v0.2修改了一些东西
使概率配置生效 将一些模块解耦合 将组信息管理器合并到关系管理器,添加了可以全局调用的接口 精简了llm生成器的代码 精简了message代码 重写了回复后处理
This commit is contained in:
@@ -14,8 +14,8 @@ from dotenv import load_dotenv
|
||||
from .relationship_manager import relationship_manager
|
||||
from ..schedule.schedule_generator import bot_schedule
|
||||
from .prompt_builder import prompt_builder
|
||||
from .config import llm_config
|
||||
from .utils import get_embedding, split_into_sentences, process_text_with_typos
|
||||
from .config import llm_config, global_config
|
||||
from .utils import process_llm_response
|
||||
|
||||
|
||||
# 获取当前文件的绝对路径
|
||||
@@ -38,15 +38,20 @@ class LLMResponseGenerator:
|
||||
|
||||
async def generate_response(self, message: Message) -> Optional[Union[str, List[str]]]:
|
||||
"""根据当前模型类型选择对应的生成函数"""
|
||||
# 使用随机数选择模型
|
||||
# 从global_config中获取模型概率值
|
||||
model_r1_probability = global_config.MODEL_R1_PROBABILITY
|
||||
model_v3_probability = global_config.MODEL_V3_PROBABILITY
|
||||
model_r1_distill_probability = global_config.MODEL_R1_DISTILL_PROBABILITY
|
||||
|
||||
# 生成随机数并根据概率选择模型
|
||||
rand = random.random()
|
||||
if rand < 0.8: # 60%概率使用 R1
|
||||
self.current_model_type = "r1"
|
||||
elif rand < 0.5: # 20%概率使用 V3
|
||||
self.current_model_type = "v3"
|
||||
else: # 20%概率使用 R1-Distill
|
||||
self.current_model_type = "r1_distill"
|
||||
|
||||
if rand < model_r1_probability:
|
||||
self.current_model_type = 'r1'
|
||||
elif rand < model_r1_probability + model_v3_probability:
|
||||
self.current_model_type = 'v3'
|
||||
else:
|
||||
self.current_model_type = 'r1_distill' # 默认使用 R1-Distill
|
||||
|
||||
print(f"+++++++++++++++++麦麦{self.current_model_type}思考中+++++++++++++++++")
|
||||
if self.current_model_type == 'r1':
|
||||
model_response = await self._generate_r1_response(message)
|
||||
@@ -64,18 +69,22 @@ class LLMResponseGenerator:
|
||||
|
||||
return model_response, emotion
|
||||
|
||||
async def _generate_r1_response(self, message: Message) -> Optional[str]:
|
||||
"""使用 DeepSeek-R1 模型生成回复"""
|
||||
# 获取群聊上下文
|
||||
group_chat = await self._get_group_chat_context(message)
|
||||
async def _generate_base_response(
|
||||
self,
|
||||
message: Message,
|
||||
model_name: str,
|
||||
model_params: Optional[Dict[str, Any]] = None
|
||||
) -> Optional[str]:
|
||||
sender_name = message.user_nickname or f"用户{message.user_id}"
|
||||
|
||||
# 获取关系值
|
||||
if relationship_manager.get_relationship(message.user_id):
|
||||
relationship_value = relationship_manager.get_relationship(message.user_id).relationship_value
|
||||
print(f"\033[1;32m[关系管理]\033[0m 回复中_当前关系值: {relationship_value}")
|
||||
else:
|
||||
relationship_value = 0.0
|
||||
|
||||
# 构建 prompt
|
||||
|
||||
# 构建prompt
|
||||
prompt = prompt_builder._build_prompt(
|
||||
message_txt=message.processed_plain_text,
|
||||
sender_name=sender_name,
|
||||
@@ -83,142 +92,75 @@ class LLMResponseGenerator:
|
||||
group_id=message.group_id
|
||||
)
|
||||
|
||||
# 设置默认参数
|
||||
default_params = {
|
||||
"model": model_name,
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
"stream": False,
|
||||
"max_tokens": 1024,
|
||||
"temperature": 0.7
|
||||
}
|
||||
|
||||
# 更新参数
|
||||
if model_params:
|
||||
default_params.update(model_params)
|
||||
|
||||
def create_completion():
|
||||
return self.client.chat.completions.create(
|
||||
model="Pro/deepseek-ai/DeepSeek-R1",
|
||||
messages=[{"role": "user", "content": prompt}],
|
||||
stream=False,
|
||||
max_tokens=1024
|
||||
)
|
||||
|
||||
return self.client.chat.completions.create(**default_params)
|
||||
|
||||
loop = asyncio.get_event_loop()
|
||||
response = await loop.run_in_executor(None, create_completion)
|
||||
if response.choices[0].message.content:
|
||||
content = response.choices[0].message.content
|
||||
# 获取推理内容
|
||||
reasoning_content = "模型思考过程:\n" + prompt
|
||||
if hasattr(response.choices[0].message, "reasoning"):
|
||||
reasoning_content = response.choices[0].message.reasoning or reasoning_content
|
||||
elif hasattr(response.choices[0].message, "reasoning_content"):
|
||||
reasoning_content = response.choices[0].message.reasoning_content or reasoning_content
|
||||
|
||||
# 保存推理结果到数据库
|
||||
self.db.db.reasoning_logs.insert_one({
|
||||
'time': time.time(),
|
||||
'group_id': message.group_id,
|
||||
'user': sender_name,
|
||||
'message': message.processed_plain_text,
|
||||
'model': "DeepSeek-R1",
|
||||
'reasoning': reasoning_content,
|
||||
'response': content,
|
||||
'prompt': prompt
|
||||
})
|
||||
else:
|
||||
|
||||
if not response.choices[0].message.content:
|
||||
return None
|
||||
|
||||
content = response.choices[0].message.content
|
||||
|
||||
# 获取推理内容
|
||||
reasoning_content = "模型思考过程:\n" + prompt
|
||||
if hasattr(response.choices[0].message, "reasoning"):
|
||||
reasoning_content = response.choices[0].message.reasoning or reasoning_content
|
||||
elif hasattr(response.choices[0].message, "reasoning_content"):
|
||||
reasoning_content = response.choices[0].message.reasoning_content or reasoning_content
|
||||
|
||||
# 保存到数据库
|
||||
self.db.db.reasoning_logs.insert_one({
|
||||
'time': time.time(),
|
||||
'group_id': message.group_id,
|
||||
'user': sender_name,
|
||||
'message': message.processed_plain_text,
|
||||
'model': model_name,
|
||||
'reasoning': reasoning_content,
|
||||
'response': content,
|
||||
'prompt': prompt,
|
||||
'model_params': default_params
|
||||
})
|
||||
|
||||
return content
|
||||
|
||||
async def _generate_r1_response(self, message: Message) -> Optional[str]:
|
||||
"""使用 DeepSeek-R1 模型生成回复"""
|
||||
return await self._generate_base_response(
|
||||
message,
|
||||
"Pro/deepseek-ai/DeepSeek-R1",
|
||||
{"temperature": 0.7, "max_tokens": 1024}
|
||||
)
|
||||
|
||||
async def _generate_v3_response(self, message: Message) -> Optional[str]:
|
||||
"""使用 DeepSeek-V3 模型生成回复"""
|
||||
# 获取群聊上下文
|
||||
group_chat = await self._get_group_chat_context(message)
|
||||
sender_name = message.user_nickname or f"用户{message.user_id}"
|
||||
|
||||
if relationship_manager.get_relationship(message.user_id):
|
||||
relationship_value = relationship_manager.get_relationship(message.user_id).relationship_value
|
||||
print(f"\033[1;32m[关系管理]\033[0m 回复中_当前关系值: {relationship_value}")
|
||||
else:
|
||||
relationship_value = 0.0
|
||||
|
||||
prompt = prompt_builder._build_prompt(message.processed_plain_text, sender_name, relationship_value, group_id=message.group_id)
|
||||
|
||||
messages = [{"role": "user", "content": prompt}]
|
||||
|
||||
loop = asyncio.get_event_loop()
|
||||
create_completion = partial(
|
||||
self.client.chat.completions.create,
|
||||
model="Pro/deepseek-ai/DeepSeek-V3",
|
||||
messages=messages,
|
||||
stream=False,
|
||||
max_tokens=1024,
|
||||
temperature=0.8
|
||||
return await self._generate_base_response(
|
||||
message,
|
||||
"Pro/deepseek-ai/DeepSeek-V3",
|
||||
{"temperature": 0.8, "max_tokens": 1024}
|
||||
)
|
||||
response = await loop.run_in_executor(None, create_completion)
|
||||
|
||||
if response.choices[0].message.content:
|
||||
content = response.choices[0].message.content
|
||||
# 保存推理结果到数据库
|
||||
self.db.db.reasoning_logs.insert_one({
|
||||
'time': time.time(),
|
||||
'group_id': message.group_id,
|
||||
'user': sender_name,
|
||||
'message': message.processed_plain_text,
|
||||
'model': "DeepSeek-V3",
|
||||
'reasoning': "V3模型无推理过程",
|
||||
'response': content,
|
||||
'prompt': prompt
|
||||
})
|
||||
|
||||
return content
|
||||
else:
|
||||
print(f"[ERROR] V3 回复发送生成失败: {response}")
|
||||
|
||||
return None
|
||||
|
||||
async def _generate_r1_distill_response(self, message: Message) -> Optional[str]:
|
||||
"""使用 DeepSeek-R1-Distill-Qwen-32B 模型生成回复"""
|
||||
# 获取群聊上下文
|
||||
group_chat = await self._get_group_chat_context(message)
|
||||
sender_name = message.user_nickname or f"用户{message.user_id}"
|
||||
if relationship_manager.get_relationship(message.user_id):
|
||||
relationship_value = relationship_manager.get_relationship(message.user_id).relationship_value
|
||||
print(f"\033[1;32m[关系管理]\033[0m 回复中_当前关系值: {relationship_value}")
|
||||
else:
|
||||
relationship_value = 0.0
|
||||
|
||||
# 构建 prompt
|
||||
prompt = prompt_builder._build_prompt(
|
||||
message_txt=message.processed_plain_text,
|
||||
sender_name=sender_name,
|
||||
relationship_value=relationship_value,
|
||||
group_id=message.group_id
|
||||
return await self._generate_base_response(
|
||||
message,
|
||||
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
|
||||
{"temperature": 0.7, "max_tokens": 1024}
|
||||
)
|
||||
|
||||
def create_completion():
|
||||
return self.client.chat.completions.create(
|
||||
model="deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
|
||||
messages=[{"role": "user", "content": prompt}],
|
||||
stream=False,
|
||||
max_tokens=1024
|
||||
)
|
||||
|
||||
loop = asyncio.get_event_loop()
|
||||
response = await loop.run_in_executor(None, create_completion)
|
||||
if response.choices[0].message.content:
|
||||
content = response.choices[0].message.content
|
||||
# 获取推理内容
|
||||
reasoning_content = "模型思考过程:\n" + prompt
|
||||
if hasattr(response.choices[0].message, "reasoning"):
|
||||
reasoning_content = response.choices[0].message.reasoning or reasoning_content
|
||||
elif hasattr(response.choices[0].message, "reasoning_content"):
|
||||
reasoning_content = response.choices[0].message.reasoning_content or reasoning_content
|
||||
|
||||
# 保存推理结果到数据库
|
||||
self.db.db.reasoning_logs.insert_one({
|
||||
'time': time.time(),
|
||||
'group_id': message.group_id,
|
||||
'user': sender_name,
|
||||
'message': message.processed_plain_text,
|
||||
'model': "DeepSeek-R1-Distill",
|
||||
'reasoning': reasoning_content,
|
||||
'response': content,
|
||||
'prompt': prompt
|
||||
})
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
return content
|
||||
|
||||
async def _get_group_chat_context(self, message: Message) -> str:
|
||||
"""获取群聊上下文"""
|
||||
@@ -271,46 +213,14 @@ class LLMResponseGenerator:
|
||||
print(f"获取情感标签时出错: {e}")
|
||||
return ["neutral"] # 发生错误时返回默认值
|
||||
|
||||
async def _process_response(self, content: str) -> Tuple[Union[str, List[str]], List[str]]:
|
||||
async def _process_response(self, content: str) -> Tuple[List[str], List[str]]:
|
||||
"""处理响应内容,返回处理后的内容和情感标签"""
|
||||
if not content:
|
||||
return None, []
|
||||
|
||||
# 检查回复是否过长(超过200个字符)
|
||||
if len(content) > 200:
|
||||
print(f"回复过长 ({len(content)} 字符),返回默认回复")
|
||||
return "麦麦不知道哦", ["angry"]
|
||||
|
||||
emotion_tags = await self._get_emotion_tags(content)
|
||||
|
||||
# 添加错别字和处理标点符号
|
||||
processed_response = process_text_with_typos(content)
|
||||
|
||||
# 处理长消息
|
||||
if len(processed_response) > 5:
|
||||
sentences = split_into_sentences(processed_response)
|
||||
print(f"分割后的句子: {sentences}")
|
||||
messages = []
|
||||
current_message = ""
|
||||
|
||||
for sentence in sentences:
|
||||
if len(current_message) + len(sentence) <= 5:
|
||||
current_message += ' '
|
||||
current_message += sentence
|
||||
else:
|
||||
if current_message:
|
||||
messages.append(current_message.strip())
|
||||
current_message = sentence
|
||||
|
||||
if current_message:
|
||||
messages.append(current_message.strip())
|
||||
|
||||
# 检查分割后的消息数量是否过多(超过3条)
|
||||
if len(messages) > 3:
|
||||
print(f"分割后消息数量过多 ({len(messages)} 条),返回默认回复")
|
||||
return "麦麦不知道哦", ["angry"]
|
||||
|
||||
return messages, emotion_tags
|
||||
|
||||
processed_response = process_llm_response(content)
|
||||
|
||||
return processed_response, emotion_tags
|
||||
|
||||
|
||||
Reference in New Issue
Block a user