This commit is contained in:
Windpicker-owo
2025-08-28 21:05:17 +08:00
31 changed files with 861 additions and 664 deletions

View File

@@ -1,4 +1,4 @@
from typing import Any, Dict, List, Optional, Type
from typing import Optional, Type
from src.plugin_system.base.base_tool import BaseTool
from src.plugin_system.base.component_types import ComponentType

View File

@@ -1,5 +1,5 @@
from abc import abstractmethod
from typing import List, Type, Tuple, Union, TYPE_CHECKING
from typing import List, Type, Tuple, Union
from .plugin_base import PluginBase
from src.common.logger import get_logger

View File

@@ -4,7 +4,7 @@
"""
from abc import ABC, abstractmethod
from typing import Dict, Tuple, Optional, List
from typing import Tuple, Optional, List
import re
from src.common.logger import get_logger

View File

@@ -7,8 +7,10 @@ from src.llm_models.utils_model import LLMRequest
from src.llm_models.payload_content import ToolCall
from src.config.config import global_config, model_config
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
import inspect
from src.chat.message_receive.chat_stream import get_chat_manager
from src.common.logger import get_logger
from src.common.cache_manager import tool_cache
logger = get_logger("tool_use")
@@ -184,21 +186,65 @@ class ToolExecutor:
return tool_results, used_tools
async def execute_tool_call(self, tool_call: ToolCall, tool_instance: Optional[BaseTool] = None) -> Optional[Dict[str, Any]]:
# sourcery skip: use-assigned-variable
"""执行单个工具调用
"""执行单个工具调用,并处理缓存"""
function_args = tool_call.args or {}
tool_instance = tool_instance or get_tool_instance(tool_call.func_name)
Args:
tool_call: 工具调用对象
# 如果工具不存在或未启用缓存,则直接执行
if not tool_instance or not tool_instance.enable_cache:
return await self._original_execute_tool_call(tool_call, tool_instance)
Returns:
Optional[Dict]: 工具调用结果如果失败则返回None
"""
# --- 缓存逻辑开始 ---
try:
tool_file_path = inspect.getfile(tool_instance.__class__)
semantic_query = None
if tool_instance.semantic_cache_query_key:
semantic_query = function_args.get(tool_instance.semantic_cache_query_key)
cached_result = await tool_cache.get(
tool_name=tool_call.func_name,
function_args=function_args,
tool_file_path=tool_file_path,
semantic_query=semantic_query
)
if cached_result:
logger.info(f"{self.log_prefix}使用缓存结果,跳过工具 {tool_call.func_name} 执行")
return cached_result
except Exception as e:
logger.error(f"{self.log_prefix}检查工具缓存时出错: {e}")
# 缓存未命中,执行原始工具调用
result = await self._original_execute_tool_call(tool_call, tool_instance)
# 将结果存入缓存
try:
tool_file_path = inspect.getfile(tool_instance.__class__)
semantic_query = None
if tool_instance.semantic_cache_query_key:
semantic_query = function_args.get(tool_instance.semantic_cache_query_key)
await tool_cache.set(
tool_name=tool_call.func_name,
function_args=function_args,
tool_file_path=tool_file_path,
data=result,
ttl=tool_instance.cache_ttl,
semantic_query=semantic_query
)
except Exception as e:
logger.error(f"{self.log_prefix}设置工具缓存时出错: {e}")
# --- 缓存逻辑结束 ---
return result
async def _original_execute_tool_call(self, tool_call: ToolCall, tool_instance: Optional[BaseTool] = None) -> Optional[Dict[str, Any]]:
"""执行单个工具调用的原始逻辑"""
try:
function_name = tool_call.func_name
function_args = tool_call.args or {}
logger.info(f"🤖 {self.log_prefix} 正在执行工具: [bold green]{function_name}[/bold green] | 参数: {function_args}")
logger.info(f"{self.log_prefix} 正在执行工具: [bold green]{function_name}[/bold green] | 参数: {function_args}")
function_args["llm_called"] = True # 标记为LLM调用
# 获取对应工具实例
tool_instance = tool_instance or get_tool_instance(function_name)
if not tool_instance: