
|
||||
|
||||
schedule_info = bot_schedule.get_current_num_task(num=1, time_info=False)
|
||||
@@ -176,6 +188,8 @@ class SubHeartflow:
|
||||
prompt += f"你刚刚在做的事情是:{schedule_info}\n"
|
||||
if related_memory_info:
|
||||
prompt += f"你想起来你之前见过的回忆:{related_memory_info}。\n以上是你的回忆,不一定是目前聊天里的人说的,也不一定是现在发生的事情,请记住。\n"
|
||||
if related_info:
|
||||
prompt += f"你想起你知道:{related_info}\n"
|
||||
prompt += f"刚刚你的想法是{current_thinking_info}。\n"
|
||||
prompt += "-----------------------------------\n"
|
||||
prompt += f"现在你正在上网,和qq群里的网友们聊天,群里正在聊的话题是:{chat_observe_info}\n"
|
||||
@@ -249,6 +263,222 @@ class SubHeartflow:
|
||||
def update_current_mind(self, reponse):
|
||||
self.past_mind.append(self.current_mind)
|
||||
self.current_mind = reponse
|
||||
|
||||
|
||||
async def get_prompt_info(self, message: str, threshold: float):
|
||||
start_time = time.time()
|
||||
related_info = ""
|
||||
logger.debug(f"获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
|
||||
|
||||
# 1. 先从LLM获取主题,类似于记忆系统的做法
|
||||
topics = []
|
||||
# try:
|
||||
# # 先尝试使用记忆系统的方法获取主题
|
||||
# hippocampus = HippocampusManager.get_instance()._hippocampus
|
||||
# topic_num = min(5, max(1, int(len(message) * 0.1)))
|
||||
# topics_response = await hippocampus.llm_topic_judge.generate_response(hippocampus.find_topic_llm(message, topic_num))
|
||||
|
||||
# # 提取关键词
|
||||
# topics = re.findall(r"<([^>]+)>", topics_response[0])
|
||||
# if not topics:
|
||||
# topics = []
|
||||
# else:
|
||||
# topics = [
|
||||
# topic.strip()
|
||||
# for topic in ",".join(topics).replace(",", ",").replace("、", ",").replace(" ", ",").split(",")
|
||||
# if topic.strip()
|
||||
# ]
|
||||
|
||||
# logger.info(f"从LLM提取的主题: {', '.join(topics)}")
|
||||
# except Exception as e:
|
||||
# logger.error(f"从LLM提取主题失败: {str(e)}")
|
||||
# # 如果LLM提取失败,使用jieba分词提取关键词作为备选
|
||||
# words = jieba.cut(message)
|
||||
# topics = [word for word in words if len(word) > 1][:5]
|
||||
# logger.info(f"使用jieba提取的主题: {', '.join(topics)}")
|
||||
|
||||
# 如果无法提取到主题,直接使用整个消息
|
||||
if not topics:
|
||||
logger.info("未能提取到任何主题,使用整个消息进行查询")
|
||||
embedding = await get_embedding(message, request_type="info_retrieval")
|
||||
if not embedding:
|
||||
logger.error("获取消息嵌入向量失败")
|
||||
return ""
|
||||
|
||||
related_info = self.get_info_from_db(embedding, limit=3, threshold=threshold)
|
||||
logger.info(f"知识库检索完成,总耗时: {time.time() - start_time:.3f}秒")
|
||||
return related_info, {}
|
||||
|
||||
# 2. 对每个主题进行知识库查询
|
||||
logger.info(f"开始处理{len(topics)}个主题的知识库查询")
|
||||
|
||||
# 优化:批量获取嵌入向量,减少API调用
|
||||
embeddings = {}
|
||||
topics_batch = [topic for topic in topics if len(topic) > 0]
|
||||
if message: # 确保消息非空
|
||||
topics_batch.append(message)
|
||||
|
||||
# 批量获取嵌入向量
|
||||
embed_start_time = time.time()
|
||||
for text in topics_batch:
|
||||
if not text or len(text.strip()) == 0:
|
||||
continue
|
||||
|
||||
try:
|
||||
embedding = await get_embedding(text, request_type="info_retrieval")
|
||||
if embedding:
|
||||
embeddings[text] = embedding
|
||||
else:
|
||||
logger.warning(f"获取'{text}'的嵌入向量失败")
|
||||
except Exception as e:
|
||||
logger.error(f"获取'{text}'的嵌入向量时发生错误: {str(e)}")
|
||||
|
||||
logger.info(f"批量获取嵌入向量完成,耗时: {time.time() - embed_start_time:.3f}秒")
|
||||
|
||||
if not embeddings:
|
||||
logger.error("所有嵌入向量获取失败")
|
||||
return ""
|
||||
|
||||
# 3. 对每个主题进行知识库查询
|
||||
all_results = []
|
||||
query_start_time = time.time()
|
||||
|
||||
# 首先添加原始消息的查询结果
|
||||
if message in embeddings:
|
||||
original_results = self.get_info_from_db(embeddings[message], limit=3, threshold=threshold, return_raw=True)
|
||||
if original_results:
|
||||
for result in original_results:
|
||||
result["topic"] = "原始消息"
|
||||
all_results.extend(original_results)
|
||||
logger.info(f"原始消息查询到{len(original_results)}条结果")
|
||||
|
||||
# 然后添加每个主题的查询结果
|
||||
for topic in topics:
|
||||
if not topic or topic not in embeddings:
|
||||
continue
|
||||
|
||||
try:
|
||||
topic_results = self.get_info_from_db(embeddings[topic], limit=3, threshold=threshold, return_raw=True)
|
||||
if topic_results:
|
||||
# 添加主题标记
|
||||
for result in topic_results:
|
||||
result["topic"] = topic
|
||||
all_results.extend(topic_results)
|
||||
logger.info(f"主题'{topic}'查询到{len(topic_results)}条结果")
|
||||
except Exception as e:
|
||||
logger.error(f"查询主题'{topic}'时发生错误: {str(e)}")
|
||||
|
||||
logger.info(f"知识库查询完成,耗时: {time.time() - query_start_time:.3f}秒,共获取{len(all_results)}条结果")
|
||||
|
||||
# 4. 去重和过滤
|
||||
process_start_time = time.time()
|
||||
unique_contents = set()
|
||||
filtered_results = []
|
||||
for result in all_results:
|
||||
content = result["content"]
|
||||
if content not in unique_contents:
|
||||
unique_contents.add(content)
|
||||
filtered_results.append(result)
|
||||
|
||||
# 5. 按相似度排序
|
||||
filtered_results.sort(key=lambda x: x["similarity"], reverse=True)
|
||||
|
||||
# 6. 限制总数量(最多10条)
|
||||
filtered_results = filtered_results[:10]
|
||||
logger.info(f"结果处理完成,耗时: {time.time() - process_start_time:.3f}秒,过滤后剩余{len(filtered_results)}条结果")
|
||||
|
||||
# 7. 格式化输出
|
||||
if filtered_results:
|
||||
format_start_time = time.time()
|
||||
grouped_results = {}
|
||||
for result in filtered_results:
|
||||
topic = result["topic"]
|
||||
if topic not in grouped_results:
|
||||
grouped_results[topic] = []
|
||||
grouped_results[topic].append(result)
|
||||
|
||||
# 按主题组织输出
|
||||
for topic, results in grouped_results.items():
|
||||
related_info += f"【主题: {topic}】\n"
|
||||
for i, result in enumerate(results, 1):
|
||||
similarity = result["similarity"]
|
||||
content = result["content"].strip()
|
||||
# 调试:为内容添加序号和相似度信息
|
||||
# related_info += f"{i}. [{similarity:.2f}] {content}\n"
|
||||
related_info += f"{content}\n"
|
||||
related_info += "\n"
|
||||
|
||||
logger.info(f"格式化输出完成,耗时: {time.time() - format_start_time:.3f}秒")
|
||||
|
||||
logger.info(f"知识库检索总耗时: {time.time() - start_time:.3f}秒")
|
||||
return related_info,grouped_results
|
||||
|
||||
def get_info_from_db(self, query_embedding: list, limit: int = 1, threshold: float = 0.5, return_raw: bool = False) -> Union[str, list]:
|
||||
if not query_embedding:
|
||||
return "" if not return_raw else []
|
||||
# 使用余弦相似度计算
|
||||
pipeline = [
|
||||
{
|
||||
"$addFields": {
|
||||
"dotProduct": {
|
||||
"$reduce": {
|
||||
"input": {"$range": [0, {"$size": "$embedding"}]},
|
||||
"initialValue": 0,
|
||||
"in": {
|
||||
"$add": [
|
||||
"$$value",
|
||||
{
|
||||
"$multiply": [
|
||||
{"$arrayElemAt": ["$embedding", "$$this"]},
|
||||
{"$arrayElemAt": [query_embedding, "$$this"]},
|
||||
]
|
||||
},
|
||||
]
|
||||
},
|
||||
}
|
||||
},
|
||||
"magnitude1": {
|
||||
"$sqrt": {
|
||||
"$reduce": {
|
||||
"input": "$embedding",
|
||||
"initialValue": 0,
|
||||
"in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]},
|
||||
}
|
||||
}
|
||||
},
|
||||
"magnitude2": {
|
||||
"$sqrt": {
|
||||
"$reduce": {
|
||||
"input": query_embedding,
|
||||
"initialValue": 0,
|
||||
"in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]},
|
||||
}
|
||||
}
|
||||
},
|
||||
}
|
||||
},
|
||||
{"$addFields": {"similarity": {"$divide": ["$dotProduct", {"$multiply": ["$magnitude1", "$magnitude2"]}]}}},
|
||||
{
|
||||
"$match": {
|
||||
"similarity": {"$gte": threshold} # 只保留相似度大于等于阈值的结果
|
||||
}
|
||||
},
|
||||
{"$sort": {"similarity": -1}},
|
||||
{"$limit": limit},
|
||||
{"$project": {"content": 1, "similarity": 1}},
|
||||
]
|
||||
|
||||
results = list(db.knowledges.aggregate(pipeline))
|
||||
logger.debug(f"知识库查询结果数量: {len(results)}")
|
||||
|
||||
if not results:
|
||||
return "" if not return_raw else []
|
||||
|
||||
if return_raw:
|
||||
return results
|
||||
else:
|
||||
# 返回所有找到的内容,用换行分隔
|
||||
return "\n".join(str(result["content"]) for result in results)
|
||||
|
||||
|
||||
# subheartflow = SubHeartflow()
|
||||
|
||||
@@ -167,30 +167,30 @@ class PromptBuilder:
|
||||
|
||||
# 1. 先从LLM获取主题,类似于记忆系统的做法
|
||||
topics = []
|
||||
try:
|
||||
# 先尝试使用记忆系统的方法获取主题
|
||||
hippocampus = HippocampusManager.get_instance()._hippocampus
|
||||
topic_num = min(5, max(1, int(len(message) * 0.1)))
|
||||
topics_response = await hippocampus.llm_topic_judge.generate_response(hippocampus.find_topic_llm(message, topic_num))
|
||||
# try:
|
||||
# # 先尝试使用记忆系统的方法获取主题
|
||||
# hippocampus = HippocampusManager.get_instance()._hippocampus
|
||||
# topic_num = min(5, max(1, int(len(message) * 0.1)))
|
||||
# topics_response = await hippocampus.llm_topic_judge.generate_response(hippocampus.find_topic_llm(message, topic_num))
|
||||
|
||||
# 提取关键词
|
||||
topics = re.findall(r"<([^>]+)>", topics_response[0])
|
||||
if not topics:
|
||||
topics = []
|
||||
else:
|
||||
topics = [
|
||||
topic.strip()
|
||||
for topic in ",".join(topics).replace(",", ",").replace("、", ",").replace(" ", ",").split(",")
|
||||
if topic.strip()
|
||||
]
|
||||
# # 提取关键词
|
||||
# topics = re.findall(r"<([^>]+)>", topics_response[0])
|
||||
# if not topics:
|
||||
# topics = []
|
||||
# else:
|
||||
# topics = [
|
||||
# topic.strip()
|
||||
# for topic in ",".join(topics).replace(",", ",").replace("、", ",").replace(" ", ",").split(",")
|
||||
# if topic.strip()
|
||||
# ]
|
||||
|
||||
logger.info(f"从LLM提取的主题: {', '.join(topics)}")
|
||||
except Exception as e:
|
||||
logger.error(f"从LLM提取主题失败: {str(e)}")
|
||||
# 如果LLM提取失败,使用jieba分词提取关键词作为备选
|
||||
words = jieba.cut(message)
|
||||
topics = [word for word in words if len(word) > 1][:5]
|
||||
logger.info(f"使用jieba提取的主题: {', '.join(topics)}")
|
||||
# logger.info(f"从LLM提取的主题: {', '.join(topics)}")
|
||||
# except Exception as e:
|
||||
# logger.error(f"从LLM提取主题失败: {str(e)}")
|
||||
# # 如果LLM提取失败,使用jieba分词提取关键词作为备选
|
||||
# words = jieba.cut(message)
|
||||
# topics = [word for word in words if len(word) > 1][:5]
|
||||
# logger.info(f"使用jieba提取的主题: {', '.join(topics)}")
|
||||
|
||||
# 如果无法提取到主题,直接使用整个消息
|
||||
if not topics:
|
||||
|
||||
@@ -236,59 +236,84 @@ class ThinkFlowChat:
|
||||
|
||||
do_reply = False
|
||||
if random() < reply_probability:
|
||||
do_reply = True
|
||||
|
||||
# 创建思考消息
|
||||
timer1 = time.time()
|
||||
thinking_id = await self._create_thinking_message(message, chat, userinfo, messageinfo)
|
||||
timer2 = time.time()
|
||||
timing_results["创建思考消息"] = timer2 - timer1
|
||||
|
||||
# 观察
|
||||
timer1 = time.time()
|
||||
await heartflow.get_subheartflow(chat.stream_id).do_observe()
|
||||
timer2 = time.time()
|
||||
timing_results["观察"] = timer2 - timer1
|
||||
|
||||
# 思考前脑内状态
|
||||
timer1 = time.time()
|
||||
await heartflow.get_subheartflow(chat.stream_id).do_thinking_before_reply(message.processed_plain_text)
|
||||
timer2 = time.time()
|
||||
timing_results["思考前脑内状态"] = timer2 - timer1
|
||||
|
||||
# 生成回复
|
||||
timer1 = time.time()
|
||||
response_set = await self.gpt.generate_response(message)
|
||||
timer2 = time.time()
|
||||
timing_results["生成回复"] = timer2 - timer1
|
||||
try:
|
||||
do_reply = True
|
||||
|
||||
# 创建思考消息
|
||||
try:
|
||||
timer1 = time.time()
|
||||
thinking_id = await self._create_thinking_message(message, chat, userinfo, messageinfo)
|
||||
timer2 = time.time()
|
||||
timing_results["创建思考消息"] = timer2 - timer1
|
||||
except Exception as e:
|
||||
logger.error(f"心流创建思考消息失败: {e}")
|
||||
|
||||
try:
|
||||
# 观察
|
||||
timer1 = time.time()
|
||||
await heartflow.get_subheartflow(chat.stream_id).do_observe()
|
||||
timer2 = time.time()
|
||||
timing_results["观察"] = timer2 - timer1
|
||||
except Exception as e:
|
||||
logger.error(f"心流观察失败: {e}")
|
||||
|
||||
if not response_set:
|
||||
logger.info("为什么生成回复失败?")
|
||||
return
|
||||
# 思考前脑内状态
|
||||
try:
|
||||
timer1 = time.time()
|
||||
await heartflow.get_subheartflow(chat.stream_id).do_thinking_before_reply(message.processed_plain_text)
|
||||
timer2 = time.time()
|
||||
timing_results["思考前脑内状态"] = timer2 - timer1
|
||||
except Exception as e:
|
||||
logger.error(f"心流思考前脑内状态失败: {e}")
|
||||
|
||||
# 生成回复
|
||||
timer1 = time.time()
|
||||
response_set = await self.gpt.generate_response(message)
|
||||
timer2 = time.time()
|
||||
timing_results["生成回复"] = timer2 - timer1
|
||||
|
||||
# 发送消息
|
||||
timer1 = time.time()
|
||||
await self._send_response_messages(message, chat, response_set, thinking_id)
|
||||
timer2 = time.time()
|
||||
timing_results["发送消息"] = timer2 - timer1
|
||||
if not response_set:
|
||||
logger.info("为什么生成回复失败?")
|
||||
return
|
||||
|
||||
# 处理表情包
|
||||
timer1 = time.time()
|
||||
await self._handle_emoji(message, chat, response_set)
|
||||
timer2 = time.time()
|
||||
timing_results["处理表情包"] = timer2 - timer1
|
||||
# 发送消息
|
||||
try:
|
||||
timer1 = time.time()
|
||||
await self._send_response_messages(message, chat, response_set, thinking_id)
|
||||
timer2 = time.time()
|
||||
timing_results["发送消息"] = timer2 - timer1
|
||||
except Exception as e:
|
||||
logger.error(f"心流发送消息失败: {e}")
|
||||
|
||||
# 更新心流
|
||||
timer1 = time.time()
|
||||
await self._update_using_response(message, response_set)
|
||||
timer2 = time.time()
|
||||
timing_results["更新心流"] = timer2 - timer1
|
||||
# 处理表情包
|
||||
try:
|
||||
timer1 = time.time()
|
||||
await self._handle_emoji(message, chat, response_set)
|
||||
timer2 = time.time()
|
||||
timing_results["处理表情包"] = timer2 - timer1
|
||||
except Exception as e:
|
||||
logger.error(f"心流处理表情包失败: {e}")
|
||||
|
||||
# 更新关系情绪
|
||||
timer1 = time.time()
|
||||
await self._update_relationship(message, response_set)
|
||||
timer2 = time.time()
|
||||
timing_results["更新关系情绪"] = timer2 - timer1
|
||||
# 更新心流
|
||||
try:
|
||||
timer1 = time.time()
|
||||
await self._update_using_response(message, response_set)
|
||||
timer2 = time.time()
|
||||
timing_results["更新心流"] = timer2 - timer1
|
||||
except Exception as e:
|
||||
logger.error(f"心流更新失败: {e}")
|
||||
|
||||
# 更新关系情绪
|
||||
try:
|
||||
timer1 = time.time()
|
||||
await self._update_relationship(message, response_set)
|
||||
timer2 = time.time()
|
||||
timing_results["更新关系情绪"] = timer2 - timer1
|
||||
except Exception as e:
|
||||
logger.error(f"心流更新关系情绪失败: {e}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"心流处理消息失败: {e}")
|
||||
|
||||
# 输出性能计时结果
|
||||
if do_reply:
|
||||
|
||||
Reference in New Issue
Block a user