src/plugins/PFC/action_planner.py
This commit is contained in:
@@ -11,6 +11,52 @@ from src.plugins.utils.chat_message_builder import build_readable_messages
|
||||
|
||||
logger = get_module_logger("reply_generator")
|
||||
|
||||
# --- 定义 Prompt 模板 ---
|
||||
|
||||
# Prompt for direct_reply (首次回复)
|
||||
PROMPT_DIRECT_REPLY = """{persona_text}。现在你在参与一场QQ私聊,请根据以下信息生成一条回复:
|
||||
|
||||
当前对话目标:{goals_str}
|
||||
最近的聊天记录:
|
||||
{chat_history_text}
|
||||
|
||||
|
||||
请根据上述信息,结合聊天记录,回复对方。该回复应该:
|
||||
1. 符合对话目标,以"你"的角度发言(不要自己与自己对话!)
|
||||
2. 符合你的性格特征和身份细节
|
||||
3. 通俗易懂,自然流畅,像正常聊天一样,简短(通常20字以内,除非特殊情况)
|
||||
4. 适当利用相关知识,但不要生硬引用
|
||||
5. 自然、得体,结合聊天记录逻辑合理,且没有重复表达同质内容
|
||||
|
||||
请注意把握聊天内容,不要回复的太有条理,可以有个性。请分清"你"和对方说的话,不要把"你"说的话当做对方说的话,这是你自己说的话。
|
||||
可以回复得自然随意自然一些,就像真人一样,注意把握聊天内容,整体风格可以平和、简短,不要刻意突出自身学科背景,不要说你说过的话,可以简短,多简短都可以,但是避免冗长。
|
||||
请你注意不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只输出回复内容。
|
||||
不要输出多余内容(包括前后缀,冒号和引号,括号,表情包,at或 @等 )。
|
||||
|
||||
请直接输出回复内容,不需要任何额外格式。"""
|
||||
|
||||
# Prompt for send_new_message (追问/补充)
|
||||
PROMPT_SEND_NEW_MESSAGE = """{persona_text}。现在你在参与一场QQ私聊,**刚刚你已经发送了一条或多条消息**,现在请根据以下信息再发一条新消息:
|
||||
|
||||
当前对话目标:{goals_str}
|
||||
最近的聊天记录:
|
||||
{chat_history_text}
|
||||
|
||||
|
||||
请根据上述信息,结合聊天记录,继续发一条新消息(例如对之前消息的补充,深入话题,或追问等等)。该消息应该:
|
||||
1. 符合对话目标,以"你"的角度发言(不要自己与自己对话!)
|
||||
2. 符合你的性格特征和身份细节
|
||||
3. 通俗易懂,自然流畅,像正常聊天一样,简短(通常20字以内,除非特殊情况)
|
||||
4. 适当利用相关知识,但不要生硬引用
|
||||
5. 跟之前你发的消息自然的衔接,逻辑合理,且没有重复表达同质内容或部分重叠内容
|
||||
|
||||
请注意把握聊天内容,不用太有条理,可以有个性。请分清"你"和对方说的话,不要把"你"说的话当做对方说的话,这是你自己说的话。
|
||||
这条消息可以自然随意自然一些,就像真人一样,注意把握聊天内容,整体风格可以平和、简短,不要刻意突出自身学科背景,不要说你说过的话,可以简短,多简短都可以,但是避免冗长。
|
||||
请你注意不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只输出消息内容。
|
||||
不要输出多余内容(包括前后缀,冒号和引号,括号,表情包,at或 @等 )。
|
||||
|
||||
请直接输出回复内容,不需要任何额外格式。"""
|
||||
|
||||
|
||||
class ReplyGenerator:
|
||||
"""回复生成器"""
|
||||
@@ -28,61 +74,60 @@ class ReplyGenerator:
|
||||
self.chat_observer = ChatObserver.get_instance(stream_id)
|
||||
self.reply_checker = ReplyChecker(stream_id)
|
||||
|
||||
async def generate(self, observation_info: ObservationInfo, conversation_info: ConversationInfo) -> str:
|
||||
# 修改 generate 方法签名,增加 action_type 参数
|
||||
async def generate(self, observation_info: ObservationInfo, conversation_info: ConversationInfo, action_type: str) -> str:
|
||||
"""生成回复
|
||||
|
||||
Args:
|
||||
goal: 对话目标
|
||||
chat_history: 聊天历史
|
||||
knowledge_cache: 知识缓存
|
||||
previous_reply: 上一次生成的回复(如果有)
|
||||
retry_count: 当前重试次数
|
||||
observation_info: 观察信息
|
||||
conversation_info: 对话信息
|
||||
action_type: 当前执行的动作类型 ('direct_reply' 或 'send_new_message')
|
||||
|
||||
Returns:
|
||||
str: 生成的回复
|
||||
"""
|
||||
# 构建提示词
|
||||
logger.debug(f"开始生成回复:当前目标: {conversation_info.goal_list}")
|
||||
logger.debug(f"开始生成回复 (动作类型: {action_type}):当前目标: {conversation_info.goal_list}")
|
||||
|
||||
# 构建对话目标
|
||||
# --- 构建通用 Prompt 参数 ---
|
||||
# (这部分逻辑基本不变)
|
||||
|
||||
# 构建对话目标 (goals_str)
|
||||
goals_str = ""
|
||||
if conversation_info.goal_list:
|
||||
for goal_reason in conversation_info.goal_list:
|
||||
# 处理字典或元组格式
|
||||
if isinstance(goal_reason, tuple):
|
||||
# 假设元组的第一个元素是目标,第二个元素是原因
|
||||
goal = goal_reason[0]
|
||||
goal = goal_reason[0] if len(goal_reason) > 0 else "目标内容缺失"
|
||||
reasoning = goal_reason[1] if len(goal_reason) > 1 else "没有明确原因"
|
||||
elif isinstance(goal_reason, dict):
|
||||
goal = goal_reason.get("goal")
|
||||
goal = goal_reason.get("goal", "目标内容缺失")
|
||||
reasoning = goal_reason.get("reasoning", "没有明确原因")
|
||||
else:
|
||||
# 如果是其他类型,尝试转为字符串
|
||||
goal = str(goal_reason)
|
||||
reasoning = "没有明确原因"
|
||||
|
||||
goal_str = f"目标:{goal},产生该对话目标的原因:{reasoning}\n"
|
||||
goals_str += goal_str
|
||||
goal = str(goal) if goal is not None else "目标内容缺失"
|
||||
reasoning = str(reasoning) if reasoning is not None else "没有明确原因"
|
||||
goals_str += f"- 目标:{goal}\n 原因:{reasoning}\n"
|
||||
else:
|
||||
goal = "目前没有明确对话目标"
|
||||
reasoning = "目前没有明确对话目标,最好思考一个对话目标"
|
||||
goals_str = f"目标:{goal},产生该对话目标的原因:{reasoning}\n"
|
||||
goals_str = "- 目前没有明确对话目标\n" # 简化无目标情况
|
||||
|
||||
# 获取聊天历史记录
|
||||
# 获取聊天历史记录 (chat_history_text)
|
||||
chat_history_text = observation_info.chat_history_str
|
||||
if observation_info.new_messages_count > 0 and observation_info.unprocessed_messages:
|
||||
new_messages_list = observation_info.unprocessed_messages
|
||||
new_messages_str = await build_readable_messages(
|
||||
new_messages_list,
|
||||
replace_bot_name=True,
|
||||
merge_messages=False,
|
||||
timestamp_mode="relative",
|
||||
read_mark=0.0,
|
||||
)
|
||||
chat_history_text += f"\n--- 以下是 {observation_info.new_messages_count} 条新消息 ---\n{new_messages_str}"
|
||||
elif not chat_history_text:
|
||||
chat_history_text = "还没有聊天记录。"
|
||||
|
||||
if observation_info.new_messages_count > 0:
|
||||
new_messages_list = observation_info.unprocessed_messages
|
||||
new_messages_str = await build_readable_messages(
|
||||
new_messages_list,
|
||||
replace_bot_name=True,
|
||||
merge_messages=False,
|
||||
timestamp_mode="relative",
|
||||
read_mark=0.0,
|
||||
)
|
||||
chat_history_text += f"\n--- 以下是 {observation_info.new_messages_count} 条新消息 ---\n{new_messages_str}"
|
||||
# await observation_info.clear_unprocessed_messages()
|
||||
|
||||
# 构建 Persona 文本 (persona_text)
|
||||
identity_details_only = self.identity_detail_info
|
||||
identity_addon = ""
|
||||
if isinstance(identity_details_only, str):
|
||||
@@ -97,89 +142,39 @@ class ReplyGenerator:
|
||||
if cleaned_details:
|
||||
identity_addon = f"并且{cleaned_details}"
|
||||
persona_text = f"你的名字是{self.name},{self.personality_info}{identity_addon}。"
|
||||
# 构建action历史文本
|
||||
action_history_list = (
|
||||
conversation_info.done_action[-10:]
|
||||
if len(conversation_info.done_action) >= 10
|
||||
else conversation_info.done_action
|
||||
|
||||
# --- 选择 Prompt ---
|
||||
if action_type == 'send_new_message':
|
||||
prompt_template = PROMPT_SEND_NEW_MESSAGE
|
||||
logger.info("使用 PROMPT_SEND_NEW_MESSAGE (追问生成)")
|
||||
else: # 默认使用 direct_reply 的 prompt
|
||||
prompt_template = PROMPT_DIRECT_REPLY
|
||||
logger.info("使用 PROMPT_DIRECT_REPLY (首次/非连续回复生成)")
|
||||
|
||||
# --- 格式化最终的 Prompt ---
|
||||
prompt = prompt_template.format(
|
||||
persona_text=persona_text,
|
||||
goals_str=goals_str,
|
||||
chat_history_text=chat_history_text
|
||||
)
|
||||
action_history_text = "你之前做的事情是:"
|
||||
for action in action_history_list:
|
||||
if isinstance(action, dict):
|
||||
action_type = action.get("action")
|
||||
action_reason = action.get("reason")
|
||||
action_status = action.get("status")
|
||||
if action_status == "recall":
|
||||
action_history_text += (
|
||||
f"原本打算:{action_type},但是因为有新消息,你发现这个行动不合适,所以你没做\n"
|
||||
)
|
||||
elif action_status == "done":
|
||||
action_history_text += f"你之前做了:{action_type},原因:{action_reason}\n"
|
||||
elif isinstance(action, tuple):
|
||||
# 假设元组的格式是(action_type, action_reason, action_status)
|
||||
action_type = action[0] if len(action) > 0 else "未知行动"
|
||||
action_reason = action[1] if len(action) > 1 else "未知原因"
|
||||
action_status = action[2] if len(action) > 2 else "done"
|
||||
if action_status == "recall":
|
||||
action_history_text += (
|
||||
f"原本打算:{action_type},但是因为有新消息,你发现这个行动不合适,所以你没做\n"
|
||||
)
|
||||
elif action_status == "done":
|
||||
action_history_text += f"你之前做了:{action_type},原因:{action_reason}\n"
|
||||
|
||||
prompt = f"""{persona_text}。现在你在参与一场QQ私聊,请根据以下信息生成一条新消息:
|
||||
|
||||
当前对话目标:{goals_str}
|
||||
最近的聊天记录:
|
||||
{chat_history_text}
|
||||
|
||||
|
||||
请根据上述信息,结合聊天记录,发一条消息(可以是回复,补充,深入话题,或追问等等)。该消息应该:
|
||||
1. 符合对话目标,以"你"的角度发言(不要自己与自己对话!)
|
||||
2. 符合你的性格特征和身份细节
|
||||
3. 通俗易懂,自然流畅,像正常聊天一样,简短(通常20字以内,除非特殊情况)
|
||||
4. 适当利用相关知识,但不要生硬引用
|
||||
5. 自然、得体,结合聊天记录逻辑合理,且没有重复表达同质内容
|
||||
|
||||
请注意把握聊天内容,不要回复的太有条理,可以有个性。请分清"你"和对方说的话,不要把"你"说的话当做对方说的话,这是你自己说的话。
|
||||
可以回复得自然随意自然一些,就像真人一样,注意把握聊天内容,整体风格可以平和、简短,不要刻意突出自身学科背景,不要说你说过的话,可以简短,多简短都可以,但是避免冗长。
|
||||
请你注意不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只输出回复内容。
|
||||
不要输出多余内容(包括前后缀,冒号和引号,括号,表情包,at或 @等 )。
|
||||
**注意:如果聊天记录中最新的消息是你自己发送的,那么你的思路不应该是“回复”,而是应该紧紧衔接你发送的消息,进行话题的深入,补充,或追问等等,避免与最新消息内容重叠;**
|
||||
|
||||
请直接输出回复内容,不需要任何额外格式。"""
|
||||
|
||||
# --- 调用 LLM 生成 ---
|
||||
logger.debug(f"发送到LLM的生成提示词:\n------\n{prompt}\n------")
|
||||
try:
|
||||
content, _ = await self.llm.generate_response_async(prompt)
|
||||
logger.info(f"生成的回复: {content}")
|
||||
# is_new = self.chat_observer.check()
|
||||
# logger.debug(f"再看一眼聊天记录,{'有' if is_new else '没有'}新消息")
|
||||
|
||||
# 如果有新消息,重新生成回复
|
||||
# if is_new:
|
||||
# logger.info("检测到新消息,重新生成回复")
|
||||
# return await self.generate(
|
||||
# goal, chat_history, knowledge_cache,
|
||||
# None, retry_count
|
||||
# )
|
||||
|
||||
# 移除旧的检查新消息逻辑,这应该由 conversation 控制流处理
|
||||
return content
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"生成回复时出错: {e}")
|
||||
return "抱歉,我现在有点混乱,让我重新思考一下..."
|
||||
|
||||
# check_reply 方法保持不变
|
||||
async def check_reply(
|
||||
self, reply: str, goal: str, chat_history: List[Dict[str, Any]], chat_history_str: str, retry_count: int = 0
|
||||
) -> Tuple[bool, str, bool]:
|
||||
"""检查回复是否合适
|
||||
|
||||
Args:
|
||||
reply: 生成的回复
|
||||
goal: 对话目标
|
||||
retry_count: 当前重试次数
|
||||
|
||||
Returns:
|
||||
Tuple[bool, str, bool]: (是否合适, 原因, 是否需要重新规划)
|
||||
(此方法逻辑保持不变)
|
||||
"""
|
||||
return await self.reply_checker.check(reply, goal, chat_history, chat_history_str, retry_count)
|
||||
return await self.reply_checker.check(reply, goal, chat_history, chat_history_str, retry_count)
|
||||
Reference in New Issue
Block a user