Merge branch 'MaiM-with-u:main' into main

This commit is contained in:
2829798842
2025-04-09 10:04:58 +08:00
committed by GitHub
57 changed files with 4898 additions and 1572 deletions

6
.gitignore vendored
View File

@@ -4,11 +4,15 @@ mongodb/
NapCat.Framework.Windows.Once/
log/
logs/
run_ad.bat
MaiBot-Napcat-Adapter-main
MaiBot-Napcat-Adapter
/test
/src/test
nonebot-maibot-adapter/
*.zip
run.bat
run_none.bat
run.py
message_queue_content.txt
message_queue_content.bat
@@ -231,3 +235,5 @@ logs
.vscode
/config/*
run_none.bat
config/old/bot_config_20250405_212257.toml

View File

@@ -1,4 +1,12 @@
这里放置了测试版本的细节更新
## [test-0.6.1-snapshot-1] - 2025-4-5
- 修复pfc回复出错bug
- 修复表情包打字时间,不会卡表情包
- 改进了知识库的提取
- 提供了新的数据库连接方式
- 修复了ban_user无效的问题
## [test-0.6.0-snapshot-9] - 2025-4-4
- 可以识别gif表情包

View File

@@ -18,10 +18,11 @@
devShells.default = pkgs.mkShell {
name = "python-venv";
venvDir = "./.venv";
buildInputs = [
pythonPackages.python
pythonPackages.venvShellHook
pythonPackages.numpy
buildInputs = with pythonPackages; [
python
venvShellHook
scipy
numpy
];
postVenvCreation = ''

View File

@@ -4,7 +4,7 @@
# 适用于Arch/Ubuntu 24.10/Debian 12/CentOS 9
# 请小心使用任何一键脚本!
INSTALLER_VERSION="0.0.1-refactor"
INSTALLER_VERSION="0.0.2-refactor"
LANG=C.UTF-8
# 如无法访问GitHub请修改此处镜像地址
@@ -62,7 +62,7 @@ show_menu() {
"4" "启动Nonebot adapter" \
"5" "停止Nonebot adapter" \
"6" "重启Nonebot adapter" \
"7" "新MaiCore及其依赖" \
"7" "拉取最新MaiCore仓库" \
"8" "切换分支" \
"9" "退出" 3>&1 1>&2 2>&3)
@@ -111,6 +111,8 @@ show_menu() {
# 更新依赖
update_dependencies() {
whiptail --title "⚠" --msgbox "更新后请阅读教程" 10 60
systemctl stop ${SERVICE_NAME}
cd "${INSTALL_DIR}/MaiBot" || {
whiptail --msgbox "🚫 无法进入安装目录!" 10 60
return 1
@@ -126,8 +128,7 @@ update_dependencies() {
return 1
fi
deactivate
systemctl restart ${SERVICE_NAME}
whiptail --msgbox "✅ 依赖已更新并重启服务!" 10 60
whiptail --msgbox "✅ 已停止服务并拉取最新仓库提交" 10 60
}
# 切换分支
@@ -157,7 +158,7 @@ switch_branch() {
whiptail --msgbox "🚫 代码拉取失败!" 10 60
return 1
fi
systemctl stop ${SERVICE_NAME}
source "${INSTALL_DIR}/venv/bin/activate"
pip install -r requirements.txt
deactivate
@@ -165,8 +166,7 @@ switch_branch() {
sed -i "s/^BRANCH=.*/BRANCH=${new_branch}/" /etc/maicore_install.conf
BRANCH="${new_branch}"
check_eula
systemctl restart ${SERVICE_NAME}
whiptail --msgbox "✅ 已切换到分支 ${new_branch} 并重启服务!" 10 60
whiptail --msgbox "✅ 已停止服务并切换到分支 ${new_branch} " 10 60
}
check_eula() {
@@ -228,6 +228,8 @@ run_installation() {
fi
fi
whiptail --title " 提示" --msgbox "如果您没有特殊需求请优先使用docker方式部署。" 10 60
# 协议确认
if ! (whiptail --title " [1/6] 使用协议" --yes-button "我同意" --no-button "我拒绝" --yesno "使用MaiCore及此脚本前请先阅读EULA协议及隐私协议\nhttps://github.com/MaiM-with-u/MaiBot/blob/refactor/EULA.md\nhttps://github.com/MaiM-with-u/MaiBot/blob/refactor/PRIVACY.md\n\n您是否同意上述协议" 12 70); then
exit 1
@@ -370,12 +372,13 @@ run_installation() {
# 选择分支
choose_branch() {
BRANCH=$(whiptail --title "🔀 选择分支" --radiolist "请选择要安装的分支:" 15 60 4 \
"main" "稳定最新版(推荐)" ON \
"classical" "经典版" OFF \
"main" "稳定版(推荐)" ON \
"dev" "开发版(不知道什么意思就别选)" OFF \
"classical" "经典版0.6.0以前的版本)" OFF \
"custom" "自定义分支" OFF 3>&1 1>&2 2>&3)
RETVAL=$?
if [ $RETVAL -ne 0 ]; then
whiptail --msgbox "操作取消!" 10 60
whiptail --msgbox "🚫 操作取消!" 10 60
exit 1
fi
@@ -383,7 +386,7 @@ run_installation() {
BRANCH=$(whiptail --title "🔀 自定义分支" --inputbox "请输入自定义分支名称:" 10 60 "refactor" 3>&1 1>&2 2>&3)
RETVAL=$?
if [ $RETVAL -ne 0 ]; then
whiptail --msgbox "输入取消!" 10 60
whiptail --msgbox "🚫 输入取消!" 10 60
exit 1
fi
if [[ -z "$BRANCH" ]]; then

View File

@@ -15,9 +15,16 @@ def __create_database_instance():
password = os.getenv("MONGODB_PASSWORD")
auth_source = os.getenv("MONGODB_AUTH_SOURCE")
if uri and uri.startswith("mongodb://"):
# 优先使用URI连接
if uri:
# 支持标准mongodb://和mongodb+srv://连接字符串
if uri.startswith(("mongodb://", "mongodb+srv://")):
return MongoClient(uri)
else:
raise ValueError(
"Invalid MongoDB URI format. URI must start with 'mongodb://' or 'mongodb+srv://'. "
"For MongoDB Atlas, use 'mongodb+srv://' format. "
"See: https://www.mongodb.com/docs/manual/reference/connection-string/"
)
if username and password:
# 如果有用户名和密码,使用认证连接

View File

@@ -1,347 +1,378 @@
import customtkinter as ctk
import subprocess
import threading
import queue
import re
import os
import signal
from collections import deque
# import customtkinter as ctk
# import subprocess
# import threading
# import queue
# import re
# import os
# import signal
# from collections import deque
# import sys
# 设置应用的外观模式和默认颜色主题
ctk.set_appearance_mode("dark")
ctk.set_default_color_theme("blue")
# # 设置应用的外观模式和默认颜色主题
# ctk.set_appearance_mode("dark")
# ctk.set_default_color_theme("blue")
class LogViewerApp(ctk.CTk):
"""日志查看器应用的主类继承自customtkinter的CTk类"""
# class LogViewerApp(ctk.CTk):
# """日志查看器应用的主类继承自customtkinter的CTk类"""
def __init__(self):
"""初始化日志查看器应用的界面和状态"""
super().__init__()
self.title("日志查看器")
self.geometry("1200x800")
# def __init__(self):
# """初始化日志查看器应用的界面和状态"""
# super().__init__()
# self.title("日志查看器")
# self.geometry("1200x800")
# 初始化进程、日志队列、日志数据等变量
self.process = None
self.log_queue = queue.Queue()
self.log_data = deque(maxlen=10000) # 使用固定长度队列
self.available_levels = set()
self.available_modules = set()
self.sorted_modules = []
self.module_checkboxes = {} # 存储模块复选框的字典
# # 标记GUI是否运行中
# self.is_running = True
# 日志颜色配置
self.color_config = {
"time": "#888888",
"DEBUG": "#2196F3",
"INFO": "#4CAF50",
"WARNING": "#FF9800",
"ERROR": "#F44336",
"module": "#D4D0AB",
"default": "#FFFFFF",
}
# # 程序关闭时的清理操作
# self.protocol("WM_DELETE_WINDOW", self._on_closing)
# 列可见性配置
self.column_visibility = {"show_time": True, "show_level": True, "show_module": True}
# # 初始化进程、日志队列、日志数据等变量
# self.process = None
# self.log_queue = queue.Queue()
# self.log_data = deque(maxlen=10000) # 使用固定长度队列
# self.available_levels = set()
# self.available_modules = set()
# self.sorted_modules = []
# self.module_checkboxes = {} # 存储模块复选框的字典
# 选中的日志等级和模块
self.selected_levels = set()
self.selected_modules = set()
# # 日志颜色配置
# self.color_config = {
# "time": "#888888",
# "DEBUG": "#2196F3",
# "INFO": "#4CAF50",
# "WARNING": "#FF9800",
# "ERROR": "#F44336",
# "module": "#D4D0AB",
# "default": "#FFFFFF",
# }
# 创建界面组件并启动日志队列处理
self.create_widgets()
self.after(100, self.process_log_queue)
# # 列可见性配置
# self.column_visibility = {"show_time": True, "show_level": True, "show_module": True}
def create_widgets(self):
"""创建应用界面的各个组件"""
self.grid_columnconfigure(0, weight=1)
self.grid_rowconfigure(1, weight=1)
# # 选中的日志等级和模块
# self.selected_levels = set()
# self.selected_modules = set()
# 控制面板
control_frame = ctk.CTkFrame(self)
control_frame.grid(row=0, column=0, sticky="ew", padx=10, pady=5)
# # 创建界面组件并启动日志队列处理
# self.create_widgets()
# self.after(100, self.process_log_queue)
self.start_btn = ctk.CTkButton(control_frame, text="启动", command=self.start_process)
self.start_btn.pack(side="left", padx=5)
# def create_widgets(self):
# """创建应用界面的各个组件"""
# self.grid_columnconfigure(0, weight=1)
# self.grid_rowconfigure(1, weight=1)
self.stop_btn = ctk.CTkButton(control_frame, text="停止", command=self.stop_process, state="disabled")
self.stop_btn.pack(side="left", padx=5)
# # 控制面板
# control_frame = ctk.CTkFrame(self)
# control_frame.grid(row=0, column=0, sticky="ew", padx=10, pady=5)
self.clear_btn = ctk.CTkButton(control_frame, text="清屏", command=self.clear_logs)
self.clear_btn.pack(side="left", padx=5)
# self.start_btn = ctk.CTkButton(control_frame, text="启动", command=self.start_process)
# self.start_btn.pack(side="left", padx=5)
column_filter_frame = ctk.CTkFrame(control_frame)
column_filter_frame.pack(side="left", padx=20)
# self.stop_btn = ctk.CTkButton(control_frame, text="停止", command=self.stop_process, state="disabled")
# self.stop_btn.pack(side="left", padx=5)
self.time_check = ctk.CTkCheckBox(column_filter_frame, text="显示时间", command=self.refresh_logs)
self.time_check.pack(side="left", padx=5)
self.time_check.select()
# self.clear_btn = ctk.CTkButton(control_frame, text="清屏", command=self.clear_logs)
# self.clear_btn.pack(side="left", padx=5)
self.level_check = ctk.CTkCheckBox(column_filter_frame, text="显示等级", command=self.refresh_logs)
self.level_check.pack(side="left", padx=5)
self.level_check.select()
# column_filter_frame = ctk.CTkFrame(control_frame)
# column_filter_frame.pack(side="left", padx=20)
self.module_check = ctk.CTkCheckBox(column_filter_frame, text="显示模块", command=self.refresh_logs)
self.module_check.pack(side="left", padx=5)
self.module_check.select()
# self.time_check = ctk.CTkCheckBox(column_filter_frame, text="显示时间", command=self.refresh_logs)
# self.time_check.pack(side="left", padx=5)
# self.time_check.select()
# 筛选面板
filter_frame = ctk.CTkFrame(self)
filter_frame.grid(row=0, column=1, rowspan=2, sticky="ns", padx=5)
# self.level_check = ctk.CTkCheckBox(column_filter_frame, text="显示等级", command=self.refresh_logs)
# self.level_check.pack(side="left", padx=5)
# self.level_check.select()
ctk.CTkLabel(filter_frame, text="日志等级筛选").pack(pady=5)
self.level_scroll = ctk.CTkScrollableFrame(filter_frame, width=150, height=200)
self.level_scroll.pack(fill="both", expand=True, padx=5)
# self.module_check = ctk.CTkCheckBox(column_filter_frame, text="显示模块", command=self.refresh_logs)
# self.module_check.pack(side="left", padx=5)
# self.module_check.select()
ctk.CTkLabel(filter_frame, text="模块筛选").pack(pady=5)
self.module_filter_entry = ctk.CTkEntry(filter_frame, placeholder_text="输入模块过滤词")
self.module_filter_entry.pack(pady=5)
self.module_filter_entry.bind("<KeyRelease>", self.update_module_filter)
# # 筛选面板
# filter_frame = ctk.CTkFrame(self)
# filter_frame.grid(row=0, column=1, rowspan=2, sticky="ns", padx=5)
self.module_scroll = ctk.CTkScrollableFrame(filter_frame, width=300, height=200)
self.module_scroll.pack(fill="both", expand=True, padx=5)
# ctk.CTkLabel(filter_frame, text="日志等级筛选").pack(pady=5)
# self.level_scroll = ctk.CTkScrollableFrame(filter_frame, width=150, height=200)
# self.level_scroll.pack(fill="both", expand=True, padx=5)
self.log_text = ctk.CTkTextbox(self, wrap="word")
self.log_text.grid(row=1, column=0, sticky="nsew", padx=10, pady=5)
# ctk.CTkLabel(filter_frame, text="模块筛选").pack(pady=5)
# self.module_filter_entry = ctk.CTkEntry(filter_frame, placeholder_text="输入模块过滤词")
# self.module_filter_entry.pack(pady=5)
# self.module_filter_entry.bind("<KeyRelease>", self.update_module_filter)
self.init_text_tags()
# self.module_scroll = ctk.CTkScrollableFrame(filter_frame, width=300, height=200)
# self.module_scroll.pack(fill="both", expand=True, padx=5)
def update_module_filter(self, event):
"""根据模块过滤词更新模块复选框的显示"""
filter_text = self.module_filter_entry.get().strip().lower()
for module, checkbox in self.module_checkboxes.items():
if filter_text in module.lower():
checkbox.pack(anchor="w", padx=5, pady=2)
else:
checkbox.pack_forget()
# self.log_text = ctk.CTkTextbox(self, wrap="word")
# self.log_text.grid(row=1, column=0, sticky="nsew", padx=10, pady=5)
def update_filters(self, level, module):
"""更新日志等级和模块的筛选器"""
if level not in self.available_levels:
self.available_levels.add(level)
self.add_checkbox(self.level_scroll, level, "level")
# self.init_text_tags()
module_key = self.get_module_key(module)
if module_key not in self.available_modules:
self.available_modules.add(module_key)
self.sorted_modules = sorted(self.available_modules, key=lambda x: x.lower())
self.rebuild_module_checkboxes()
# def update_module_filter(self, event):
# """根据模块过滤词更新模块复选框的显示"""
# filter_text = self.module_filter_entry.get().strip().lower()
# for module, checkbox in self.module_checkboxes.items():
# if filter_text in module.lower():
# checkbox.pack(anchor="w", padx=5, pady=2)
# else:
# checkbox.pack_forget()
def rebuild_module_checkboxes(self):
"""重新构建模块复选框"""
# 清空现有复选框
for widget in self.module_scroll.winfo_children():
widget.destroy()
self.module_checkboxes.clear()
# def update_filters(self, level, module):
# """更新日志等级和模块的筛选器"""
# if level not in self.available_levels:
# self.available_levels.add(level)
# self.add_checkbox(self.level_scroll, level, "level")
# 重建排序后的复选框
for module in self.sorted_modules:
self.add_checkbox(self.module_scroll, module, "module")
# module_key = self.get_module_key(module)
# if module_key not in self.available_modules:
# self.available_modules.add(module_key)
# self.sorted_modules = sorted(self.available_modules, key=lambda x: x.lower())
# self.rebuild_module_checkboxes()
def add_checkbox(self, parent, text, type_):
"""在指定父组件中添加复选框"""
# def rebuild_module_checkboxes(self):
# """重新构建模块复选框"""
# # 清空现有复选框
# for widget in self.module_scroll.winfo_children():
# widget.destroy()
# self.module_checkboxes.clear()
def update_filter():
current = cb.get()
if type_ == "level":
(self.selected_levels.add if current else self.selected_levels.discard)(text)
else:
(self.selected_modules.add if current else self.selected_modules.discard)(text)
self.refresh_logs()
# # 重建排序后的复选框
# for module in self.sorted_modules:
# self.add_checkbox(self.module_scroll, module, "module")
cb = ctk.CTkCheckBox(parent, text=text, command=update_filter)
cb.select() # 初始选中
# def add_checkbox(self, parent, text, type_):
# """在指定父组件中添加复选框"""
# 手动同步初始状态到集合(关键修复)
if type_ == "level":
self.selected_levels.add(text)
else:
self.selected_modules.add(text)
# def update_filter():
# current = cb.get()
# if type_ == "level":
# (self.selected_levels.add if current else self.selected_levels.discard)(text)
# else:
# (self.selected_modules.add if current else self.selected_modules.discard)(text)
# self.refresh_logs()
if type_ == "module":
self.module_checkboxes[text] = cb
cb.pack(anchor="w", padx=5, pady=2)
return cb
# cb = ctk.CTkCheckBox(parent, text=text, command=update_filter)
# cb.select() # 初始选中
def check_filter(self, entry):
"""检查日志条目是否符合当前筛选条件"""
level_ok = not self.selected_levels or entry["level"] in self.selected_levels
module_key = self.get_module_key(entry["module"])
module_ok = not self.selected_modules or module_key in self.selected_modules
return level_ok and module_ok
# # 手动同步初始状态到集合(关键修复)
# if type_ == "level":
# self.selected_levels.add(text)
# else:
# self.selected_modules.add(text)
def init_text_tags(self):
"""初始化日志文本的颜色标签"""
for tag, color in self.color_config.items():
self.log_text.tag_config(tag, foreground=color)
self.log_text.tag_config("default", foreground=self.color_config["default"])
# if type_ == "module":
# self.module_checkboxes[text] = cb
# cb.pack(anchor="w", padx=5, pady=2)
# return cb
def start_process(self):
"""启动日志进程并开始读取输出"""
self.process = subprocess.Popen(
["nb", "run"],
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
bufsize=1,
encoding="utf-8",
errors="ignore",
)
self.start_btn.configure(state="disabled")
self.stop_btn.configure(state="normal")
threading.Thread(target=self.read_output, daemon=True).start()
# def check_filter(self, entry):
# """检查日志条目是否符合当前筛选条件"""
# level_ok = not self.selected_levels or entry["level"] in self.selected_levels
# module_key = self.get_module_key(entry["module"])
# module_ok = not self.selected_modules or module_key in self.selected_modules
# return level_ok and module_ok
def stop_process(self):
"""停止日志进程并清理相关资源"""
if self.process:
try:
if hasattr(self.process, "pid"):
if os.name == "nt":
subprocess.run(
["taskkill", "/F", "/T", "/PID", str(self.process.pid)], check=True, capture_output=True
)
else:
os.killpg(os.getpgid(self.process.pid), signal.SIGTERM)
except (subprocess.CalledProcessError, ProcessLookupError, OSError) as e:
print(f"终止进程失败: {e}")
finally:
self.process = None
self.log_queue.queue.clear()
self.start_btn.configure(state="normal")
self.stop_btn.configure(state="disabled")
self.refresh_logs()
# def init_text_tags(self):
# """初始化日志文本的颜色标签"""
# for tag, color in self.color_config.items():
# self.log_text.tag_config(tag, foreground=color)
# self.log_text.tag_config("default", foreground=self.color_config["default"])
def read_output(self):
"""读取日志进程的输出并放入队列"""
try:
while self.process and self.process.poll() is None:
line = self.process.stdout.readline()
if line:
self.log_queue.put(line)
else:
break # 避免空循环
self.process.stdout.close() # 确保关闭文件描述符
except ValueError: # 处理可能的I/O操作异常
pass
# def start_process(self):
# """启动日志进程并开始读取输出"""
# self.process = subprocess.Popen(
# ["nb", "run"],
# stdout=subprocess.PIPE,
# stderr=subprocess.STDOUT,
# text=True,
# bufsize=1,
# encoding="utf-8",
# errors="ignore",
# )
# self.start_btn.configure(state="disabled")
# self.stop_btn.configure(state="normal")
# threading.Thread(target=self.read_output, daemon=True).start()
def process_log_queue(self):
"""处理日志队列中的日志条目"""
while not self.log_queue.empty():
line = self.log_queue.get()
self.process_log_line(line)
self.after(100, self.process_log_queue)
# def stop_process(self):
# """停止日志进程并清理相关资源"""
# if self.process:
# try:
# if hasattr(self.process, "pid"):
# if os.name == "nt":
# subprocess.run(
# ["taskkill", "/F", "/T", "/PID", str(self.process.pid)], check=True, capture_output=True
# )
# else:
# os.killpg(os.getpgid(self.process.pid), signal.SIGTERM)
# except (subprocess.CalledProcessError, ProcessLookupError, OSError) as e:
# print(f"终止进程失败: {e}")
# finally:
# self.process = None
# self.log_queue.queue.clear()
# self.start_btn.configure(state="normal")
# self.stop_btn.configure(state="disabled")
# self.refresh_logs()
def process_log_line(self, line):
"""解析单行日志并更新日志数据和筛选器"""
match = re.match(
r"""^
(?:(?P<time>\d{2}:\d{2}(?::\d{2})?)\s*\|\s*)?
(?P<level>\w+)\s*\|\s*
(?P<module>.*?)
\s*[-|]\s*
(?P<message>.*)
$""",
line.strip(),
re.VERBOSE,
)
# def read_output(self):
# """读取日志进程的输出并放入队列"""
# try:
# while self.process and self.process.poll() is None and self.is_running:
# line = self.process.stdout.readline()
# if line:
# self.log_queue.put(line)
# else:
# break # 避免空循环
# self.process.stdout.close() # 确保关闭文件描述符
# except ValueError: # 处理可能的I/O操作异常
# pass
if match:
groups = match.groupdict()
time = groups.get("time", "")
level = groups.get("level", "OTHER")
module = groups.get("module", "UNKNOWN").strip()
message = groups.get("message", "").strip()
raw_line = line
else:
time, level, module, message = "", "OTHER", "UNKNOWN", line
raw_line = line
# def process_log_queue(self):
# """处理日志队列中的日志条目"""
# while not self.log_queue.empty():
# line = self.log_queue.get()
# self.process_log_line(line)
self.update_filters(level, module)
log_entry = {"raw": raw_line, "time": time, "level": level, "module": module, "message": message}
self.log_data.append(log_entry)
# # 仅在GUI仍在运行时继续处理队列
# if self.is_running:
# self.after(100, self.process_log_queue)
if self.check_filter(log_entry):
self.display_log(log_entry)
# def process_log_line(self, line):
# """解析单行日志并更新日志数据和筛选器"""
# match = re.match(
# r"""^
# (?:(?P<time>\d{2}:\d{2}(?::\d{2})?)\s*\|\s*)?
# (?P<level>\w+)\s*\|\s*
# (?P<module>.*?)
# \s*[-|]\s*
# (?P<message>.*)
# $""",
# line.strip(),
# re.VERBOSE,
# )
def get_module_key(self, module_name):
"""获取模块名称的标准化键"""
cleaned = module_name.strip()
return re.sub(r":\d+$", "", cleaned)
# if match:
# groups = match.groupdict()
# time = groups.get("time", "")
# level = groups.get("level", "OTHER")
# module = groups.get("module", "UNKNOWN").strip()
# message = groups.get("message", "").strip()
# raw_line = line
# else:
# time, level, module, message = "", "OTHER", "UNKNOWN", line
# raw_line = line
def display_log(self, entry):
"""在日志文本框中显示日志条目"""
parts = []
tags = []
# self.update_filters(level, module)
# log_entry = {"raw": raw_line, "time": time, "level": level, "module": module, "message": message}
# self.log_data.append(log_entry)
if self.column_visibility["show_time"] and entry["time"]:
parts.append(f"{entry['time']} ")
tags.append("time")
# if self.check_filter(log_entry):
# self.display_log(log_entry)
if self.column_visibility["show_level"]:
level_tag = entry["level"] if entry["level"] in self.color_config else "default"
parts.append(f"{entry['level']:<8} ")
tags.append(level_tag)
# def get_module_key(self, module_name):
# """获取模块名称的标准化键"""
# cleaned = module_name.strip()
# return re.sub(r":\d+$", "", cleaned)
if self.column_visibility["show_module"]:
parts.append(f"{entry['module']} ")
tags.append("module")
# def display_log(self, entry):
# """在日志文本框中显示日志条目"""
# parts = []
# tags = []
parts.append(f"- {entry['message']}\n")
tags.append("default")
# if self.column_visibility["show_time"] and entry["time"]:
# parts.append(f"{entry['time']} ")
# tags.append("time")
self.log_text.configure(state="normal")
for part, tag in zip(parts, tags):
self.log_text.insert("end", part, tag)
self.log_text.see("end")
self.log_text.configure(state="disabled")
# if self.column_visibility["show_level"]:
# level_tag = entry["level"] if entry["level"] in self.color_config else "default"
# parts.append(f"{entry['level']:<8} ")
# tags.append(level_tag)
def refresh_logs(self):
"""刷新日志显示,根据筛选条件重新显示日志"""
self.column_visibility = {
"show_time": self.time_check.get(),
"show_level": self.level_check.get(),
"show_module": self.module_check.get(),
}
# if self.column_visibility["show_module"]:
# parts.append(f"{entry['module']} ")
# tags.append("module")
self.log_text.configure(state="normal")
self.log_text.delete("1.0", "end")
# parts.append(f"- {entry['message']}\n")
# tags.append("default")
filtered_logs = [entry for entry in self.log_data if self.check_filter(entry)]
# self.log_text.configure(state="normal")
# for part, tag in zip(parts, tags):
# self.log_text.insert("end", part, tag)
# self.log_text.see("end")
# self.log_text.configure(state="disabled")
for entry in filtered_logs:
parts = []
tags = []
# def refresh_logs(self):
# """刷新日志显示,根据筛选条件重新显示日志"""
# self.column_visibility = {
# "show_time": self.time_check.get(),
# "show_level": self.level_check.get(),
# "show_module": self.module_check.get(),
# }
if self.column_visibility["show_time"] and entry["time"]:
parts.append(f"{entry['time']} ")
tags.append("time")
# self.log_text.configure(state="normal")
# self.log_text.delete("1.0", "end")
if self.column_visibility["show_level"]:
level_tag = entry["level"] if entry["level"] in self.color_config else "default"
parts.append(f"{entry['level']:<8} ")
tags.append(level_tag)
# filtered_logs = [entry for entry in self.log_data if self.check_filter(entry)]
if self.column_visibility["show_module"]:
parts.append(f"{entry['module']} ")
tags.append("module")
# for entry in filtered_logs:
# parts = []
# tags = []
parts.append(f"- {entry['message']}\n")
tags.append("default")
# if self.column_visibility["show_time"] and entry["time"]:
# parts.append(f"{entry['time']} ")
# tags.append("time")
for part, tag in zip(parts, tags):
self.log_text.insert("end", part, tag)
# if self.column_visibility["show_level"]:
# level_tag = entry["level"] if entry["level"] in self.color_config else "default"
# parts.append(f"{entry['level']:<8} ")
# tags.append(level_tag)
self.log_text.see("end")
self.log_text.configure(state="disabled")
# if self.column_visibility["show_module"]:
# parts.append(f"{entry['module']} ")
# tags.append("module")
def clear_logs(self):
"""清空日志文本框中的内容"""
self.log_text.configure(state="normal")
self.log_text.delete("1.0", "end")
self.log_text.configure(state="disabled")
# parts.append(f"- {entry['message']}\n")
# tags.append("default")
# for part, tag in zip(parts, tags):
# self.log_text.insert("end", part, tag)
# self.log_text.see("end")
# self.log_text.configure(state="disabled")
# def clear_logs(self):
# """清空日志文本框中的内容"""
# self.log_text.configure(state="normal")
# self.log_text.delete("1.0", "end")
# self.log_text.configure(state="disabled")
# def _on_closing(self):
# """处理窗口关闭事件,安全清理资源"""
# # 标记GUI已关闭
# self.is_running = False
# # 停止日志进程
# self.stop_process()
# # 安全清理tkinter变量
# for attr_name in list(self.__dict__.keys()):
# if isinstance(getattr(self, attr_name), (ctk.Variable, ctk.StringVar, ctk.IntVar, ctk.DoubleVar, ctk.BooleanVar)):
# try:
# var = getattr(self, attr_name)
# var.set(None)
# except Exception:
# pass
# setattr(self, attr_name, None)
# self.quit()
# sys.exit(0)
if __name__ == "__main__":
# 启动日志查看器应用
app = LogViewerApp()
app.mainloop()
# if __name__ == "__main__":
# # 启动日志查看器应用
# app = LogViewerApp()
# app.mainloop()

View File

@@ -1,320 +1,342 @@
import os
import queue
import sys
import threading
import time
from datetime import datetime
from typing import Dict, List
from typing import Optional
# import os
# import queue
# import sys
# import threading
# import time
# from datetime import datetime
# from typing import Dict, List
# from typing import Optional
sys.path.insert(0, sys.path[0] + "/../")
sys.path.insert(0, sys.path[0] + "/../")
from src.common.logger import get_module_logger
# sys.path.insert(0, sys.path[0] + "/../")
# sys.path.insert(0, sys.path[0] + "/../")
# from src.common.logger import get_module_logger
import customtkinter as ctk
from dotenv import load_dotenv
# import customtkinter as ctk
# from dotenv import load_dotenv
logger = get_module_logger("gui")
# logger = get_module_logger("gui")
# 获取当前文件的目录
current_dir = os.path.dirname(os.path.abspath(__file__))
# 获取项目根目录
root_dir = os.path.abspath(os.path.join(current_dir, "..", ".."))
sys.path.insert(0, root_dir)
from src.common.database import db # noqa: E402
# # 获取当前文件的目录
# current_dir = os.path.dirname(os.path.abspath(__file__))
# # 获取项目根目录
# root_dir = os.path.abspath(os.path.join(current_dir, "..", ".."))
# sys.path.insert(0, root_dir)
# from src.common.database import db # noqa: E402
# 加载环境变量
if os.path.exists(os.path.join(root_dir, ".env.dev")):
load_dotenv(os.path.join(root_dir, ".env.dev"))
logger.info("成功加载开发环境配置")
elif os.path.exists(os.path.join(root_dir, ".env")):
load_dotenv(os.path.join(root_dir, ".env"))
logger.info("成功加载生产环境配置")
else:
logger.error("未找到环境配置文件")
sys.exit(1)
# # 加载环境变量
# if os.path.exists(os.path.join(root_dir, ".env.dev")):
# load_dotenv(os.path.join(root_dir, ".env.dev"))
# logger.info("成功加载开发环境配置")
# elif os.path.exists(os.path.join(root_dir, ".env")):
# load_dotenv(os.path.join(root_dir, ".env"))
# logger.info("成功加载生产环境配置")
# else:
# logger.error("未找到环境配置文件")
# sys.exit(1)
class ReasoningGUI:
def __init__(self):
# 记录启动时间戳转换为Unix时间戳
self.start_timestamp = datetime.now().timestamp()
logger.info(f"程序启动时间戳: {self.start_timestamp}")
# class ReasoningGUI:
# def __init__(self):
# # 记录启动时间戳转换为Unix时间戳
# self.start_timestamp = datetime.now().timestamp()
# logger.info(f"程序启动时间戳: {self.start_timestamp}")
# 设置主题
ctk.set_appearance_mode("dark")
ctk.set_default_color_theme("blue")
# # 设置主题
# ctk.set_appearance_mode("dark")
# ctk.set_default_color_theme("blue")
# 创建主窗口
self.root = ctk.CTk()
self.root.title("麦麦推理")
self.root.geometry("800x600")
self.root.protocol("WM_DELETE_WINDOW", self._on_closing)
# # 创建主窗口
# self.root = ctk.CTk()
# self.root.title("麦麦推理")
# self.root.geometry("800x600")
# self.root.protocol("WM_DELETE_WINDOW", self._on_closing)
# 存储群组数据
self.group_data: Dict[str, List[dict]] = {}
# # 存储群组数据
# self.group_data: Dict[str, List[dict]] = {}
# 创建更新队列
self.update_queue = queue.Queue()
# # 创建更新队列
# self.update_queue = queue.Queue()
# 创建主框架
self.frame = ctk.CTkFrame(self.root)
self.frame.pack(pady=20, padx=20, fill="both", expand=True)
# # 创建主框架
# self.frame = ctk.CTkFrame(self.root)
# self.frame.pack(pady=20, padx=20, fill="both", expand=True)
# 添加标题
self.title = ctk.CTkLabel(self.frame, text="麦麦的脑内所想", font=("Arial", 24))
self.title.pack(pady=10, padx=10)
# # 添加标题
# self.title = ctk.CTkLabel(self.frame, text="麦麦的脑内所想", font=("Arial", 24))
# self.title.pack(pady=10, padx=10)
# 创建左右分栏
self.paned = ctk.CTkFrame(self.frame)
self.paned.pack(fill="both", expand=True, padx=10, pady=10)
# # 创建左右分栏
# self.paned = ctk.CTkFrame(self.frame)
# self.paned.pack(fill="both", expand=True, padx=10, pady=10)
# 左侧群组列表
self.left_frame = ctk.CTkFrame(self.paned, width=200)
self.left_frame.pack(side="left", fill="y", padx=5, pady=5)
# # 左侧群组列表
# self.left_frame = ctk.CTkFrame(self.paned, width=200)
# self.left_frame.pack(side="left", fill="y", padx=5, pady=5)
self.group_label = ctk.CTkLabel(self.left_frame, text="群组列表", font=("Arial", 16))
self.group_label.pack(pady=5)
# self.group_label = ctk.CTkLabel(self.left_frame, text="群组列表", font=("Arial", 16))
# self.group_label.pack(pady=5)
# 创建可滚动框架来容纳群组按钮
self.group_scroll_frame = ctk.CTkScrollableFrame(self.left_frame, width=180, height=400)
self.group_scroll_frame.pack(pady=5, padx=5, fill="both", expand=True)
# # 创建可滚动框架来容纳群组按钮
# self.group_scroll_frame = ctk.CTkScrollableFrame(self.left_frame, width=180, height=400)
# self.group_scroll_frame.pack(pady=5, padx=5, fill="both", expand=True)
# 存储群组按钮的字典
self.group_buttons: Dict[str, ctk.CTkButton] = {}
# 当前选中的群组ID
self.selected_group_id: Optional[str] = None
# # 存储群组按钮的字典
# self.group_buttons: Dict[str, ctk.CTkButton] = {}
# # 当前选中的群组ID
# self.selected_group_id: Optional[str] = None
# 右侧内容显示
self.right_frame = ctk.CTkFrame(self.paned)
self.right_frame.pack(side="right", fill="both", expand=True, padx=5, pady=5)
# # 右侧内容显示
# self.right_frame = ctk.CTkFrame(self.paned)
# self.right_frame.pack(side="right", fill="both", expand=True, padx=5, pady=5)
self.content_label = ctk.CTkLabel(self.right_frame, text="推理内容", font=("Arial", 16))
self.content_label.pack(pady=5)
# self.content_label = ctk.CTkLabel(self.right_frame, text="推理内容", font=("Arial", 16))
# self.content_label.pack(pady=5)
# 创建富文本显示框
self.content_text = ctk.CTkTextbox(self.right_frame, width=500, height=400)
self.content_text.pack(pady=5, padx=5, fill="both", expand=True)
# # 创建富文本显示框
# self.content_text = ctk.CTkTextbox(self.right_frame, width=500, height=400)
# self.content_text.pack(pady=5, padx=5, fill="both", expand=True)
# 配置文本标签 - 只使用颜色
self.content_text.tag_config("timestamp", foreground="#888888") # 时间戳使用灰色
self.content_text.tag_config("user", foreground="#4CAF50") # 用户名使用绿色
self.content_text.tag_config("message", foreground="#2196F3") # 消息使用蓝色
self.content_text.tag_config("model", foreground="#9C27B0") # 模型名称使用紫色
self.content_text.tag_config("prompt", foreground="#FF9800") # prompt内容使用橙色
self.content_text.tag_config("reasoning", foreground="#FF9800") # 推理过程使用橙色
self.content_text.tag_config("response", foreground="#E91E63") # 回复使用粉色
self.content_text.tag_config("separator", foreground="#666666") # 分隔符使用深灰色
# # 配置文本标签 - 只使用颜色
# self.content_text.tag_config("timestamp", foreground="#888888") # 时间戳使用灰色
# self.content_text.tag_config("user", foreground="#4CAF50") # 用户名使用绿色
# self.content_text.tag_config("message", foreground="#2196F3") # 消息使用蓝色
# self.content_text.tag_config("model", foreground="#9C27B0") # 模型名称使用紫色
# self.content_text.tag_config("prompt", foreground="#FF9800") # prompt内容使用橙色
# self.content_text.tag_config("reasoning", foreground="#FF9800") # 推理过程使用橙色
# self.content_text.tag_config("response", foreground="#E91E63") # 回复使用粉色
# self.content_text.tag_config("separator", foreground="#666666") # 分隔符使用深灰色
# 底部控制栏
self.control_frame = ctk.CTkFrame(self.frame)
self.control_frame.pack(fill="x", padx=10, pady=5)
# # 底部控制栏
# self.control_frame = ctk.CTkFrame(self.frame)
# self.control_frame.pack(fill="x", padx=10, pady=5)
self.clear_button = ctk.CTkButton(self.control_frame, text="清除显示", command=self.clear_display, width=120)
self.clear_button.pack(side="left", padx=5)
# self.clear_button = ctk.CTkButton(self.control_frame, text="清除显示", command=self.clear_display, width=120)
# self.clear_button.pack(side="left", padx=5)
# 启动自动更新线程
self.update_thread = threading.Thread(target=self._auto_update, daemon=True)
self.update_thread.start()
# # 添加标志标记GUI是否已关闭
# self.is_running = True
# 启动GUI更新检查
self.root.after(100, self._process_queue)
# # 启动自动更新线程
# self.update_thread = threading.Thread(target=self._auto_update, daemon=True)
# self.update_thread.start()
def _on_closing(self):
"""处理窗口关闭事件"""
self.root.quit()
sys.exit(0)
# # 启动GUI更新检查
# self.root.after(100, self._process_queue)
def _process_queue(self):
"""处理更新队列中的任务"""
try:
while True:
task = self.update_queue.get_nowait()
if task["type"] == "update_group_list":
self._update_group_list_gui()
elif task["type"] == "update_display":
self._update_display_gui(task["group_id"])
except queue.Empty:
pass
finally:
# 继续检查队列
self.root.after(100, self._process_queue)
# def _on_closing(self):
# """处理窗口关闭事件"""
# # 标记GUI已关闭防止后台线程继续访问tkinter对象
# self.is_running = False
def _update_group_list_gui(self):
"""在主线程中更新群组列表"""
# 清除现有按钮
for button in self.group_buttons.values():
button.destroy()
self.group_buttons.clear()
# # 安全清理所有可能的tkinter变量
# for attr_name in list(self.__dict__.keys()):
# if isinstance(getattr(self, attr_name), (ctk.Variable, ctk.StringVar, ctk.IntVar, ctk.DoubleVar, ctk.BooleanVar)):
# # 删除变量前安全地将其设置为None
# try:
# var = getattr(self, attr_name)
# var.set(None)
# except Exception:
# pass
# setattr(self, attr_name, None)
# 创建新的群组按钮
for group_id in self.group_data.keys():
button = ctk.CTkButton(
self.group_scroll_frame,
text=f"群号: {group_id}",
width=160,
height=30,
corner_radius=8,
command=lambda gid=group_id: self._on_group_select(gid),
)
button.pack(pady=2, padx=5)
self.group_buttons[group_id] = button
# # 退出
# self.root.quit()
# sys.exit(0)
# 如果有选中的群组,保持其高亮状态
if self.selected_group_id and self.selected_group_id in self.group_buttons:
self._highlight_selected_group(self.selected_group_id)
# def _process_queue(self):
# """处理更新队列中的任务"""
# try:
# while True:
# task = self.update_queue.get_nowait()
# if task["type"] == "update_group_list":
# self._update_group_list_gui()
# elif task["type"] == "update_display":
# self._update_display_gui(task["group_id"])
# except queue.Empty:
# pass
# finally:
# # 继续检查队列但仅在GUI仍在运行时
# if self.is_running:
# self.root.after(100, self._process_queue)
def _on_group_select(self, group_id: str):
"""处理群组选择事件"""
self._highlight_selected_group(group_id)
self._update_display_gui(group_id)
# def _update_group_list_gui(self):
# """在主线程中更新群组列表"""
# # 清除现有按钮
# for button in self.group_buttons.values():
# button.destroy()
# self.group_buttons.clear()
def _highlight_selected_group(self, group_id: str):
"""高亮显示选中的群组按钮"""
# 重置所有按钮的颜色
for gid, button in self.group_buttons.items():
if gid == group_id:
# 设置选中按钮的颜色
button.configure(fg_color="#1E88E5", hover_color="#1976D2")
else:
# 恢复其他按钮的默认颜色
button.configure(fg_color="#2B2B2B", hover_color="#404040")
# # 创建新的群组按钮
# for group_id in self.group_data.keys():
# button = ctk.CTkButton(
# self.group_scroll_frame,
# text=f"群号: {group_id}",
# width=160,
# height=30,
# corner_radius=8,
# command=lambda gid=group_id: self._on_group_select(gid),
# )
# button.pack(pady=2, padx=5)
# self.group_buttons[group_id] = button
self.selected_group_id = group_id
# # 如果有选中的群组,保持其高亮状态
# if self.selected_group_id and self.selected_group_id in self.group_buttons:
# self._highlight_selected_group(self.selected_group_id)
def _update_display_gui(self, group_id: str):
"""在主线程中更新显示内容"""
if group_id in self.group_data:
self.content_text.delete("1.0", "end")
for item in self.group_data[group_id]:
# 时间戳
time_str = item["time"].strftime("%Y-%m-%d %H:%M:%S")
self.content_text.insert("end", f"[{time_str}]\n", "timestamp")
# def _on_group_select(self, group_id: str):
# """处理群组选择事件"""
# self._highlight_selected_group(group_id)
# self._update_display_gui(group_id)
# 用户信息
self.content_text.insert("end", "用户: ", "timestamp")
self.content_text.insert("end", f"{item.get('user', '未知')}\n", "user")
# def _highlight_selected_group(self, group_id: str):
# """高亮显示选中的群组按钮"""
# # 重置所有按钮的颜色
# for gid, button in self.group_buttons.items():
# if gid == group_id:
# # 设置选中按钮的颜色
# button.configure(fg_color="#1E88E5", hover_color="#1976D2")
# else:
# # 恢复其他按钮的默认颜色
# button.configure(fg_color="#2B2B2B", hover_color="#404040")
# 消息内容
self.content_text.insert("end", "消息: ", "timestamp")
self.content_text.insert("end", f"{item.get('message', '')}\n", "message")
# self.selected_group_id = group_id
# 模型信息
self.content_text.insert("end", "模型: ", "timestamp")
self.content_text.insert("end", f"{item.get('model', '')}\n", "model")
# def _update_display_gui(self, group_id: str):
# """在主线程中更新显示内容"""
# if group_id in self.group_data:
# self.content_text.delete("1.0", "end")
# for item in self.group_data[group_id]:
# # 时间戳
# time_str = item["time"].strftime("%Y-%m-%d %H:%M:%S")
# self.content_text.insert("end", f"[{time_str}]\n", "timestamp")
# Prompt内容
self.content_text.insert("end", "Prompt内容:\n", "timestamp")
prompt_text = item.get("prompt", "")
if prompt_text and prompt_text.lower() != "none":
lines = prompt_text.split("\n")
for line in lines:
if line.strip():
self.content_text.insert("end", " " + line + "\n", "prompt")
else:
self.content_text.insert("end", " 无Prompt内容\n", "prompt")
# # 用户信息
# self.content_text.insert("end", "用户: ", "timestamp")
# self.content_text.insert("end", f"{item.get('user', '未知')}\n", "user")
# 推理过程
self.content_text.insert("end", "推理过程:\n", "timestamp")
reasoning_text = item.get("reasoning", "")
if reasoning_text and reasoning_text.lower() != "none":
lines = reasoning_text.split("\n")
for line in lines:
if line.strip():
self.content_text.insert("end", " " + line + "\n", "reasoning")
else:
self.content_text.insert("end", " 无推理过程\n", "reasoning")
# # 消息内容
# self.content_text.insert("end", "消息: ", "timestamp")
# self.content_text.insert("end", f"{item.get('message', '')}\n", "message")
# 回复内容
self.content_text.insert("end", "回复: ", "timestamp")
self.content_text.insert("end", f"{item.get('response', '')}\n", "response")
# # 模型信息
# self.content_text.insert("end", "模型: ", "timestamp")
# self.content_text.insert("end", f"{item.get('model', '')}\n", "model")
# 分隔符
self.content_text.insert("end", f"\n{'=' * 50}\n\n", "separator")
# # Prompt内容
# self.content_text.insert("end", "Prompt内容:\n", "timestamp")
# prompt_text = item.get("prompt", "")
# if prompt_text and prompt_text.lower() != "none":
# lines = prompt_text.split("\n")
# for line in lines:
# if line.strip():
# self.content_text.insert("end", " " + line + "\n", "prompt")
# else:
# self.content_text.insert("end", " 无Prompt内容\n", "prompt")
# 滚动到顶部
self.content_text.see("1.0")
# # 推理过程
# self.content_text.insert("end", "推理过程:\n", "timestamp")
# reasoning_text = item.get("reasoning", "")
# if reasoning_text and reasoning_text.lower() != "none":
# lines = reasoning_text.split("\n")
# for line in lines:
# if line.strip():
# self.content_text.insert("end", " " + line + "\n", "reasoning")
# else:
# self.content_text.insert("end", " 无推理过程\n", "reasoning")
def _auto_update(self):
"""自动更新函数"""
while True:
try:
# 从数据库获取最新数据,只获取启动时间之后的记录
query = {"time": {"$gt": self.start_timestamp}}
logger.debug(f"查询条件: {query}")
# # 回复内容
# self.content_text.insert("end", "回复: ", "timestamp")
# self.content_text.insert("end", f"{item.get('response', '')}\n", "response")
# 先获取一条记录检查时间格式
sample = db.reasoning_logs.find_one()
if sample:
logger.debug(f"样本记录时间格式: {type(sample['time'])} 值: {sample['time']}")
# # 分隔符
# self.content_text.insert("end", f"\n{'=' * 50}\n\n", "separator")
cursor = db.reasoning_logs.find(query).sort("time", -1)
new_data = {}
total_count = 0
# # 滚动到顶部
# self.content_text.see("1.0")
for item in cursor:
# 调试输出
if total_count == 0:
logger.debug(f"记录时间: {item['time']}, 类型: {type(item['time'])}")
# def _auto_update(self):
# """自动更新函数"""
# while True:
# if not self.is_running:
# break # 如果GUI已关闭停止线程
total_count += 1
group_id = str(item.get("group_id", "unknown"))
if group_id not in new_data:
new_data[group_id] = []
# try:
# # 从数据库获取最新数据,只获取启动时间之后的记录
# query = {"time": {"$gt": self.start_timestamp}}
# logger.debug(f"查询条件: {query}")
# 转换时间戳为datetime对象
if isinstance(item["time"], (int, float)):
time_obj = datetime.fromtimestamp(item["time"])
elif isinstance(item["time"], datetime):
time_obj = item["time"]
else:
logger.warning(f"未知的时间格式: {type(item['time'])}")
time_obj = datetime.now() # 使用当前时间作为后备
# # 先获取一条记录检查时间格式
# sample = db.reasoning_logs.find_one()
# if sample:
# logger.debug(f"样本记录时间格式: {type(sample['time'])} 值: {sample['time']}")
new_data[group_id].append(
{
"time": time_obj,
"user": item.get("user", "未知"),
"message": item.get("message", ""),
"model": item.get("model", "未知"),
"reasoning": item.get("reasoning", ""),
"response": item.get("response", ""),
"prompt": item.get("prompt", ""), # 添加prompt字段
}
)
# cursor = db.reasoning_logs.find(query).sort("time", -1)
# new_data = {}
# total_count = 0
logger.info(f"从数据库加载了 {total_count} 条记录,分布在 {len(new_data)} 个群组中")
# for item in cursor:
# # 调试输出
# if total_count == 0:
# logger.debug(f"记录时间: {item['time']}, 类型: {type(item['time'])}")
# 更新数据
if new_data != self.group_data:
self.group_data = new_data
logger.info("数据已更新,正在刷新显示...")
# 将更新任务添加到队列
self.update_queue.put({"type": "update_group_list"})
if self.group_data:
# 如果没有选中的群组,选择最新的群组
if not self.selected_group_id or self.selected_group_id not in self.group_data:
self.selected_group_id = next(iter(self.group_data))
self.update_queue.put({"type": "update_display", "group_id": self.selected_group_id})
except Exception:
logger.exception("自动更新出错")
# total_count += 1
# group_id = str(item.get("group_id", "unknown"))
# if group_id not in new_data:
# new_data[group_id] = []
# 每5秒更新一次
time.sleep(5)
# # 转换时间戳为datetime对象
# if isinstance(item["time"], (int, float)):
# time_obj = datetime.fromtimestamp(item["time"])
# elif isinstance(item["time"], datetime):
# time_obj = item["time"]
# else:
# logger.warning(f"未知的时间格式: {type(item['time'])}")
# time_obj = datetime.now() # 使用当前时间作为后备
def clear_display(self):
"""清除显示内容"""
self.content_text.delete("1.0", "end")
# new_data[group_id].append(
# {
# "time": time_obj,
# "user": item.get("user", "未知"),
# "message": item.get("message", ""),
# "model": item.get("model", "未知"),
# "reasoning": item.get("reasoning", ""),
# "response": item.get("response", ""),
# "prompt": item.get("prompt", ""), # 添加prompt字段
# }
# )
def run(self):
"""运行GUI"""
self.root.mainloop()
# logger.info(f"从数据库加载了 {total_count} 条记录,分布在 {len(new_data)} 个群组中")
# # 更新数据
# if new_data != self.group_data:
# self.group_data = new_data
# logger.info("数据已更新,正在刷新显示...")
# # 将更新任务添加到队列
# self.update_queue.put({"type": "update_group_list"})
# if self.group_data:
# # 如果没有选中的群组,选择最新的群组
# if not self.selected_group_id or self.selected_group_id not in self.group_data:
# self.selected_group_id = next(iter(self.group_data))
# self.update_queue.put({"type": "update_display", "group_id": self.selected_group_id})
# except Exception:
# logger.exception("自动更新出错")
# # 每5秒更新一次
# time.sleep(5)
# def clear_display(self):
# """清除显示内容"""
# self.content_text.delete("1.0", "end")
# def run(self):
# """运行GUI"""
# self.root.mainloop()
def main():
app = ReasoningGUI()
app.run()
# def main():
# app = ReasoningGUI()
# app.run()
if __name__ == "__main__":
main()
# if __name__ == "__main__":
# main()

View File

@@ -6,7 +6,9 @@ from src.plugins.config.config import global_config
from src.plugins.schedule.schedule_generator import bot_schedule
import asyncio
from src.common.logger import get_module_logger, LogConfig, HEARTFLOW_STYLE_CONFIG # noqa: E402
from src.individuality.individuality import Individuality
import time
import random
heartflow_config = LogConfig(
# 使用海马体专用样式
@@ -40,7 +42,6 @@ class Heartflow:
self._subheartflows = {}
self.active_subheartflows_nums = 0
self.personality_info = " ".join(global_config.PROMPT_PERSONALITY)
async def _cleanup_inactive_subheartflows(self):
"""定期清理不活跃的子心流"""
@@ -70,7 +71,7 @@ class Heartflow:
while True:
# 检查是否存在子心流
if not self._subheartflows:
logger.info("当前没有子心流,等待新的子心流创建...")
# logger.info("当前没有子心流,等待新的子心流创建...")
await asyncio.sleep(30) # 每分钟检查一次是否有新的子心流
continue
@@ -81,7 +82,27 @@ class Heartflow:
logger.debug("麦麦大脑袋转起来了")
self.current_state.update_current_state_info()
personality_info = self.personality_info
# 开始构建prompt
prompt_personality = ""
#person
individuality = Individuality.get_instance()
personality_core = individuality.personality.personality_core
prompt_personality += personality_core
personality_sides = individuality.personality.personality_sides
random.shuffle(personality_sides)
prompt_personality += f",{personality_sides[0]}"
identity_detail = individuality.identity.identity_detail
random.shuffle(identity_detail)
prompt_personality += f",{identity_detail[0]}"
personality_info = prompt_personality
current_thinking_info = self.current_mind
mood_info = self.current_state.mood
related_memory_info = "memory"
@@ -123,7 +144,25 @@ class Heartflow:
return await self.minds_summary(sub_minds)
async def minds_summary(self, minds_str):
personality_info = self.personality_info
# 开始构建prompt
prompt_personality = ""
#person
individuality = Individuality.get_instance()
personality_core = individuality.personality.personality_core
prompt_personality += personality_core
personality_sides = individuality.personality.personality_sides
random.shuffle(personality_sides)
prompt_personality += f",{personality_sides[0]}"
identity_detail = individuality.identity.identity_detail
random.shuffle(identity_detail)
prompt_personality += f",{identity_detail[0]}"
personality_info = prompt_personality
mood_info = self.current_state.mood
prompt = ""

View File

@@ -4,7 +4,8 @@ from datetime import datetime
from src.plugins.models.utils_model import LLM_request
from src.plugins.config.config import global_config
from src.common.database import db
from src.individuality.individuality import Individuality
import random
# 所有观察的基类
class Observation:
@@ -24,7 +25,6 @@ class ChattingObservation(Observation):
self.talking_message = []
self.talking_message_str = ""
self.personality_info = " ".join(global_config.PROMPT_PERSONALITY)
self.name = global_config.BOT_NICKNAME
self.nick_name = global_config.BOT_ALIAS_NAMES
@@ -115,8 +115,30 @@ class ChattingObservation(Observation):
async def update_talking_summary(self, new_messages_str):
# 基于已经有的talking_summary和新的talking_message生成一个summary
# print(f"更新聊天总结:{self.talking_summary}")
# 开始构建prompt
prompt_personality = ""
#person
individuality = Individuality.get_instance()
personality_core = individuality.personality.personality_core
prompt_personality += personality_core
personality_sides = individuality.personality.personality_sides
random.shuffle(personality_sides)
prompt_personality += f",{personality_sides[0]}"
identity_detail = individuality.identity.identity_detail
random.shuffle(identity_detail)
prompt_personality += f",{identity_detail[0]}"
personality_info = prompt_personality
prompt = ""
prompt += f"{self.personality_info},请注意识别你自己的聊天发言"
prompt += f"{personality_info},请注意识别你自己的聊天发言"
prompt += f"你的名字叫:{self.name},你的昵称是:{self.nick_name}\n"
prompt += f"你正在参与一个qq群聊的讨论你记得这个群之前在聊的内容是{self.observe_info}\n"
prompt += f"现在群里的群友们产生了新的讨论,有了新的发言,具体内容如下:{new_messages_str}\n"

View File

@@ -8,6 +8,11 @@ import time
from src.plugins.schedule.schedule_generator import bot_schedule
from src.plugins.memory_system.Hippocampus import HippocampusManager
from src.common.logger import get_module_logger, LogConfig, SUB_HEARTFLOW_STYLE_CONFIG # noqa: E402
from src.plugins.chat.utils import get_embedding
from src.common.database import db
from typing import Union
from src.individuality.individuality import Individuality
import random
subheartflow_config = LogConfig(
# 使用海马体专用样式
@@ -48,12 +53,13 @@ class SubHeartflow:
if not self.current_mind:
self.current_mind = "你什么也没想"
self.personality_info = " ".join(global_config.PROMPT_PERSONALITY)
self.is_active = False
self.observations: list[Observation] = []
self.running_knowledges = []
def add_observation(self, observation: Observation):
"""添加一个新的observation对象到列表中如果已存在相同id的observation则不添加"""
# 查找是否存在相同id的observation
@@ -98,49 +104,49 @@ class SubHeartflow:
logger.info(f"子心流 {self.subheartflow_id} 已经5分钟没有激活正在销毁...")
break # 退出循环,销毁自己
async def do_a_thinking(self):
current_thinking_info = self.current_mind
mood_info = self.current_state.mood
# async def do_a_thinking(self):
# current_thinking_info = self.current_mind
# mood_info = self.current_state.mood
observation = self.observations[0]
chat_observe_info = observation.observe_info
# print(f"chat_observe_info{chat_observe_info}")
# observation = self.observations[0]
# chat_observe_info = observation.observe_info
# # print(f"chat_observe_info{chat_observe_info}")
# 调取记忆
related_memory = await HippocampusManager.get_instance().get_memory_from_text(
text=chat_observe_info, max_memory_num=2, max_memory_length=2, max_depth=3, fast_retrieval=False
)
# # 调取记忆
# related_memory = await HippocampusManager.get_instance().get_memory_from_text(
# text=chat_observe_info, max_memory_num=2, max_memory_length=2, max_depth=3, fast_retrieval=False
# )
if related_memory:
related_memory_info = ""
for memory in related_memory:
related_memory_info += memory[1]
else:
related_memory_info = ""
# if related_memory:
# related_memory_info = ""
# for memory in related_memory:
# related_memory_info += memory[1]
# else:
# related_memory_info = ""
# print(f"相关记忆:{related_memory_info}")
# # print(f"相关记忆:{related_memory_info}")
schedule_info = bot_schedule.get_current_num_task(num=1, time_info=False)
# schedule_info = bot_schedule.get_current_num_task(num=1, time_info=False)
prompt = ""
prompt += f"你刚刚在做的事情是:{schedule_info}\n"
# prompt += f"麦麦的总体想法是:{self.main_heartflow_info}\n\n"
prompt += f"{self.personality_info}\n"
if related_memory_info:
prompt += f"你想起来你之前见过的回忆:{related_memory_info}\n以上是你的回忆,不一定是目前聊天里的人说的,也不一定是现在发生的事情,请记住。\n"
prompt += f"刚刚你的想法是{current_thinking_info}\n"
prompt += "-----------------------------------\n"
prompt += f"现在你正在上网和qq群里的网友们聊天群里正在聊的话题是{chat_observe_info}\n"
prompt += f"你现在{mood_info}\n"
prompt += "现在你接下去继续思考,产生新的想法,不要分点输出,输出连贯的内心独白,不要太长,"
prompt += "但是记得结合上述的消息,要记得维持住你的人设,关注聊天和新内容,不要思考太多:"
reponse, reasoning_content = await self.llm_model.generate_response_async(prompt)
# prompt = ""
# prompt += f"你刚刚在做的事情是:{schedule_info}\n"
# # prompt += f"麦麦的总体想法是:{self.main_heartflow_info}\n\n"
# prompt += f"你{self.personality_info}\n"
# if related_memory_info:
# prompt += f"你想起来你之前见过的回忆:{related_memory_info}。\n以上是你的回忆,不一定是目前聊天里的人说的,也不一定是现在发生的事情,请记住。\n"
# prompt += f"刚刚你的想法是{current_thinking_info}。\n"
# prompt += "-----------------------------------\n"
# prompt += f"现在你正在上网和qq群里的网友们聊天群里正在聊的话题是{chat_observe_info}\n"
# prompt += f"你现在{mood_info}\n"
# prompt += "现在你接下去继续思考,产生新的想法,不要分点输出,输出连贯的内心独白,不要太长,"
# prompt += "但是记得结合上述的消息,要记得维持住你的人设,关注聊天和新内容,不要思考太多:"
# reponse, reasoning_content = await self.llm_model.generate_response_async(prompt)
self.update_current_mind(reponse)
# self.update_current_mind(reponse)
self.current_mind = reponse
logger.debug(f"prompt:\n{prompt}\n")
logger.info(f"麦麦的脑内状态:{self.current_mind}")
# self.current_mind = reponse
# logger.debug(f"prompt:\n{prompt}\n")
# logger.info(f"麦麦的脑内状态:{self.current_mind}")
async def do_observe(self):
observation = self.observations[0]
@@ -154,6 +160,25 @@ class SubHeartflow:
chat_observe_info = observation.observe_info
# print(f"chat_observe_info{chat_observe_info}")
# 开始构建prompt
prompt_personality = ""
#person
individuality = Individuality.get_instance()
personality_core = individuality.personality.personality_core
prompt_personality += personality_core
personality_sides = individuality.personality.personality_sides
random.shuffle(personality_sides)
prompt_personality += f",{personality_sides[0]}"
identity_detail = individuality.identity.identity_detail
random.shuffle(identity_detail)
prompt_personality += f",{identity_detail[0]}"
# 调取记忆
related_memory = await HippocampusManager.get_instance().get_memory_from_text(
text=chat_observe_info, max_memory_num=2, max_memory_length=2, max_depth=3, fast_retrieval=False
@@ -166,16 +191,25 @@ class SubHeartflow:
else:
related_memory_info = ""
related_info,grouped_results = await self.get_prompt_info(chat_observe_info + message_txt, 0.4)
# print(related_info)
for _topic, results in grouped_results.items():
for result in results:
# print(result)
self.running_knowledges.append(result)
# print(f"相关记忆:{related_memory_info}")
schedule_info = bot_schedule.get_current_num_task(num=1, time_info=False)
prompt = ""
# prompt += f"麦麦的总体想法是:{self.main_heartflow_info}\n\n"
prompt += f"{self.personality_info}\n"
prompt += f"{prompt_personality}\n"
prompt += f"你刚刚在做的事情是:{schedule_info}\n"
if related_memory_info:
prompt += f"你想起来你之前见过的回忆:{related_memory_info}\n以上是你的回忆,不一定是目前聊天里的人说的,也不一定是现在发生的事情,请记住。\n"
if related_info:
prompt += f"你想起你知道:{related_info}\n"
prompt += f"刚刚你的想法是{current_thinking_info}\n"
prompt += "-----------------------------------\n"
prompt += f"现在你正在上网和qq群里的网友们聊天群里正在聊的话题是{chat_observe_info}\n"
@@ -193,6 +227,25 @@ class SubHeartflow:
async def do_thinking_after_reply(self, reply_content, chat_talking_prompt):
# print("麦麦回复之后脑袋转起来了")
# 开始构建prompt
prompt_personality = ""
#person
individuality = Individuality.get_instance()
personality_core = individuality.personality.personality_core
prompt_personality += personality_core
personality_sides = individuality.personality.personality_sides
random.shuffle(personality_sides)
prompt_personality += f",{personality_sides[0]}"
identity_detail = individuality.identity.identity_detail
random.shuffle(identity_detail)
prompt_personality += f",{identity_detail[0]}"
current_thinking_info = self.current_mind
mood_info = self.current_state.mood
@@ -205,7 +258,7 @@ class SubHeartflow:
prompt = ""
# prompt += f"你现在正在做的事情是:{schedule_info}\n"
prompt += f"{self.personality_info}\n"
prompt += f"{prompt_personality}\n"
prompt += f"现在你正在上网和qq群里的网友们聊天群里正在聊的话题是{chat_observe_info}\n"
prompt += f"刚刚你的想法是{current_thinking_info}"
prompt += f"你现在看到了网友们发的新消息:{message_new_info}\n"
@@ -224,12 +277,30 @@ class SubHeartflow:
self.last_reply_time = time.time()
async def judge_willing(self):
# 开始构建prompt
prompt_personality = ""
#person
individuality = Individuality.get_instance()
personality_core = individuality.personality.personality_core
prompt_personality += personality_core
personality_sides = individuality.personality.personality_sides
random.shuffle(personality_sides)
prompt_personality += f",{personality_sides[0]}"
identity_detail = individuality.identity.identity_detail
random.shuffle(identity_detail)
prompt_personality += f",{identity_detail[0]}"
# print("麦麦闹情绪了1")
current_thinking_info = self.current_mind
mood_info = self.current_state.mood
# print("麦麦闹情绪了2")
prompt = ""
prompt += f"{self.personality_info}\n"
prompt += f"{prompt_personality}\n"
prompt += "现在你正在上网和qq群里的网友们聊天"
prompt += f"你现在的想法是{current_thinking_info}"
prompt += f"你现在{mood_info}"
@@ -251,4 +322,220 @@ class SubHeartflow:
self.current_mind = reponse
async def get_prompt_info(self, message: str, threshold: float):
start_time = time.time()
related_info = ""
logger.debug(f"获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
# 1. 先从LLM获取主题类似于记忆系统的做法
topics = []
# try:
# # 先尝试使用记忆系统的方法获取主题
# hippocampus = HippocampusManager.get_instance()._hippocampus
# topic_num = min(5, max(1, int(len(message) * 0.1)))
# topics_response = await hippocampus.llm_topic_judge.generate_response(hippocampus.find_topic_llm(message, topic_num))
# # 提取关键词
# topics = re.findall(r"<([^>]+)>", topics_response[0])
# if not topics:
# topics = []
# else:
# topics = [
# topic.strip()
# for topic in ",".join(topics).replace("", ",").replace("、", ",").replace(" ", ",").split(",")
# if topic.strip()
# ]
# logger.info(f"从LLM提取的主题: {', '.join(topics)}")
# except Exception as e:
# logger.error(f"从LLM提取主题失败: {str(e)}")
# # 如果LLM提取失败使用jieba分词提取关键词作为备选
# words = jieba.cut(message)
# topics = [word for word in words if len(word) > 1][:5]
# logger.info(f"使用jieba提取的主题: {', '.join(topics)}")
# 如果无法提取到主题,直接使用整个消息
if not topics:
logger.debug("未能提取到任何主题,使用整个消息进行查询")
embedding = await get_embedding(message, request_type="info_retrieval")
if not embedding:
logger.error("获取消息嵌入向量失败")
return ""
related_info = self.get_info_from_db(embedding, limit=3, threshold=threshold)
logger.info(f"知识库检索完成,总耗时: {time.time() - start_time:.3f}")
return related_info, {}
# 2. 对每个主题进行知识库查询
logger.info(f"开始处理{len(topics)}个主题的知识库查询")
# 优化批量获取嵌入向量减少API调用
embeddings = {}
topics_batch = [topic for topic in topics if len(topic) > 0]
if message: # 确保消息非空
topics_batch.append(message)
# 批量获取嵌入向量
embed_start_time = time.time()
for text in topics_batch:
if not text or len(text.strip()) == 0:
continue
try:
embedding = await get_embedding(text, request_type="info_retrieval")
if embedding:
embeddings[text] = embedding
else:
logger.warning(f"获取'{text}'的嵌入向量失败")
except Exception as e:
logger.error(f"获取'{text}'的嵌入向量时发生错误: {str(e)}")
logger.info(f"批量获取嵌入向量完成,耗时: {time.time() - embed_start_time:.3f}")
if not embeddings:
logger.error("所有嵌入向量获取失败")
return ""
# 3. 对每个主题进行知识库查询
all_results = []
query_start_time = time.time()
# 首先添加原始消息的查询结果
if message in embeddings:
original_results = self.get_info_from_db(embeddings[message], limit=3, threshold=threshold, return_raw=True)
if original_results:
for result in original_results:
result["topic"] = "原始消息"
all_results.extend(original_results)
logger.info(f"原始消息查询到{len(original_results)}条结果")
# 然后添加每个主题的查询结果
for topic in topics:
if not topic or topic not in embeddings:
continue
try:
topic_results = self.get_info_from_db(embeddings[topic], limit=3, threshold=threshold, return_raw=True)
if topic_results:
# 添加主题标记
for result in topic_results:
result["topic"] = topic
all_results.extend(topic_results)
logger.info(f"主题'{topic}'查询到{len(topic_results)}条结果")
except Exception as e:
logger.error(f"查询主题'{topic}'时发生错误: {str(e)}")
logger.info(f"知识库查询完成,耗时: {time.time() - query_start_time:.3f}秒,共获取{len(all_results)}条结果")
# 4. 去重和过滤
process_start_time = time.time()
unique_contents = set()
filtered_results = []
for result in all_results:
content = result["content"]
if content not in unique_contents:
unique_contents.add(content)
filtered_results.append(result)
# 5. 按相似度排序
filtered_results.sort(key=lambda x: x["similarity"], reverse=True)
# 6. 限制总数量最多10条
filtered_results = filtered_results[:10]
logger.info(f"结果处理完成,耗时: {time.time() - process_start_time:.3f}秒,过滤后剩余{len(filtered_results)}条结果")
# 7. 格式化输出
if filtered_results:
format_start_time = time.time()
grouped_results = {}
for result in filtered_results:
topic = result["topic"]
if topic not in grouped_results:
grouped_results[topic] = []
grouped_results[topic].append(result)
# 按主题组织输出
for topic, results in grouped_results.items():
related_info += f"【主题: {topic}\n"
for _i, result in enumerate(results, 1):
_similarity = result["similarity"]
content = result["content"].strip()
# 调试:为内容添加序号和相似度信息
# related_info += f"{i}. [{similarity:.2f}] {content}\n"
related_info += f"{content}\n"
related_info += "\n"
logger.info(f"格式化输出完成,耗时: {time.time() - format_start_time:.3f}")
logger.info(f"知识库检索总耗时: {time.time() - start_time:.3f}")
return related_info,grouped_results
def get_info_from_db(self, query_embedding: list, limit: int = 1, threshold: float = 0.5, return_raw: bool = False) -> Union[str, list]:
if not query_embedding:
return "" if not return_raw else []
# 使用余弦相似度计算
pipeline = [
{
"$addFields": {
"dotProduct": {
"$reduce": {
"input": {"$range": [0, {"$size": "$embedding"}]},
"initialValue": 0,
"in": {
"$add": [
"$$value",
{
"$multiply": [
{"$arrayElemAt": ["$embedding", "$$this"]},
{"$arrayElemAt": [query_embedding, "$$this"]},
]
},
]
},
}
},
"magnitude1": {
"$sqrt": {
"$reduce": {
"input": "$embedding",
"initialValue": 0,
"in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]},
}
}
},
"magnitude2": {
"$sqrt": {
"$reduce": {
"input": query_embedding,
"initialValue": 0,
"in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]},
}
}
},
}
},
{"$addFields": {"similarity": {"$divide": ["$dotProduct", {"$multiply": ["$magnitude1", "$magnitude2"]}]}}},
{
"$match": {
"similarity": {"$gte": threshold} # 只保留相似度大于等于阈值的结果
}
},
{"$sort": {"similarity": -1}},
{"$limit": limit},
{"$project": {"content": 1, "similarity": 1}},
]
results = list(db.knowledges.aggregate(pipeline))
logger.debug(f"知识库查询结果数量: {len(results)}")
if not results:
return "" if not return_raw else []
if return_raw:
return results
else:
# 返回所有找到的内容,用换行分隔
return "\n".join(str(result["content"]) for result in results)
# subheartflow = SubHeartflow()

View File

@@ -0,0 +1,117 @@
from dataclasses import dataclass
from typing import List
import random
@dataclass
class Identity:
"""身份特征类"""
identity_detail: List[str] # 身份细节描述
height: int # 身高(厘米)
weight: int # 体重(千克)
age: int # 年龄
gender: str # 性别
appearance: str # 外貌特征
_instance = None
def __new__(cls, *args, **kwargs):
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
def __init__(self, identity_detail: List[str] = None, height: int = 0, weight: int = 0,
age: int = 0, gender: str = "", appearance: str = ""):
"""初始化身份特征
Args:
identity_detail: 身份细节描述列表
height: 身高(厘米)
weight: 体重(千克)
age: 年龄
gender: 性别
appearance: 外貌特征
"""
if identity_detail is None:
identity_detail = []
self.identity_detail = identity_detail
self.height = height
self.weight = weight
self.age = age
self.gender = gender
self.appearance = appearance
@classmethod
def get_instance(cls) -> 'Identity':
"""获取Identity单例实例
Returns:
Identity: 单例实例
"""
if cls._instance is None:
cls._instance = cls()
return cls._instance
@classmethod
def initialize(cls, identity_detail: List[str], height: int, weight: int,
age: int, gender: str, appearance: str) -> 'Identity':
"""初始化身份特征
Args:
identity_detail: 身份细节描述列表
height: 身高(厘米)
weight: 体重(千克)
age: 年龄
gender: 性别
appearance: 外貌特征
Returns:
Identity: 初始化后的身份特征实例
"""
instance = cls.get_instance()
instance.identity_detail = identity_detail
instance.height = height
instance.weight = weight
instance.age = age
instance.gender = gender
instance.appearance = appearance
return instance
def get_prompt(self,x_person,level):
"""
获取身份特征的prompt
"""
if x_person == 2:
prompt_identity = ""
elif x_person == 1:
prompt_identity = ""
else:
prompt_identity = ""
if level == 1:
identity_detail = self.identity_detail
random.shuffle(identity_detail)
prompt_identity += identity_detail[0]
elif level == 2:
for detail in identity_detail:
prompt_identity += f",{detail}"
prompt_identity += ""
return prompt_identity
def to_dict(self) -> dict:
"""将身份特征转换为字典格式"""
return {
"identity_detail": self.identity_detail,
"height": self.height,
"weight": self.weight,
"age": self.age,
"gender": self.gender,
"appearance": self.appearance
}
@classmethod
def from_dict(cls, data: dict) -> 'Identity':
"""从字典创建身份特征实例"""
instance = cls.get_instance()
for key, value in data.items():
setattr(instance, key, value)
return instance

View File

@@ -0,0 +1,105 @@
from typing import Optional
from .personality import Personality
from .identity import Identity
class Individuality:
"""个体特征管理类"""
_instance = None
def __new__(cls, *args, **kwargs):
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
def __init__(self):
self.personality: Optional[Personality] = None
self.identity: Optional[Identity] = None
@classmethod
def get_instance(cls) -> 'Individuality':
"""获取Individuality单例实例
Returns:
Individuality: 单例实例
"""
if cls._instance is None:
cls._instance = cls()
return cls._instance
def initialize(self, bot_nickname: str, personality_core: str, personality_sides: list,
identity_detail: list, height: int, weight: int, age: int,
gender: str, appearance: str) -> None:
"""初始化个体特征
Args:
bot_nickname: 机器人昵称
personality_core: 人格核心特点
personality_sides: 人格侧面描述
identity_detail: 身份细节描述
height: 身高(厘米)
weight: 体重(千克)
age: 年龄
gender: 性别
appearance: 外貌特征
"""
# 初始化人格
self.personality = Personality.initialize(
bot_nickname=bot_nickname,
personality_core=personality_core,
personality_sides=personality_sides
)
# 初始化身份
self.identity = Identity.initialize(
identity_detail=identity_detail,
height=height,
weight=weight,
age=age,
gender=gender,
appearance=appearance
)
def to_dict(self) -> dict:
"""将个体特征转换为字典格式"""
return {
"personality": self.personality.to_dict() if self.personality else None,
"identity": self.identity.to_dict() if self.identity else None
}
@classmethod
def from_dict(cls, data: dict) -> 'Individuality':
"""从字典创建个体特征实例"""
instance = cls.get_instance()
if data.get("personality"):
instance.personality = Personality.from_dict(data["personality"])
if data.get("identity"):
instance.identity = Identity.from_dict(data["identity"])
return instance
def get_prompt(self,type,x_person,level):
"""
获取个体特征的prompt
"""
if type == "personality":
return self.personality.get_prompt(x_person,level)
elif type == "identity":
return self.identity.get_prompt(x_person,level)
else:
return ""
def get_traits(self,factor):
"""
获取个体特征的特质
"""
if factor == "openness":
return self.personality.openness
elif factor == "conscientiousness":
return self.personality.conscientiousness
elif factor == "extraversion":
return self.personality.extraversion
elif factor == "agreeableness":
return self.personality.agreeableness
elif factor == "neuroticism":
return self.personality.neuroticism

View File

@@ -0,0 +1,123 @@
import asyncio
import os
import time
from typing import Tuple, Union
import aiohttp
import requests
from src.common.logger import get_module_logger
logger = get_module_logger("offline_llm")
class LLM_request_off:
def __init__(self, model_name="Pro/deepseek-ai/DeepSeek-V3", **kwargs):
self.model_name = model_name
self.params = kwargs
self.api_key = os.getenv("SILICONFLOW_KEY")
self.base_url = os.getenv("SILICONFLOW_BASE_URL")
if not self.api_key or not self.base_url:
raise ValueError("环境变量未正确加载SILICONFLOW_KEY 或 SILICONFLOW_BASE_URL 未设置")
# logger.info(f"API URL: {self.base_url}") # 使用 logger 记录 base_url
def generate_response(self, prompt: str) -> Union[str, Tuple[str, str]]:
"""根据输入的提示生成模型的响应"""
headers = {"Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json"}
# 构建请求体
data = {
"model": self.model_name,
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.4,
**self.params,
}
# 发送请求到完整的 chat/completions 端点
api_url = f"{self.base_url.rstrip('/')}/chat/completions"
logger.info(f"Request URL: {api_url}") # 记录请求的 URL
max_retries = 3
base_wait_time = 15 # 基础等待时间(秒)
for retry in range(max_retries):
try:
response = requests.post(api_url, headers=headers, json=data)
if response.status_code == 429:
wait_time = base_wait_time * (2**retry) # 指数退避
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
time.sleep(wait_time)
continue
response.raise_for_status() # 检查其他响应状态
result = response.json()
if "choices" in result and len(result["choices"]) > 0:
content = result["choices"][0]["message"]["content"]
reasoning_content = result["choices"][0]["message"].get("reasoning_content", "")
return content, reasoning_content
return "没有返回结果", ""
except Exception as e:
if retry < max_retries - 1: # 如果还有重试机会
wait_time = base_wait_time * (2**retry)
logger.error(f"[回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
time.sleep(wait_time)
else:
logger.error(f"请求失败: {str(e)}")
return f"请求失败: {str(e)}", ""
logger.error("达到最大重试次数,请求仍然失败")
return "达到最大重试次数,请求仍然失败", ""
async def generate_response_async(self, prompt: str) -> Union[str, Tuple[str, str]]:
"""异步方式根据输入的提示生成模型的响应"""
headers = {"Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json"}
# 构建请求体
data = {
"model": self.model_name,
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.5,
**self.params,
}
# 发送请求到完整的 chat/completions 端点
api_url = f"{self.base_url.rstrip('/')}/chat/completions"
logger.info(f"Request URL: {api_url}") # 记录请求的 URL
max_retries = 3
base_wait_time = 15
async with aiohttp.ClientSession() as session:
for retry in range(max_retries):
try:
async with session.post(api_url, headers=headers, json=data) as response:
if response.status == 429:
wait_time = base_wait_time * (2**retry) # 指数退避
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
await asyncio.sleep(wait_time)
continue
response.raise_for_status() # 检查其他响应状态
result = await response.json()
if "choices" in result and len(result["choices"]) > 0:
content = result["choices"][0]["message"]["content"]
reasoning_content = result["choices"][0]["message"].get("reasoning_content", "")
return content, reasoning_content
return "没有返回结果", ""
except Exception as e:
if retry < max_retries - 1: # 如果还有重试机会
wait_time = base_wait_time * (2**retry)
logger.error(f"[回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
await asyncio.sleep(wait_time)
else:
logger.error(f"请求失败: {str(e)}")
return f"请求失败: {str(e)}", ""
logger.error("达到最大重试次数,请求仍然失败")
return "达到最大重试次数,请求仍然失败", ""

View File

@@ -0,0 +1,307 @@
from typing import Dict, List
import json
import os
from dotenv import load_dotenv
import sys
import toml
import random
from tqdm import tqdm
# 添加项目根目录到 Python 路径
root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../.."))
sys.path.append(root_path)
# 加载配置文件
config_path = os.path.join(root_path, "config", "bot_config.toml")
with open(config_path, "r", encoding="utf-8") as f:
config = toml.load(f)
# 现在可以导入src模块
from src.individuality.scene import get_scene_by_factor, PERSONALITY_SCENES #noqa E402
from src.individuality.questionnaire import FACTOR_DESCRIPTIONS #noqa E402
from src.individuality.offline_llm import LLM_request_off #noqa E402
# 加载环境变量
env_path = os.path.join(root_path, ".env")
if os.path.exists(env_path):
print(f"{env_path} 加载环境变量")
load_dotenv(env_path)
else:
print(f"未找到环境变量文件: {env_path}")
print("将使用默认配置")
def adapt_scene(scene: str) -> str:
personality_core = config['personality']['personality_core']
personality_sides = config['personality']['personality_sides']
personality_side = random.choice(personality_sides)
identity_details = config['identity']['identity_detail']
identity_detail = random.choice(identity_details)
"""
根据config中的属性改编场景使其更适合当前角色
Args:
scene: 原始场景描述
Returns:
str: 改编后的场景描述
"""
try:
prompt = f"""
这是一个参与人格测评的角色形象:
- 昵称: {config['bot']['nickname']}
- 性别: {config['identity']['gender']}
- 年龄: {config['identity']['age']}
- 外貌: {config['identity']['appearance']}
- 性格核心: {personality_core}
- 性格侧面: {personality_side}
- 身份细节: {identity_detail}
请根据上述形象,改编以下场景,在测评中,用户将根据该场景给出上述角色形象的反应:
{scene}
保持场景的本质不变,但最好贴近生活且具体,并且让它更适合这个角色。
改编后的场景应该自然、连贯,并考虑角色的年龄、身份和性格特点。只返回改编后的场景描述,不要包含其他说明。注意{config['bot']['nickname']}是面对这个场景的人,而不是场景的其他人。场景中不会有其描述,
现在,请你给出改编后的场景描述
"""
llm = LLM_request_off(model_name=config['model']['llm_normal']['name'])
adapted_scene, _ = llm.generate_response(prompt)
# 检查返回的场景是否为空或错误信息
if not adapted_scene or "错误" in adapted_scene or "失败" in adapted_scene:
print("场景改编失败,将使用原始场景")
return scene
return adapted_scene
except Exception as e:
print(f"场景改编过程出错:{str(e)},将使用原始场景")
return scene
class PersonalityEvaluator_direct:
def __init__(self):
self.personality_traits = {"开放性": 0, "严谨性": 0, "外向性": 0, "宜人性": 0, "神经质": 0}
self.scenarios = []
self.final_scores = {"开放性": 0, "严谨性": 0, "外向性": 0, "宜人性": 0, "神经质": 0}
self.dimension_counts = {trait: 0 for trait in self.final_scores.keys()}
# 为每个人格特质获取对应的场景
for trait in PERSONALITY_SCENES:
scenes = get_scene_by_factor(trait)
if not scenes:
continue
# 从每个维度选择3个场景
import random
scene_keys = list(scenes.keys())
selected_scenes = random.sample(scene_keys, min(3, len(scene_keys)))
for scene_key in selected_scenes:
scene = scenes[scene_key]
# 为每个场景添加评估维度
# 主维度是当前特质,次维度随机选择一个其他特质
other_traits = [t for t in PERSONALITY_SCENES if t != trait]
secondary_trait = random.choice(other_traits)
self.scenarios.append(
{"场景": scene["scenario"], "评估维度": [trait, secondary_trait], "场景编号": scene_key}
)
self.llm = LLM_request_off()
def evaluate_response(self, scenario: str, response: str, dimensions: List[str]) -> Dict[str, float]:
"""
使用 DeepSeek AI 评估用户对特定场景的反应
"""
# 构建维度描述
dimension_descriptions = []
for dim in dimensions:
desc = FACTOR_DESCRIPTIONS.get(dim, "")
if desc:
dimension_descriptions.append(f"- {dim}{desc}")
dimensions_text = "\n".join(dimension_descriptions)
prompt = f"""请根据以下场景和用户描述评估用户在大五人格模型中的相关维度得分1-6分
场景描述:
{scenario}
用户回应:
{response}
需要评估的维度说明:
{dimensions_text}
请按照以下格式输出评估结果仅输出JSON格式
{{
"{dimensions[0]}": 分数,
"{dimensions[1]}": 分数
}}
评分标准:
1 = 非常不符合该维度特征
2 = 比较不符合该维度特征
3 = 有点不符合该维度特征
4 = 有点符合该维度特征
5 = 比较符合该维度特征
6 = 非常符合该维度特征
请根据用户的回应结合场景和维度说明进行评分。确保分数在1-6之间并给出合理的评估。"""
try:
ai_response, _ = self.llm.generate_response(prompt)
# 尝试从AI响应中提取JSON部分
start_idx = ai_response.find("{")
end_idx = ai_response.rfind("}") + 1
if start_idx != -1 and end_idx != 0:
json_str = ai_response[start_idx:end_idx]
scores = json.loads(json_str)
# 确保所有分数在1-6之间
return {k: max(1, min(6, float(v))) for k, v in scores.items()}
else:
print("AI响应格式不正确使用默认评分")
return {dim: 3.5 for dim in dimensions}
except Exception as e:
print(f"评估过程出错:{str(e)}")
return {dim: 3.5 for dim in dimensions}
def run_evaluation(self):
"""
运行整个评估过程
"""
print(f"欢迎使用{config['bot']['nickname']}形象创建程序!")
print("接下来将给您呈现一系列有关您bot的场景共15个")
print("请想象您的bot在以下场景下会做什么并描述您的bot的反应。")
print("每个场景都会进行不同方面的评估。")
print("\n角色基本信息:")
print(f"- 昵称:{config['bot']['nickname']}")
print(f"- 性格核心:{config['personality']['personality_core']}")
print(f"- 性格侧面:{config['personality']['personality_sides']}")
print(f"- 身份细节:{config['identity']['identity_detail']}")
print("\n准备好了吗?按回车键开始...")
input()
total_scenarios = len(self.scenarios)
progress_bar = tqdm(total=total_scenarios, desc="场景进度", ncols=100, bar_format='{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}]')
for _i, scenario_data in enumerate(self.scenarios, 1):
# print(f"\n{'-' * 20} 场景 {i}/{total_scenarios} - {scenario_data['场景编号']} {'-' * 20}")
# 改编场景,使其更适合当前角色
print(f"{config['bot']['nickname']}祈祷中...")
adapted_scene = adapt_scene(scenario_data["场景"])
scenario_data["改编场景"] = adapted_scene
print(adapted_scene)
print(f"\n请描述{config['bot']['nickname']}在这种情况下会如何反应:")
response = input().strip()
if not response:
print("反应描述不能为空!")
continue
print("\n正在评估您的描述...")
scores = self.evaluate_response(adapted_scene, response, scenario_data["评估维度"])
# 更新最终分数
for dimension, score in scores.items():
self.final_scores[dimension] += score
self.dimension_counts[dimension] += 1
print("\n当前评估结果:")
print("-" * 30)
for dimension, score in scores.items():
print(f"{dimension}: {score}/6")
# 更新进度条
progress_bar.update(1)
# if i < total_scenarios:
# print("\n按回车键继续下一个场景...")
# input()
progress_bar.close()
# 计算平均分
for dimension in self.final_scores:
if self.dimension_counts[dimension] > 0:
self.final_scores[dimension] = round(self.final_scores[dimension] / self.dimension_counts[dimension], 2)
print("\n" + "=" * 50)
print(f" {config['bot']['nickname']}的人格特征评估结果 ".center(50))
print("=" * 50)
for trait, score in self.final_scores.items():
print(f"{trait}: {score}/6".ljust(20) + f"测试场景数:{self.dimension_counts[trait]}".rjust(30))
print("=" * 50)
# 返回评估结果
return self.get_result()
def get_result(self):
"""
获取评估结果
"""
return {
"final_scores": self.final_scores,
"dimension_counts": self.dimension_counts,
"scenarios": self.scenarios,
"bot_info": {
"nickname": config['bot']['nickname'],
"gender": config['identity']['gender'],
"age": config['identity']['age'],
"height": config['identity']['height'],
"weight": config['identity']['weight'],
"appearance": config['identity']['appearance'],
"personality_core": config['personality']['personality_core'],
"personality_sides": config['personality']['personality_sides'],
"identity_detail": config['identity']['identity_detail']
}
}
def main():
evaluator = PersonalityEvaluator_direct()
result = evaluator.run_evaluation()
# 准备简化的结果数据
simplified_result = {
"openness": round(result["final_scores"]["开放性"] / 6, 1), # 转换为0-1范围
"conscientiousness": round(result["final_scores"]["严谨性"] / 6, 1),
"extraversion": round(result["final_scores"]["外向性"] / 6, 1),
"agreeableness": round(result["final_scores"]["宜人性"] / 6, 1),
"neuroticism": round(result["final_scores"]["神经质"] / 6, 1),
"bot_nickname": config['bot']['nickname']
}
# 确保目录存在
save_dir = os.path.join(root_path, "data", "personality")
os.makedirs(save_dir, exist_ok=True)
# 创建文件名,替换可能的非法字符
bot_name = config['bot']['nickname']
# 替换Windows文件名中不允许的字符
for char in ['\\', '/', ':', '*', '?', '"', '<', '>', '|']:
bot_name = bot_name.replace(char, '_')
file_name = f"{bot_name}_personality.per"
save_path = os.path.join(save_dir, file_name)
# 保存简化的结果
with open(save_path, "w", encoding="utf-8") as f:
json.dump(simplified_result, f, ensure_ascii=False, indent=4)
print(f"\n结果已保存到 {save_path}")
# 同时保存完整结果到results目录
os.makedirs("results", exist_ok=True)
with open("results/personality_result.json", "w", encoding="utf-8") as f:
json.dump(result, f, ensure_ascii=False, indent=2)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,144 @@
from dataclasses import dataclass
from typing import Dict, List
import json
from pathlib import Path
import random
@dataclass
class Personality:
"""人格特质类"""
openness: float # 开放性
conscientiousness: float # 尽责性
extraversion: float # 外向性
agreeableness: float # 宜人性
neuroticism: float # 神经质
bot_nickname: str # 机器人昵称
personality_core: str # 人格核心特点
personality_sides: List[str] # 人格侧面描述
_instance = None
def __new__(cls, *args, **kwargs):
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
def __init__(self, personality_core: str = "", personality_sides: List[str] = None):
if personality_sides is None:
personality_sides = []
self.personality_core = personality_core
self.personality_sides = personality_sides
@classmethod
def get_instance(cls) -> 'Personality':
"""获取Personality单例实例
Returns:
Personality: 单例实例
"""
if cls._instance is None:
cls._instance = cls()
return cls._instance
def _init_big_five_personality(self):
"""初始化大五人格特质"""
# 构建文件路径
personality_file = Path("data/personality") / f"{self.bot_nickname}_personality.per"
# 如果文件存在,读取文件
if personality_file.exists():
with open(personality_file, 'r', encoding='utf-8') as f:
personality_data = json.load(f)
self.openness = personality_data.get('openness', 0.5)
self.conscientiousness = personality_data.get('conscientiousness', 0.5)
self.extraversion = personality_data.get('extraversion', 0.5)
self.agreeableness = personality_data.get('agreeableness', 0.5)
self.neuroticism = personality_data.get('neuroticism', 0.5)
else:
# 如果文件不存在根据personality_core和personality_core来设置大五人格特质
if "活泼" in self.personality_core or "开朗" in self.personality_sides:
self.extraversion = 0.8
self.neuroticism = 0.2
else:
self.extraversion = 0.3
self.neuroticism = 0.5
if "认真" in self.personality_core or "负责" in self.personality_sides:
self.conscientiousness = 0.9
else:
self.conscientiousness = 0.5
if "友善" in self.personality_core or "温柔" in self.personality_sides:
self.agreeableness = 0.9
else:
self.agreeableness = 0.5
if "创新" in self.personality_core or "开放" in self.personality_sides:
self.openness = 0.8
else:
self.openness = 0.5
@classmethod
def initialize(cls, bot_nickname: str, personality_core: str, personality_sides: List[str]) -> 'Personality':
"""初始化人格特质
Args:
bot_nickname: 机器人昵称
personality_core: 人格核心特点
personality_sides: 人格侧面描述
Returns:
Personality: 初始化后的人格特质实例
"""
instance = cls.get_instance()
instance.bot_nickname = bot_nickname
instance.personality_core = personality_core
instance.personality_sides = personality_sides
instance._init_big_five_personality()
return instance
def to_dict(self) -> Dict:
"""将人格特质转换为字典格式"""
return {
"openness": self.openness,
"conscientiousness": self.conscientiousness,
"extraversion": self.extraversion,
"agreeableness": self.agreeableness,
"neuroticism": self.neuroticism,
"bot_nickname": self.bot_nickname,
"personality_core": self.personality_core,
"personality_sides": self.personality_sides
}
@classmethod
def from_dict(cls, data: Dict) -> 'Personality':
"""从字典创建人格特质实例"""
instance = cls.get_instance()
for key, value in data.items():
setattr(instance, key, value)
return instance
def get_prompt(self,x_person,level):
# 开始构建prompt
if x_person == 2:
prompt_personality = ""
elif x_person == 1:
prompt_personality = ""
else:
prompt_personality = ""
#person
prompt_personality += self.personality_core
if level == 2:
personality_sides = self.personality_sides
random.shuffle(personality_sides)
prompt_personality += f",{personality_sides[0]}"
elif level == 3:
personality_sides = self.personality_sides
for side in personality_sides:
prompt_personality += f",{side}"
prompt_personality += ""
return prompt_personality

View File

@@ -0,0 +1,40 @@
import json
from typing import Dict
import os
def load_scenes() -> Dict:
"""
从JSON文件加载场景数据
Returns:
Dict: 包含所有场景的字典
"""
current_dir = os.path.dirname(os.path.abspath(__file__))
json_path = os.path.join(current_dir, 'template_scene.json')
with open(json_path, 'r', encoding='utf-8') as f:
return json.load(f)
PERSONALITY_SCENES = load_scenes()
def get_scene_by_factor(factor: str) -> Dict:
"""
根据人格因子获取对应的情景测试
Args:
factor (str): 人格因子名称
Returns:
Dict: 包含情景描述的字典
"""
return PERSONALITY_SCENES.get(factor, None)
def get_all_scenes() -> Dict:
"""
获取所有情景测试
Returns:
Dict: 所有情景测试的字典
"""
return PERSONALITY_SCENES

View File

@@ -0,0 +1,112 @@
{
"外向性": {
"场景1": {
"scenario": "你刚刚搬到一个新的城市工作。今天是你入职的第一天,在公司的电梯里,一位同事微笑着和你打招呼:\n\n同事「嗨你是新来的同事吧我是市场部的小林。」\n\n同事看起来很友善还主动介绍说「待会午饭时间我们部门有几个人准备一起去楼下新开的餐厅你要一起来吗可以认识一下其他同事。」",
"explanation": "这个场景通过职场社交情境,观察个体对于新环境、新社交圈的态度和反应倾向。"
},
"场景2": {
"scenario": "在大学班级群里,班长发起了一个组织班级联谊活动的投票:\n\n班长「大家好下周末我们准备举办一次班级联谊活动地点在学校附近的KTV。想请大家报名参加也欢迎大家邀请其他班级的同学」\n\n已经有几个同学在群里积极响应有人@你问你要不要一起参加。",
"explanation": "通过班级活动场景,观察个体对群体社交活动的参与意愿。"
},
"场景3": {
"scenario": "你在社交平台上发布了一条动态,收到了很多陌生网友的评论和私信:\n\n网友A「你说的这个观点很有意思想和你多交流一下。」\n\n网友B「我也对这个话题很感兴趣要不要建个群一起讨论」",
"explanation": "通过网络社交场景,观察个体对线上社交的态度。"
},
"场景4": {
"scenario": "你暗恋的对象今天主动来找你:\n\n对方「那个...我最近在准备一个演讲比赛,听说你口才很好。能不能请你帮我看看演讲稿,顺便给我一些建议?如果你有时间的话,可以一起吃个饭聊聊。」",
"explanation": "通过恋爱情境,观察个体在面对心仪对象时的社交表现。"
},
"场景5": {
"scenario": "在一次线下读书会上,主持人突然点名让你分享读后感:\n\n主持人「听说你对这本书很有见解能不能和大家分享一下你的想法」\n\n现场有二十多个陌生的读书爱好者都期待地看着你。",
"explanation": "通过即兴发言场景,观察个体的社交表现欲和公众表达能力。"
}
},
"神经质": {
"场景1": {
"scenario": "你正在准备一个重要的项目演示这关系到你的晋升机会。就在演示前30分钟你收到了主管发来的消息\n\n主管「临时有个变动CEO也会来听你的演示。他对这个项目特别感兴趣。」\n\n正当你准备回复时主管又发来一条「对了能不能把演示时间压缩到15分钟CEO下午还有其他安排。你之前准备的是30分钟的版本对吧」",
"explanation": "这个场景通过突发的压力情境,观察个体在面对计划外变化时的情绪反应和调节能力。"
},
"场景2": {
"scenario": "期末考试前一天晚上,你收到了好朋友发来的消息:\n\n好朋友「不好意思这么晚打扰你...我看你平时成绩很好,能不能帮我解答几个问题?我真的很担心明天的考试。」\n\n你看了看时间已经是晚上11点而你原本计划的复习还没完成。",
"explanation": "通过考试压力场景,观察个体在时间紧张时的情绪管理。"
},
"场景3": {
"scenario": "你在社交媒体上发表的一个观点引发了争议,有不少人开始批评你:\n\n网友A「这种观点也好意思说出来真是无知。」\n\n网友B「建议楼主先去补补课再来发言。」\n\n评论区里的负面评论越来越多还有人开始人身攻击。",
"explanation": "通过网络争议场景,观察个体面对批评时的心理承受能力。"
},
"场景4": {
"scenario": "你和恋人约好今天一起看电影,但在约定时间前半小时,对方发来消息:\n\n恋人「对不起我临时有点事可能要迟到一会儿。」\n\n二十分钟后对方又发来消息「可能要再等等抱歉」\n\n电影快要开始了但对方还是没有出现。",
"explanation": "通过恋爱情境,观察个体对不确定性的忍耐程度。"
},
"场景5": {
"scenario": "在一次重要的小组展示中,你的组员在演示途中突然卡壳了:\n\n组员小声对你说「我忘词了接下来的部分是什么来着...」\n\n台下的老师和同学都在等待气氛有些尴尬。",
"explanation": "通过公开场合的突发状况,观察个体的应急反应和压力处理能力。"
}
},
"严谨性": {
"场景1": {
"scenario": "你是团队的项目负责人,刚刚接手了一个为期两个月的重要项目。在第一次团队会议上:\n\n小王「老大我觉得两个月时间很充裕我们先做着看吧遇到问题再解决。」\n\n小张「要不要先列个时间表不过感觉太详细的计划也没必要点到为止就行。」\n\n小李「客户那边说如果能提前完成有奖励我觉得我们可以先做快一点的部分。」",
"explanation": "这个场景通过项目管理情境,体现个体在工作方法、计划性和责任心方面的特征。"
},
"场景2": {
"scenario": "期末小组作业,组长让大家分工完成一份研究报告。在截止日期前三天:\n\n组员A「我的部分大概写完了感觉还行。」\n\n组员B「我这边可能还要一天才能完成最近太忙了。」\n\n组员C发来一份没有任何引用出处、可能存在抄袭的内容「我写完了你们看看怎么样」",
"explanation": "通过学习场景,观察个体对学术规范和质量要求的重视程度。"
},
"场景3": {
"scenario": "你在一个兴趣小组的群聊中,大家正在讨论举办一次线下活动:\n\n成员A「到时候见面就知道具体怎么玩了」\n\n成员B「对啊随意一点挺好的。」\n\n成员C「人来了自然就热闹了。」",
"explanation": "通过活动组织场景,观察个体对活动计划的态度。"
},
"场景4": {
"scenario": "你的好友小明邀请你一起参加一个重要的演出活动,他说:\n\n小明「到时候我们就即兴发挥吧不用排练了我相信我们的默契。」\n\n距离演出还有三天但节目内容、配乐和服装都还没有确定。",
"explanation": "通过演出准备场景,观察个体的计划性和对不确定性的接受程度。"
},
"场景5": {
"scenario": "在一个重要的团队项目中,你发现一个同事的工作存在明显错误:\n\n同事「差不多就行了反正领导也看不出来。」\n\n这个错误可能不会立即造成问题但长期来看可能会影响项目质量。",
"explanation": "通过工作质量场景,观察个体对细节和标准的坚持程度。"
}
},
"开放性": {
"场景1": {
"scenario": "周末下午,你的好友小美兴致勃勃地给你打电话:\n\n小美「我刚发现一个特别有意思的沉浸式艺术展不是传统那种挂画的展览而是把整个空间都变成了艺术品。观众要穿特制的服装还要带上VR眼镜好像还有AI实时互动」\n\n小美继续说「虽然票价不便宜但听说体验很独特。网上评价两极分化有人说是前所未有的艺术革新也有人说是哗众取宠。要不要周末一起去体验一下」",
"explanation": "这个场景通过新型艺术体验,反映个体对创新事物的接受程度和尝试意愿。"
},
"场景2": {
"scenario": "在一节创意写作课上,老师提出了一个特别的作业:\n\n老师「下周的作业是用AI写作工具协助创作一篇小说。你们可以自由探索如何与AI合作打破传统写作方式。」\n\n班上随即展开了激烈讨论有人认为这是对创作的亵渎也有人对这种新形式感到兴奋。",
"explanation": "通过新技术应用场景,观察个体对创新学习方式的态度。"
},
"场景3": {
"scenario": "在社交媒体上,你看到一个朋友分享了一种新的学习方式:\n\n「最近我在尝试'沉浸式学习',就是完全投入到一个全新的领域。比如学习一门陌生的语言,或者尝试完全不同的职业技能。虽然过程会很辛苦,但这种打破舒适圈的感觉真的很棒!」\n\n评论区里争论不断有人认为这种学习方式效率高也有人觉得太激进。",
"explanation": "通过新型学习方式,观察个体对创新和挑战的态度。"
},
"场景4": {
"scenario": "你的朋友向你推荐了一种新的饮食方式:\n\n朋友「我最近在尝试'未来食品'比如人造肉、3D打印食物、昆虫蛋白等。这不仅对环境友好营养也很均衡。要不要一起来尝试看看」\n\n这个提议让你感到好奇又犹豫你之前从未尝试过这些新型食物。",
"explanation": "通过饮食创新场景,观察个体对新事物的接受度和尝试精神。"
},
"场景5": {
"scenario": "在一次朋友聚会上,大家正在讨论未来职业规划:\n\n朋友A「我准备辞职去做自媒体专门介绍一些小众的文化和艺术。」\n\n朋友B「我想去学习生物科技准备转行做人造肉研发。」\n\n朋友C「我在考虑加入一个区块链创业项目虽然风险很大。」",
"explanation": "通过职业选择场景,观察个体对新兴领域的探索意愿。"
}
},
"宜人性": {
"场景1": {
"scenario": "在回家的公交车上,你遇到这样一幕:\n\n一位老奶奶颤颤巍巍地上了车车上座位已经坐满了。她站在你旁边看起来很疲惫。这时你听到前排两个年轻人的对话\n\n年轻人A「那个老太太好像站不稳看起来挺累的。」\n\n年轻人B「现在的老年人真是...我看她包里还有菜,肯定是去菜市场买完菜回来的,这么多人都不知道叫子女开车接送。」\n\n就在这时老奶奶一个趔趄差点摔倒。她扶住了扶手但包里的东西洒了一些出来。",
"explanation": "这个场景通过公共场合的助人情境,体现个体的同理心和对他人需求的关注程度。"
},
"场景2": {
"scenario": "在班级群里,有同学发起为生病住院的同学捐款:\n\n同学A「大家好小林最近得了重病住院医药费很贵家里负担很重。我们要不要一起帮帮他」\n\n同学B「我觉得这是他家里的事我们不方便参与吧。」\n\n同学C「但是都是同学一场帮帮忙也是应该的。」",
"explanation": "通过同学互助场景,观察个体的助人意愿和同理心。"
},
"场景3": {
"scenario": "在一个网络讨论组里,有人发布了求助信息:\n\n求助者「最近心情很低落感觉生活很压抑不知道该怎么办...」\n\n评论区里已经有一些回复\n「生活本来就是这样想开点」\n「你这样子太消极了要积极面对。」\n「谁还没点烦心事啊过段时间就好了。」",
"explanation": "通过网络互助场景,观察个体的共情能力和安慰方式。"
},
"场景4": {
"scenario": "你的朋友向你倾诉工作压力:\n\n朋友「最近工作真的好累感觉快坚持不下去了...」\n\n但今天你也遇到了很多烦心事心情也不太好。",
"explanation": "通过感情关系场景,观察个体在自身状态不佳时的关怀能力。"
},
"场景5": {
"scenario": "在一次团队项目中,新来的同事小王因为经验不足,造成了一个严重的错误。在部门会议上:\n\n主管「这个错误造成了很大的损失是谁负责的这部分」\n\n小王看起来很紧张欲言又止。你知道是他造成的错误同时你也是这个项目的共同负责人。",
"explanation": "通过职场情境,观察个体在面对他人过错时的态度和处理方式。"
}
}
}

View File

@@ -15,6 +15,7 @@ from .plugins.config.config import global_config
from .plugins.chat.bot import chat_bot
from .common.logger import get_module_logger
from .plugins.remote import heartbeat_thread # noqa: F401
from .individuality.individuality import Individuality
logger = get_module_logger("main")
@@ -26,6 +27,7 @@ class MainSystem:
self.mood_manager = MoodManager.get_instance()
self.hippocampus_manager = HippocampusManager.get_instance()
self._message_manager_started = False
self.individuality = Individuality.get_instance()
# 使用消息API替代直接的FastAPI实例
from .plugins.message import global_api
@@ -56,8 +58,9 @@ class MainSystem:
self.mood_manager.start_mood_update(update_interval=global_config.mood_update_interval)
logger.success("情绪管理器启动成功")
# 检查并清除person_info冗余字段
# 检查并清除person_info冗余字段,启动个人习惯推断
await person_info_manager.del_all_undefined_field()
asyncio.create_task(person_info_manager.personal_habit_deduction())
# 启动愿望管理器
await willing_manager.ensure_started()
@@ -78,7 +81,7 @@ class MainSystem:
# 初始化日程
bot_schedule.initialize(
name=global_config.BOT_NICKNAME,
personality=global_config.PROMPT_PERSONALITY,
personality=global_config.personality_core,
behavior=global_config.PROMPT_SCHEDULE_GEN,
interval=global_config.SCHEDULE_DOING_UPDATE_INTERVAL,
)
@@ -87,6 +90,20 @@ class MainSystem:
# 启动FastAPI服务器
self.app.register_message_handler(chat_bot.message_process)
# 初始化个体特征
self.individuality.initialize(
bot_nickname=global_config.BOT_NICKNAME,
personality_core=global_config.personality_core,
personality_sides=global_config.personality_sides,
identity_detail=global_config.identity_detail,
height=global_config.height,
weight=global_config.weight,
age=global_config.age,
gender=global_config.gender,
appearance=global_config.appearance
)
logger.success("个体特征初始化成功")
try:
# 启动心流系统
asyncio.create_task(heartflow.heartflow_start_working())
@@ -115,17 +132,19 @@ class MainSystem:
async def build_memory_task(self):
"""记忆构建任务"""
while True:
await asyncio.sleep(global_config.build_memory_interval)
logger.info("正在进行记忆构建")
await HippocampusManager.get_instance().build_memory()
await asyncio.sleep(global_config.build_memory_interval)
async def forget_memory_task(self):
"""记忆遗忘任务"""
while True:
await asyncio.sleep(global_config.forget_memory_interval)
print("\033[1;32m[记忆遗忘]\033[0m 开始遗忘记忆...")
await HippocampusManager.get_instance().forget_memory(percentage=global_config.memory_forget_percentage)
print("\033[1;32m[记忆遗忘]\033[0m 记忆遗忘完成")
await asyncio.sleep(global_config.forget_memory_interval)
async def print_mood_task(self):
"""打印情绪状态"""

View File

@@ -1,6 +1,6 @@
import time
import asyncio
from typing import Optional, Dict, Any, List
from typing import Optional, Dict, Any, List, Tuple
from src.common.logger import get_module_logger
from src.common.database import db
from ..message.message_base import UserInfo
@@ -57,6 +57,35 @@ class ChatObserver:
self._update_event = asyncio.Event() # 触发更新的事件
self._update_complete = asyncio.Event() # 更新完成的事件
def check(self) -> bool:
"""检查距离上一次观察之后是否有了新消息
Returns:
bool: 是否有新消息
"""
logger.debug(f"检查距离上一次观察之后是否有了新消息: {self.last_check_time}")
query = {
"chat_id": self.stream_id,
"time": {"$gt": self.last_check_time}
}
# 只需要查询是否存在,不需要获取具体消息
new_message_exists = db.messages.find_one(query) is not None
if new_message_exists:
logger.debug("发现新消息")
self.last_check_time = time.time()
return new_message_exists
def get_new_message(self) -> Tuple[List[Dict[str, Any]], List[Dict[str, Any]]]:
"""获取上一次观察的时间点后的新消息,插入到历史记录中,并返回新消息和历史记录两个对象"""
messages = self.get_message_history(self.last_check_time)
for message in messages:
self._add_message_to_history(message)
return messages, self.message_history
def new_message_after(self, time_point: float) -> bool:
"""判断是否在指定时间点后有新消息
@@ -66,6 +95,7 @@ class ChatObserver:
Returns:
bool: 是否有新消息
"""
logger.debug(f"判断是否在指定时间点后有新消息: {self.last_message_time} > {time_point}")
return self.last_message_time is None or self.last_message_time > time_point
def _add_message_to_history(self, message: Dict[str, Any]):

View File

@@ -17,7 +17,8 @@ from ..storage.storage import MessageStorage
from .chat_observer import ChatObserver
from .pfc_KnowledgeFetcher import KnowledgeFetcher
from .reply_checker import ReplyChecker
import json
from .pfc_utils import get_items_from_json
from src.individuality.individuality import Individuality
import time
logger = get_module_logger("pfc")
@@ -51,7 +52,7 @@ class ActionPlanner:
max_tokens=1000,
request_type="action_planning"
)
self.personality_info = " ".join(global_config.PROMPT_PERSONALITY)
self.personality_info = Individuality.get_instance().get_prompt(type = "personality", x_person = 2, level = 2)
self.name = global_config.BOT_NICKNAME
self.chat_observer = ChatObserver.get_instance(stream_id)
@@ -67,7 +68,6 @@ class ActionPlanner:
Args:
goal: 对话目标
method: 实现方式
reasoning: 目标原因
action_history: 行动历史记录
@@ -128,43 +128,18 @@ judge_conversation: 判断对话是否结束,当发现对话目标已经达到
content, _ = await self.llm.generate_response_async(prompt)
logger.debug(f"LLM原始返回内容: {content}")
# 清理内容,尝试提取JSON部分
content = content.strip()
try:
# 尝试直接解析
result = json.loads(content)
except json.JSONDecodeError:
# 如果直接解析失败尝试查找和提取JSON部分
import re
json_pattern = r'\{[^{}]*\}'
json_match = re.search(json_pattern, content)
if json_match:
try:
result = json.loads(json_match.group())
except json.JSONDecodeError:
logger.error("提取的JSON内容解析失败返回默认行动")
return "direct_reply", "JSON解析失败选择直接回复"
else:
# 如果找不到JSON尝试从文本中提取行动和原因
if "direct_reply" in content.lower():
return "direct_reply", "从文本中提取的行动"
elif "fetch_knowledge" in content.lower():
return "fetch_knowledge", "从文本中提取的行动"
elif "wait" in content.lower():
return "wait", "从文本中提取的行动"
elif "listening" in content.lower():
return "listening", "从文本中提取的行动"
elif "rethink_goal" in content.lower():
return "rethink_goal", "从文本中提取的行动"
elif "judge_conversation" in content.lower():
return "judge_conversation", "从文本中提取的行动"
else:
logger.error("无法从返回内容中提取行动类型")
return "direct_reply", "无法解析响应,选择直接回复"
# 使用简化函数提取JSON内容
success, result = get_items_from_json(
content,
"action", "reason",
default_values={"action": "direct_reply", "reason": "默认原因"}
)
# 验证JSON字段
action = result.get("action", "direct_reply")
reason = result.get("reason", "默认原因")
if not success:
return "direct_reply", "JSON解析失败选择直接回复"
action = result["action"]
reason = result["reason"]
# 验证action类型
if action not in ["direct_reply", "fetch_knowledge", "wait", "listening", "rethink_goal", "judge_conversation"]:
@@ -191,11 +166,16 @@ class GoalAnalyzer:
request_type="conversation_goal"
)
self.personality_info = " ".join(global_config.PROMPT_PERSONALITY)
self.personality_info = Individuality.get_instance().get_prompt(type = "personality", x_person = 2, level = 2)
self.name = global_config.BOT_NICKNAME
self.nick_name = global_config.BOT_ALIAS_NAMES
self.chat_observer = ChatObserver.get_instance(stream_id)
# 多目标存储结构
self.goals = [] # 存储多个目标
self.max_goals = 3 # 同时保持的最大目标数量
self.current_goal_and_reason = None
async def analyze_goal(self) -> Tuple[str, str, str]:
"""分析对话历史并设定目标
@@ -221,11 +201,28 @@ class GoalAnalyzer:
personality_text = f"你的名字是{self.name}{self.personality_info}"
prompt = f"""{personality_text}。现在你在参与一场QQ聊天请分析以下聊天记录并根据你的性格特征确定一个明确的对话目标。
这个目标应该反映出对话的意图和期望的结果。
# 构建当前已有目标的文本
existing_goals_text = ""
if self.goals:
existing_goals_text = "当前已有的对话目标:\n"
for i, (goal, _, reason) in enumerate(self.goals):
existing_goals_text += f"{i+1}. 目标: {goal}, 原因: {reason}\n"
prompt = f"""{personality_text}。现在你在参与一场QQ聊天请分析以下聊天记录并根据你的性格特征确定多个明确的对话目标。
这些目标应该反映出对话的不同方面和意图。
{existing_goals_text}
聊天记录:
{chat_history_text}
请以JSON格式输出包含以下字段
请分析当前对话并确定最适合的对话目标。你可以:
1. 保持现有目标不变
2. 修改现有目标
3. 添加新目标
4. 删除不再相关的目标
请以JSON格式输出一个当前最主要的对话目标包含以下字段
1. goal: 对话目标(简短的一句话)
2. reasoning: 对话原因,为什么设定这个目标(简要解释)
@@ -239,50 +236,31 @@ class GoalAnalyzer:
content, _ = await self.llm.generate_response_async(prompt)
logger.debug(f"LLM原始返回内容: {content}")
# 清理和验证返回内容
if not content or not isinstance(content, str):
logger.error("LLM返回内容为空或格式不正确")
continue
# 使用简化函数提取JSON内容
success, result = get_items_from_json(
content,
"goal", "reasoning",
required_types={"goal": str, "reasoning": str}
)
# 尝试提取JSON部分
content = content.strip()
try:
# 尝试直接解析
result = json.loads(content)
except json.JSONDecodeError:
# 如果直接解析失败尝试查找和提取JSON部分
import re
json_pattern = r'\{[^{}]*\}'
json_match = re.search(json_pattern, content)
if json_match:
try:
result = json.loads(json_match.group())
except json.JSONDecodeError:
logger.error(f"提取的JSON内容解析失败重试第{retry + 1}")
continue
else:
logger.error(f"无法在返回内容中找到有效的JSON重试第{retry + 1}")
continue
# 验证JSON字段
if not all(key in result for key in ["goal", "reasoning"]):
logger.error(f"JSON缺少必要字段实际内容: {result},重试第{retry + 1}")
if not success:
logger.error(f"无法解析JSON重试第{retry + 1}")
continue
goal = result["goal"]
reasoning = result["reasoning"]
# 验证字段内容
if not isinstance(goal, str) or not isinstance(reasoning, str):
logger.error(f"JSON字段类型错误goal和reasoning必须是字符串重试第{retry + 1}")
continue
if not goal.strip() or not reasoning.strip():
logger.error(f"JSON字段内容为空重试第{retry + 1}")
continue
# 使用默认的方法
method = "以友好的态度回应"
# 更新目标列表
await self._update_goals(goal, method, reasoning)
# 返回当前最主要的目标
if self.goals:
current_goal, current_method, current_reasoning = self.goals[0]
return current_goal, current_method, current_reasoning
else:
return goal, method, reasoning
except Exception as e:
@@ -294,6 +272,67 @@ class GoalAnalyzer:
# 所有重试都失败后的默认返回
return "保持友好的对话", "以友好的态度回应", "确保对话顺利进行"
async def _update_goals(self, new_goal: str, method: str, reasoning: str):
"""更新目标列表
Args:
new_goal: 新的目标
method: 实现目标的方法
reasoning: 目标的原因
"""
# 检查新目标是否与现有目标相似
for i, (existing_goal, _, _) in enumerate(self.goals):
if self._calculate_similarity(new_goal, existing_goal) > 0.7: # 相似度阈值
# 更新现有目标
self.goals[i] = (new_goal, method, reasoning)
# 将此目标移到列表前面(最主要的位置)
self.goals.insert(0, self.goals.pop(i))
return
# 添加新目标到列表前面
self.goals.insert(0, (new_goal, method, reasoning))
# 限制目标数量
if len(self.goals) > self.max_goals:
self.goals.pop() # 移除最老的目标
def _calculate_similarity(self, goal1: str, goal2: str) -> float:
"""简单计算两个目标之间的相似度
这里使用一个简单的实现,实际可以使用更复杂的文本相似度算法
Args:
goal1: 第一个目标
goal2: 第二个目标
Returns:
float: 相似度得分 (0-1)
"""
# 简单实现:检查重叠字数比例
words1 = set(goal1)
words2 = set(goal2)
overlap = len(words1.intersection(words2))
total = len(words1.union(words2))
return overlap / total if total > 0 else 0
async def get_all_goals(self) -> List[Tuple[str, str, str]]:
"""获取所有当前目标
Returns:
List[Tuple[str, str, str]]: 目标列表,每项为(目标, 方法, 原因)
"""
return self.goals.copy()
async def get_alternative_goals(self) -> List[Tuple[str, str, str]]:
"""获取除了当前主要目标外的其他备选目标
Returns:
List[Tuple[str, str, str]]: 备选目标列表
"""
if len(self.goals) <= 1:
return []
return self.goals[1:].copy()
async def analyze_conversation(self, goal, reasoning):
messages = self.chat_observer.get_message_history()
chat_history_text = ""
@@ -330,58 +369,31 @@ class GoalAnalyzer:
content, _ = await self.llm.generate_response_async(prompt)
logger.debug(f"LLM原始返回内容: {content}")
# 清理和验证返回内容
if not content or not isinstance(content, str):
logger.error("LLM返回内容为空或格式不正确")
# 使用简化函数提取JSON内容
success, result = get_items_from_json(
content,
"goal_achieved", "stop_conversation", "reason",
required_types={
"goal_achieved": bool,
"stop_conversation": bool,
"reason": str
}
)
if not success:
return False, False, "确保对话顺利进行"
# 尝试提取JSON部分
content = content.strip()
try:
# 尝试直接解析
result = json.loads(content)
except json.JSONDecodeError:
# 如果直接解析失败尝试查找和提取JSON部分
import re
json_pattern = r'\{[^{}]*\}'
json_match = re.search(json_pattern, content)
if json_match:
try:
result = json.loads(json_match.group())
except json.JSONDecodeError as e:
logger.error(f"提取的JSON内容解析失败: {e}")
return False, False, "确保对话顺利进行"
else:
logger.error("无法在返回内容中找到有效的JSON")
return False, False, "确保对话顺利进行"
# 如果当前目标达成,从目标列表中移除
if result["goal_achieved"] and not result["stop_conversation"]:
for i, (g, _, _) in enumerate(self.goals):
if g == goal:
self.goals.pop(i)
# 如果还有其他目标,不停止对话
if self.goals:
result["stop_conversation"] = False
break
# 验证JSON字段
if not all(key in result for key in ["goal_achieved", "stop_conversation", "reason"]):
logger.error(f"JSON缺少必要字段实际内容: {result}")
return False, False, "确保对话顺利进行"
goal_achieved = result["goal_achieved"]
stop_conversation = result["stop_conversation"]
reason = result["reason"]
# 验证字段类型
if not isinstance(goal_achieved, bool):
logger.error("goal_achieved 必须是布尔值")
return False, False, "确保对话顺利进行"
if not isinstance(stop_conversation, bool):
logger.error("stop_conversation 必须是布尔值")
return False, False, "确保对话顺利进行"
if not isinstance(reason, str):
logger.error("reason 必须是字符串")
return False, False, "确保对话顺利进行"
if not reason.strip():
logger.error("reason 不能为空")
return False, False, "确保对话顺利进行"
return goal_achieved, stop_conversation, reason
return result["goal_achieved"], result["stop_conversation"], result["reason"]
except Exception as e:
logger.error(f"分析对话目标时出错: {str(e)}")
@@ -392,7 +404,7 @@ class Waiter:
"""快 速 等 待"""
def __init__(self, stream_id: str):
self.chat_observer = ChatObserver.get_instance(stream_id)
self.personality_info = " ".join(global_config.PROMPT_PERSONALITY)
self.personality_info = Individuality.get_instance().get_prompt(type = "personality", x_person = 2, level = 2)
self.name = global_config.BOT_NICKNAME
async def wait(self) -> bool:
@@ -406,8 +418,8 @@ class Waiter:
await asyncio.sleep(1)
logger.info("等待中...")
# 检查是否超过60秒
if time.time() - wait_start_time > 60:
logger.info("等待超过60秒结束对话")
if time.time() - wait_start_time > 300:
logger.info("等待超过300秒结束对话")
return True
logger.info("等待结束")
return False
@@ -423,7 +435,7 @@ class ReplyGenerator:
max_tokens=300,
request_type="reply_generation"
)
self.personality_info = " ".join(global_config.PROMPT_PERSONALITY)
self.personality_info = Individuality.get_instance().get_prompt(type = "personality", x_person = 2, level = 2)
self.name = global_config.BOT_NICKNAME
self.chat_observer = ChatObserver.get_instance(stream_id)
self.reply_checker = ReplyChecker(stream_id)
@@ -435,19 +447,18 @@ class ReplyGenerator:
knowledge_cache: Dict[str, str],
previous_reply: Optional[str] = None,
retry_count: int = 0
) -> Tuple[str, bool]:
) -> str:
"""生成回复
Args:
goal: 对话目标
method: 实现方式
chat_history: 聊天历史
knowledge_cache: 知识缓存
previous_reply: 上一次生成的回复(如果有)
retry_count: 当前重试次数
Returns:
Tuple[str, bool]: (生成的回复, 是否需要重新规划)
str: 生成的回复
"""
# 构建提示词
logger.debug(f"开始生成回复:当前目标: {goal}")
@@ -508,52 +519,104 @@ class ReplyGenerator:
try:
content, _ = await self.llm.generate_response_async(prompt)
logger.info(f"生成的回复: {content}")
is_new = self.chat_observer.check()
logger.debug(f"再看一眼聊天记录,{'' if is_new else '没有'}新消息")
# 检查生成回复是否合适
is_suitable, reason, need_replan = await self.reply_checker.check(
content, goal, retry_count
)
if not is_suitable:
logger.warning(f"生成的回复不合适,原因: {reason}")
if need_replan:
logger.info("需要重新规划对话目标")
return "让我重新思考一下...", True
else:
# 递归调用将当前回复作为previous_reply传入
# 如果有新消息,重新生成回复
if is_new:
logger.info("检测到新消息,重新生成回复")
return await self.generate(
goal, chat_history, knowledge_cache,
content, retry_count + 1
None, retry_count
)
return content, False
return content
except Exception as e:
logger.error(f"生成回复时出错: {e}")
return "抱歉,我现在有点混乱,让我重新思考一下...", True
return "抱歉,我现在有点混乱,让我重新思考一下..."
async def check_reply(
self,
reply: str,
goal: str,
retry_count: int = 0
) -> Tuple[bool, str, bool]:
"""检查回复是否合适
Args:
reply: 生成的回复
goal: 对话目标
retry_count: 当前重试次数
Returns:
Tuple[bool, str, bool]: (是否合适, 原因, 是否需要重新规划)
"""
return await self.reply_checker.check(reply, goal, retry_count)
class Conversation:
# 类级别的实例管理
_instances: Dict[str, 'Conversation'] = {}
_instance_lock = asyncio.Lock() # 类级别的全局锁
_init_events: Dict[str, asyncio.Event] = {} # 初始化完成事件
_initializing: Dict[str, bool] = {} # 标记是否正在初始化
@classmethod
def get_instance(cls, stream_id: str) -> 'Conversation':
"""获取或创建对话实例"""
async def get_instance(cls, stream_id: str) -> Optional['Conversation']:
"""获取或创建对话实例
Args:
stream_id: 聊天流ID
Returns:
Optional[Conversation]: 对话实例如果创建或等待失败则返回None
"""
try:
# 使用全局锁来确保线程安全
async with cls._instance_lock:
# 如果已经在初始化中,等待初始化完成
if stream_id in cls._initializing and cls._initializing[stream_id]:
# 释放锁等待初始化
cls._instance_lock.release()
try:
await asyncio.wait_for(cls._init_events[stream_id].wait(), timeout=5.0)
except asyncio.TimeoutError:
logger.error(f"等待实例 {stream_id} 初始化超时")
return None
finally:
await cls._instance_lock.acquire()
# 如果实例不存在,创建新实例
if stream_id not in cls._instances:
cls._instances[stream_id] = cls(stream_id)
cls._init_events[stream_id] = asyncio.Event()
cls._initializing[stream_id] = True
logger.info(f"创建新的对话实例: {stream_id}")
return cls._instances[stream_id]
except Exception as e:
logger.error(f"获取对话实例失败: {e}")
return None
@classmethod
def remove_instance(cls, stream_id: str):
"""删除对话实例"""
async def remove_instance(cls, stream_id: str):
"""删除对话实例
Args:
stream_id: 聊天流ID
"""
async with cls._instance_lock:
if stream_id in cls._instances:
# 停止相关组件
instance = cls._instances[stream_id]
instance.chat_observer.stop()
# 删除实例
del cls._instances[stream_id]
if stream_id in cls._init_events:
del cls._init_events[stream_id]
if stream_id in cls._initializing:
del cls._initializing[stream_id]
logger.info(f"已删除对话实例 {stream_id}")
def __init__(self, stream_id: str):
@@ -592,12 +655,20 @@ class Conversation:
async def start(self):
"""开始对话流程"""
try:
logger.info("对话系统启动")
self.should_continue = True
self.chat_observer.start() # 启动观察器
await asyncio.sleep(1)
# 启动对话循环
await self._conversation_loop()
except Exception as e:
logger.error(f"启动对话系统失败: {e}")
raise
finally:
# 标记初始化完成
self._init_events[self.stream_id].set()
self._initializing[self.stream_id] = False
async def _conversation_loop(self):
"""对话循环"""
@@ -658,16 +729,100 @@ class Conversation:
if action == "direct_reply":
self.state = ConversationState.GENERATING
messages = self.chat_observer.get_message_history(limit=30)
self.generated_reply, need_replan = await self.reply_generator.generate(
self.generated_reply = await self.reply_generator.generate(
self.current_goal,
self.current_method,
[self._convert_to_message(msg) for msg in messages],
self.knowledge_cache
)
# 检查回复是否合适
is_suitable, reason, need_replan = await self.reply_generator.check_reply(
self.generated_reply,
self.current_goal
)
if not is_suitable:
logger.warning(f"生成的回复不合适,原因: {reason}")
if need_replan:
# 尝试切换到其他备选目标
alternative_goals = await self.goal_analyzer.get_alternative_goals()
if alternative_goals:
# 有备选目标,尝试使用下一个目标
self.current_goal, self.current_method, self.goal_reasoning = alternative_goals[0]
logger.info(f"切换到备选目标: {self.current_goal}")
# 使用新目标生成回复
self.generated_reply = await self.reply_generator.generate(
self.current_goal,
self.current_method,
[self._convert_to_message(msg) for msg in messages],
self.knowledge_cache
)
# 检查使用新目标生成的回复是否合适
is_suitable, reason, _ = await self.reply_generator.check_reply(
self.generated_reply,
self.current_goal
)
if is_suitable:
# 如果新目标的回复合适,调整目标优先级
await self.goal_analyzer._update_goals(
self.current_goal,
self.current_method,
self.goal_reasoning
)
else:
# 如果新目标还是不合适,重新思考目标
self.state = ConversationState.RETHINKING
self.current_goal, self.current_method, self.goal_reasoning = await self.goal_analyzer.analyze_goal()
return
else:
# 没有备选目标,重新分析
self.state = ConversationState.RETHINKING
self.current_goal, self.current_method, self.goal_reasoning = await self.goal_analyzer.analyze_goal()
return
else:
# 重新生成回复
self.generated_reply = await self.reply_generator.generate(
self.current_goal,
self.current_method,
[self._convert_to_message(msg) for msg in messages],
self.knowledge_cache,
self.generated_reply # 将不合适的回复作为previous_reply传入
)
while self.chat_observer.check():
if not is_suitable:
logger.warning(f"生成的回复不合适,原因: {reason}")
if need_replan:
# 尝试切换到其他备选目标
alternative_goals = await self.goal_analyzer.get_alternative_goals()
if alternative_goals:
# 有备选目标,尝试使用下一个目标
self.current_goal, self.current_method, self.goal_reasoning = alternative_goals[0]
logger.info(f"切换到备选目标: {self.current_goal}")
# 使用新目标生成回复
self.generated_reply = await self.reply_generator.generate(
self.current_goal,
self.current_method,
[self._convert_to_message(msg) for msg in messages],
self.knowledge_cache
)
is_suitable = True # 假设使用新目标后回复是合适的
else:
# 没有备选目标,重新分析
self.state = ConversationState.RETHINKING
self.current_goal, self.current_method, self.goal_reasoning = await self.goal_analyzer.analyze_goal()
return
else:
# 重新生成回复
self.generated_reply = await self.reply_generator.generate(
self.current_goal,
self.current_method,
[self._convert_to_message(msg) for msg in messages],
self.knowledge_cache,
self.generated_reply # 将不合适的回复作为previous_reply传入
)
await self._send_reply()
elif action == "fetch_knowledge":
@@ -682,16 +837,57 @@ class Conversation:
if knowledge != "未找到相关知识":
self.knowledge_cache[sources] = knowledge
self.generated_reply, need_replan = await self.reply_generator.generate(
self.generated_reply = await self.reply_generator.generate(
self.current_goal,
self.current_method,
[self._convert_to_message(msg) for msg in messages],
self.knowledge_cache
)
# 检查回复是否合适
is_suitable, reason, need_replan = await self.reply_generator.check_reply(
self.generated_reply,
self.current_goal
)
if not is_suitable:
logger.warning(f"生成的回复不合适,原因: {reason}")
if need_replan:
# 尝试切换到其他备选目标
alternative_goals = await self.goal_analyzer.get_alternative_goals()
if alternative_goals:
# 有备选目标,尝试使用
self.current_goal, self.current_method, self.goal_reasoning = alternative_goals[0]
logger.info(f"切换到备选目标: {self.current_goal}")
# 使用新目标获取知识并生成回复
knowledge, sources = await self.knowledge_fetcher.fetch(
self.current_goal,
[self._convert_to_message(msg) for msg in messages]
)
if knowledge != "未找到相关知识":
self.knowledge_cache[sources] = knowledge
self.generated_reply = await self.reply_generator.generate(
self.current_goal,
self.current_method,
[self._convert_to_message(msg) for msg in messages],
self.knowledge_cache
)
else:
# 没有备选目标,重新分析
self.state = ConversationState.RETHINKING
self.current_goal, self.current_method, self.goal_reasoning = await self.goal_analyzer.analyze_goal()
return
else:
# 重新生成回复
self.generated_reply = await self.reply_generator.generate(
self.current_goal,
self.current_method,
[self._convert_to_message(msg) for msg in messages],
self.knowledge_cache,
self.generated_reply # 将不合适的回复作为previous_reply传入
)
await self._send_reply()
elif action == "rethink_goal":
@@ -701,6 +897,16 @@ class Conversation:
elif action == "judge_conversation":
self.state = ConversationState.JUDGING
self.goal_achieved, self.stop_conversation, self.reason = await self.goal_analyzer.analyze_conversation(self.current_goal, self.goal_reasoning)
# 如果当前目标达成但还有其他目标
if self.goal_achieved and not self.stop_conversation:
alternative_goals = await self.goal_analyzer.get_alternative_goals()
if alternative_goals:
# 切换到下一个目标
self.current_goal, self.current_method, self.goal_reasoning = alternative_goals[0]
logger.info(f"当前目标已达成,切换到新目标: {self.current_goal}")
return
if self.stop_conversation:
await self._stop_conversation()
@@ -724,7 +930,7 @@ class Conversation:
self.should_continue = False
self.state = ConversationState.ENDED
# 删除实例这会同时停止chat_observer
self.remove_instance(self.stream_id)
await self.remove_instance(self.stream_id)
async def _send_timeout_message(self):
"""发送超时结束消息"""
@@ -821,7 +1027,7 @@ class DirectMessageSender:
if not end_point:
raise ValueError(f"未找到平台:{chat_stream.platform} 的url配置")
await global_api.send_message(end_point, message_json)
await global_api.send_message_REST(end_point, message_json)
# 存储消息
await self.storage.store_message(message, message.chat_stream)

View File

@@ -0,0 +1,72 @@
import json
import re
from typing import Dict, Any, Optional, Tuple
from src.common.logger import get_module_logger
logger = get_module_logger("pfc_utils")
def get_items_from_json(
content: str,
*items: str,
default_values: Optional[Dict[str, Any]] = None,
required_types: Optional[Dict[str, type]] = None
) -> Tuple[bool, Dict[str, Any]]:
"""从文本中提取JSON内容并获取指定字段
Args:
content: 包含JSON的文本
*items: 要提取的字段名
default_values: 字段的默认值,格式为 {字段名: 默认值}
required_types: 字段的必需类型,格式为 {字段名: 类型}
Returns:
Tuple[bool, Dict[str, Any]]: (是否成功, 提取的字段字典)
"""
content = content.strip()
result = {}
# 设置默认值
if default_values:
result.update(default_values)
# 尝试解析JSON
try:
json_data = json.loads(content)
except json.JSONDecodeError:
# 如果直接解析失败尝试查找和提取JSON部分
json_pattern = r'\{[^{}]*\}'
json_match = re.search(json_pattern, content)
if json_match:
try:
json_data = json.loads(json_match.group())
except json.JSONDecodeError:
logger.error("提取的JSON内容解析失败")
return False, result
else:
logger.error("无法在返回内容中找到有效的JSON")
return False, result
# 提取字段
for item in items:
if item in json_data:
result[item] = json_data[item]
# 验证必需字段
if not all(item in result for item in items):
logger.error(f"JSON缺少必要字段实际内容: {json_data}")
return False, result
# 验证字段类型
if required_types:
for field, expected_type in required_types.items():
if field in result and not isinstance(result[field], expected_type):
logger.error(f"{field} 必须是 {expected_type.__name__} 类型")
return False, result
# 验证字符串字段不为空
for field in items:
if isinstance(result[field], str) and not result[field].strip():
logger.error(f"{field} 不能为空")
return False, result
return True, result

View File

@@ -9,6 +9,7 @@ from src.common.logger import get_module_logger, CHAT_STYLE_CONFIG, LogConfig
from ..chat_module.think_flow_chat.think_flow_chat import ThinkFlowChat
from ..chat_module.reasoning_chat.reasoning_chat import ReasoningChat
import asyncio
import traceback
# 定义日志配置
chat_config = LogConfig(
@@ -42,11 +43,24 @@ class ChatBot:
if global_config.enable_pfc_chatting:
# 获取或创建对话实例
conversation = Conversation.get_instance(chat_id)
conversation = await Conversation.get_instance(chat_id)
if conversation is None:
logger.error(f"创建或获取对话实例失败: {chat_id}")
return
# 如果是新创建的实例,启动对话系统
if conversation.state == ConversationState.INIT:
asyncio.create_task(conversation.start())
logger.info(f"为聊天 {chat_id} 创建新的对话实例")
elif conversation.state == ConversationState.ENDED:
# 如果实例已经结束,重新创建
await Conversation.remove_instance(chat_id)
conversation = await Conversation.get_instance(chat_id)
if conversation is None:
logger.error(f"重新创建对话实例失败: {chat_id}")
return
asyncio.create_task(conversation.start())
logger.info(f"为聊天 {chat_id} 重新创建对话实例")
except Exception as e:
logger.error(f"创建PFC聊天流失败: {e}")
@@ -78,7 +92,12 @@ class ChatBot:
try:
message = MessageRecv(message_data)
groupinfo = message.message_info.group_info
logger.debug(f"处理消息:{str(message_data)[:50]}...")
userinfo = message.message_info.user_info
logger.debug(f"处理消息:{str(message_data)[:80]}...")
if userinfo.user_id in global_config.ban_user_id:
logger.debug(f"用户{userinfo.user_id}被禁止回复")
return
if global_config.enable_pfc_chatting:
try:
@@ -96,11 +115,11 @@ class ChatBot:
await self._create_PFC_chat(message)
else:
if groupinfo.group_id in global_config.talk_allowed_groups:
logger.debug(f"开始群聊模式{message_data}")
logger.debug(f"开始群聊模式{str(message_data)[:50]}...")
if global_config.response_mode == "heart_flow":
await self.think_flow_chat.process_message(message_data)
elif global_config.response_mode == "reasoning":
logger.debug(f"开始推理模式{message_data}")
logger.debug(f"开始推理模式{str(message_data)[:50]}...")
await self.reasoning_chat.process_message(message_data)
else:
logger.error(f"未知的回复模式,请检查配置文件!!: {global_config.response_mode}")
@@ -126,6 +145,7 @@ class ChatBot:
logger.error(f"未知的回复模式,请检查配置文件!!: {global_config.response_mode}")
except Exception as e:
logger.error(f"预处理消息失败: {e}")
traceback.print_exc()
# 创建全局ChatBot实例

View File

@@ -28,7 +28,7 @@ class ChatStream:
self.platform = platform
self.user_info = user_info
self.group_info = group_info
self.create_time = data.get("create_time", int(time.time())) if data else int(time.time())
self.create_time = data.get("create_time", time.time()) if data else time.time()
self.last_active_time = data.get("last_active_time", self.create_time) if data else self.create_time
self.saved = False
@@ -60,7 +60,7 @@ class ChatStream:
def update_active_time(self):
"""更新最后活跃时间"""
self.last_active_time = int(time.time())
self.last_active_time = time.time()
self.saved = False

View File

@@ -249,7 +249,22 @@ class EmojiManager:
f for f in os.listdir(emoji_dir) if f.lower().endswith((".jpg", ".jpeg", ".png", ".gif"))
]
# 检查当前表情包数量
self._update_emoji_count()
if self.emoji_num >= self.emoji_num_max:
logger.warning(f"[警告] 表情包数量已达到上限({self.emoji_num}/{self.emoji_num_max}),跳过注册")
return
# 计算还可以注册的数量
remaining_slots = self.emoji_num_max - self.emoji_num
logger.info(f"[注册] 还可以注册 {remaining_slots} 个表情包")
for filename in files_to_process:
# 如果已经达到上限,停止注册
if self.emoji_num >= self.emoji_num_max:
logger.warning(f"[警告] 表情包数量已达到上限({self.emoji_num}/{self.emoji_num_max}),停止注册")
break
image_path = os.path.join(emoji_dir, filename)
# 获取图片的base64编码和哈希值
@@ -340,6 +355,10 @@ class EmojiManager:
logger.success(f"[注册] 新表情包: {filename}")
logger.info(f"[描述] {description}")
# 更新当前表情包数量
self.emoji_num += 1
logger.info(f"[统计] 当前表情包数量: {self.emoji_num}/{self.emoji_num_max}")
# 保存到images数据库
image_doc = {
"hash": image_hash,

View File

@@ -168,7 +168,7 @@ class MessageProcessBase(Message):
# 调用父类初始化
super().__init__(
message_id=message_id,
time=int(time.time()),
time=round(time.time(), 3), # 保留3位小数
chat_stream=chat_stream,
user_info=bot_user_info,
message_segment=message_segment,

View File

@@ -0,0 +1,190 @@
from ..person_info.person_info import person_info_manager
from src.common.logger import get_module_logger
import asyncio
from dataclasses import dataclass, field
from .message import MessageRecv
from ..message.message_base import BaseMessageInfo, GroupInfo
import hashlib
from typing import Dict
from collections import OrderedDict
import random
import time
from ..config.config import global_config
logger = get_module_logger("message_buffer")
@dataclass
class CacheMessages:
message: MessageRecv
cache_determination: asyncio.Event = field(default_factory=asyncio.Event) # 判断缓冲是否产生结果
result: str = "U"
class MessageBuffer:
def __init__(self):
self.buffer_pool: Dict[str, OrderedDict[str, CacheMessages]] = {}
self.lock = asyncio.Lock()
def get_person_id_(self, platform:str, user_id:str, group_info:GroupInfo):
"""获取唯一id"""
if group_info:
group_id = group_info.group_id
else:
group_id = "私聊"
key = f"{platform}_{user_id}_{group_id}"
return hashlib.md5(key.encode()).hexdigest()
async def start_caching_messages(self, message:MessageRecv):
"""添加消息,启动缓冲"""
if not global_config.message_buffer:
person_id = person_info_manager.get_person_id(message.message_info.user_info.platform,
message.message_info.user_info.user_id)
asyncio.create_task(self.save_message_interval(person_id, message.message_info))
return
person_id_ = self.get_person_id_(message.message_info.platform,
message.message_info.user_info.user_id,
message.message_info.group_info)
async with self.lock:
if person_id_ not in self.buffer_pool:
self.buffer_pool[person_id_] = OrderedDict()
# 标记该用户之前的未处理消息
for cache_msg in self.buffer_pool[person_id_].values():
if cache_msg.result == "U":
cache_msg.result = "F"
cache_msg.cache_determination.set()
logger.debug(f"被新消息覆盖信息id: {cache_msg.message.message_info.message_id}")
# 查找最近的处理成功消息(T)
recent_F_count = 0
for msg_id in reversed(self.buffer_pool[person_id_]):
msg = self.buffer_pool[person_id_][msg_id]
if msg.result == "T":
break
elif msg.result == "F":
recent_F_count += 1
# 判断条件最近T之后有超过3-5条F
if (recent_F_count >= random.randint(3, 5)):
new_msg = CacheMessages(message=message, result="T")
new_msg.cache_determination.set()
self.buffer_pool[person_id_][message.message_info.message_id] = new_msg
logger.debug(f"快速处理消息(已堆积{recent_F_count}条F): {message.message_info.message_id}")
return
# 添加新消息
self.buffer_pool[person_id_][message.message_info.message_id] = CacheMessages(message=message)
# 启动3秒缓冲计时器
person_id = person_info_manager.get_person_id(message.message_info.user_info.platform,
message.message_info.user_info.user_id)
asyncio.create_task(self.save_message_interval(person_id, message.message_info))
asyncio.create_task(self._debounce_processor(person_id_,
message.message_info.message_id,
person_id))
async def _debounce_processor(self, person_id_: str, message_id: str, person_id: str):
"""等待3秒无新消息"""
interval_time = await person_info_manager.get_value(person_id, "msg_interval")
if not isinstance(interval_time, (int, str)) or not str(interval_time).isdigit():
logger.debug("debounce_processor无效的时间")
return
interval_time = max(0.5, int(interval_time) / 1000)
await asyncio.sleep(interval_time)
async with self.lock:
if (person_id_ not in self.buffer_pool or
message_id not in self.buffer_pool[person_id_]):
logger.debug(f"消息已被清理msgid: {message_id}")
return
cache_msg = self.buffer_pool[person_id_][message_id]
if cache_msg.result == "U":
cache_msg.result = "T"
cache_msg.cache_determination.set()
async def query_buffer_result(self, message:MessageRecv) -> bool:
"""查询缓冲结果,并清理"""
if not global_config.message_buffer:
return True
person_id_ = self.get_person_id_(message.message_info.platform,
message.message_info.user_info.user_id,
message.message_info.group_info)
async with self.lock:
user_msgs = self.buffer_pool.get(person_id_, {})
cache_msg = user_msgs.get(message.message_info.message_id)
if not cache_msg:
logger.debug(f"查询异常消息不存在msgid: {message.message_info.message_id}")
return False # 消息不存在或已清理
try:
await asyncio.wait_for(cache_msg.cache_determination.wait(), timeout=10)
result = cache_msg.result == "T"
if result:
async with self.lock: # 再次加锁
# 清理所有早于当前消息的已处理消息, 收集所有早于当前消息的F消息的processed_plain_text
keep_msgs = OrderedDict()
combined_text = []
found = False
type = "text"
is_update = True
for msg_id, msg in self.buffer_pool[person_id_].items():
if msg_id == message.message_info.message_id:
found = True
type = msg.message.message_segment.type
combined_text.append(msg.message.processed_plain_text)
continue
if found:
keep_msgs[msg_id] = msg
elif msg.result == "F":
# 收集F消息的文本内容
if (hasattr(msg.message, 'processed_plain_text')
and msg.message.processed_plain_text):
if msg.message.message_segment.type == "text":
combined_text.append(msg.message.processed_plain_text)
elif msg.message.message_segment.type != "text":
is_update = False
elif msg.result == "U":
logger.debug(f"异常未处理信息id {msg.message.message_info.message_id}")
# 更新当前消息的processed_plain_text
if combined_text and combined_text[0] != message.processed_plain_text and is_update:
if type == "text":
message.processed_plain_text = "".join(combined_text)
logger.debug(f"整合了{len(combined_text)-1}条F消息的内容到当前消息")
elif type == "emoji":
combined_text.pop()
message.processed_plain_text = "".join(combined_text)
message.is_emoji = False
logger.debug(f"整合了{len(combined_text)-1}条F消息的内容覆盖当前emoji消息")
self.buffer_pool[person_id_] = keep_msgs
return result
except asyncio.TimeoutError:
logger.debug(f"查询超时消息id {message.message_info.message_id}")
return False
async def save_message_interval(self, person_id:str, message:BaseMessageInfo):
message_interval_list = await person_info_manager.get_value(person_id, "msg_interval_list")
now_time_ms = int(round(time.time() * 1000))
if len(message_interval_list) < 1000:
message_interval_list.append(now_time_ms)
else:
message_interval_list.pop(0)
message_interval_list.append(now_time_ms)
data = {
"platform" : message.platform,
"user_id" : message.user_info.user_id,
"nickname" : message.user_info.user_nickname,
"konw_time" : int(time.time())
}
await person_info_manager.update_one_field(person_id, "msg_interval_list", message_interval_list, data)
message_buffer = MessageBuffer()

View File

@@ -43,6 +43,12 @@ class Message_Sender:
# 按thinking_start_time排序时间早的在前面
return recalled_messages
async def send_via_ws(self, message: MessageSending) -> None:
try:
await global_api.send_message(message)
except Exception as e:
raise ValueError(f"未找到平台:{message.message_info.platform} 的url配置请检查配置文件") from e
async def send_message(
self,
message: MessageSending,
@@ -58,8 +64,14 @@ class Message_Sender:
logger.warning(f"消息“{message.processed_plain_text}”已被撤回,不发送")
break
if not is_recalled:
typing_time = calculate_typing_time(message.processed_plain_text)
# print(message.processed_plain_text + str(message.is_emoji))
typing_time = calculate_typing_time(
input_string=message.processed_plain_text,
thinking_start_time=message.thinking_start_time,
is_emoji=message.is_emoji)
logger.debug(f"{message.processed_plain_text},{typing_time},计算输入时间结束")
await asyncio.sleep(typing_time)
logger.debug(f"{message.processed_plain_text},{typing_time},等待输入时间结束")
message_json = message.to_dict()
@@ -69,14 +81,14 @@ class Message_Sender:
if end_point:
# logger.info(f"发送消息到{end_point}")
# logger.info(message_json)
await global_api.send_message_REST(end_point, message_json)
else:
try:
await global_api.send_message(message)
await global_api.send_message_REST(end_point, message_json)
except Exception as e:
raise ValueError(
f"未找到平台:{message.message_info.platform} 的url配置请检查配置文件"
) from e
logger.error(f"REST方式发送失败出现错误: {str(e)}")
logger.info("尝试使用ws发送")
await self.send_via_ws(message)
else:
await self.send_via_ws(message)
logger.success(f"发送消息“{message_preview}”成功")
except Exception as e:
logger.error(f"发送消息“{message_preview}”失败: {str(e)}")
@@ -214,6 +226,8 @@ class MessageManager:
await message_earliest.process()
# print(f"message_earliest.thinking_start_tim22222e:{message_earliest.thinking_start_time}")
await message_sender.send_message(message_earliest)
await self.storage.store_message(message_earliest, message_earliest.chat_stream)

View File

@@ -334,26 +334,19 @@ def process_llm_response(text: str) -> List[str]:
return sentences
def calculate_typing_time(input_string: str, chinese_time: float = 0.2, english_time: float = 0.1) -> float:
def calculate_typing_time(input_string: str, thinking_start_time: float, chinese_time: float = 0.2, english_time: float = 0.1, is_emoji: bool = False) -> float:
"""
计算输入字符串所需的时间,中文和英文字符有不同的输入时间
input_string (str): 输入的字符串
chinese_time (float): 中文字符的输入时间默认为0.2秒
english_time (float): 英文字符的输入时间默认为0.1秒
is_emoji (bool): 是否为emoji默认为False
特殊情况:
- 如果只有一个中文字符将使用3倍的中文输入时间
- 在所有输入结束后额外加上回车时间0.3秒
- 如果is_emoji为True将使用固定1秒的输入时间
"""
# 如果输入是列表,将其连接成字符串
if isinstance(input_string, list):
input_string = ''.join(input_string)
# 确保现在是字符串类型
if not isinstance(input_string, str):
input_string = str(input_string)
mood_manager = MoodManager.get_instance()
# 将0-1的唤醒度映射到-1到1
mood_arousal = mood_manager.current_mood.arousal
@@ -376,7 +369,19 @@ def calculate_typing_time(input_string: str, chinese_time: float = 0.2, english_
else: # 其他字符(如英文)
total_time += english_time
return total_time + 0.3 # 加上回车时间
if is_emoji:
total_time = 1
if time.time() - thinking_start_time > 10:
total_time = 1
# print(f"thinking_start_time:{thinking_start_time}")
# print(f"nowtime:{time.time()}")
# print(f"nowtime - thinking_start_time:{time.time() - thinking_start_time}")
# print(f"{total_time}")
return total_time # 加上回车时间
def cosine_similarity(v1, v2):

View File

@@ -17,6 +17,7 @@ from ...message import UserInfo, Seg
from src.common.logger import get_module_logger, CHAT_STYLE_CONFIG, LogConfig
from ...chat.chat_stream import chat_manager
from ...person_info.relationship_manager import relationship_manager
from ...chat.message_buffer import message_buffer
# 定义日志配置
chat_config = LogConfig(
@@ -143,6 +144,8 @@ class ReasoningChat:
userinfo = message.message_info.user_info
messageinfo = message.message_info
# 消息加入缓冲池
await message_buffer.start_caching_messages(message)
# logger.info("使用推理聊天模式")
@@ -172,6 +175,17 @@ class ReasoningChat:
timer2 = time.time()
timing_results["记忆激活"] = timer2 - timer1
# 查询缓冲器结果会整合前面跳过的消息改变processed_plain_text
buffer_result = await message_buffer.query_buffer_result(message)
if not buffer_result:
if message.message_segment.type == "text":
logger.info(f"触发缓冲,已炸飞消息:{message.processed_plain_text}")
elif message.message_segment.type == "image":
logger.info("触发缓冲,已炸飞表情包/图片")
elif message.message_segment.type == "seglist":
logger.info("触发缓冲,已炸飞消息列")
return
is_mentioned = is_mentioned_bot_in_message(message)
# 计算回复意愿

View File

@@ -1,16 +1,17 @@
import random
import time
from typing import Optional
from typing import Optional, Union
from ....common.database import db
from ...memory_system.Hippocampus import HippocampusManager
from ...moods.moods import MoodManager
from ...schedule.schedule_generator import bot_schedule
from ...config.config import global_config
from ...chat.utils import get_embedding, get_recent_group_detailed_plain_text, get_recent_group_speaker
from ...chat.chat_stream import chat_manager
from src.common.logger import get_module_logger
from ...moods.moods import MoodManager
from ....individuality.individuality import Individuality
from ...memory_system.Hippocampus import HippocampusManager
from ...schedule.schedule_generator import bot_schedule
from ...config.config import global_config
from ...person_info.relationship_manager import relationship_manager
from src.common.logger import get_module_logger
logger = get_module_logger("prompt")
@@ -25,6 +26,22 @@ class PromptBuilder:
) -> tuple[str, str]:
# 开始构建prompt
prompt_personality = ""
#person
individuality = Individuality.get_instance()
personality_core = individuality.personality.personality_core
prompt_personality += personality_core
personality_sides = individuality.personality.personality_sides
random.shuffle(personality_sides)
prompt_personality += f",{personality_sides[0]}"
identity_detail = individuality.identity.identity_detail
random.shuffle(identity_detail)
prompt_personality += f",{identity_detail[0]}"
# 关系
who_chat_in_group = [(chat_stream.user_info.platform,
@@ -102,20 +119,6 @@ class PromptBuilder:
)
keywords_reaction_prompt += rule.get("reaction", "") + ""
# 人格选择
personality = global_config.PROMPT_PERSONALITY
probability_1 = global_config.PERSONALITY_1
probability_2 = global_config.PERSONALITY_2
personality_choice = random.random()
if personality_choice < probability_1: # 第一种风格
prompt_personality = personality[0]
elif personality_choice < probability_1 + probability_2: # 第二种风格
prompt_personality = personality[1]
else: # 第三种人格
prompt_personality = personality[2]
# 中文高手(新加的好玩功能)
prompt_ger = ""
if random.random() < 0.04:
@@ -128,7 +131,7 @@ class PromptBuilder:
# 知识构建
start_time = time.time()
prompt_info = ""
prompt_info = await self.get_prompt_info(message_txt, threshold=0.5)
prompt_info = await self.get_prompt_info(message_txt, threshold=0.38)
if prompt_info:
prompt_info = f"""\n你有以下这些**知识**\n{prompt_info}\n请你**记住上面的知识**,之后可能会用到。\n"""
@@ -142,12 +145,13 @@ class PromptBuilder:
logger.info("开始构建prompt")
prompt = f"""
{relation_prompt_all}
{memory_prompt}
{prompt_info}
{schedule_prompt}
{chat_target}
{chat_talking_prompt}
现在"{sender_name}"说的:{message_txt}。引起了你的注意,你想要在群里发言发言或者回复这条消息。{relation_prompt_all}\n
现在"{sender_name}"说的:{message_txt}。引起了你的注意,你想要在群里发言发言或者回复这条消息。\n
你的网名叫{global_config.BOT_NICKNAME},有人也叫你{"/".join(global_config.BOT_ALIAS_NAMES)}{prompt_personality}
你正在{chat_target_2},现在请你读读之前的聊天记录,{mood_prompt},然后给出日常且口语化的回复,平淡一些,
尽量简短一些。{keywords_reaction_prompt}请注意把握聊天内容,不要回复的太有条理,可以有个性。{prompt_ger}
@@ -158,16 +162,156 @@ class PromptBuilder:
return prompt
async def get_prompt_info(self, message: str, threshold: float):
start_time = time.time()
related_info = ""
logger.debug(f"获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
embedding = await get_embedding(message, request_type="prompt_build")
related_info += self.get_info_from_db(embedding, limit=1, threshold=threshold)
# 1. 先从LLM获取主题类似于记忆系统的做法
topics = []
# try:
# # 先尝试使用记忆系统的方法获取主题
# hippocampus = HippocampusManager.get_instance()._hippocampus
# topic_num = min(5, max(1, int(len(message) * 0.1)))
# topics_response = await hippocampus.llm_topic_judge.generate_response(hippocampus.find_topic_llm(message, topic_num))
# # 提取关键词
# topics = re.findall(r"<([^>]+)>", topics_response[0])
# if not topics:
# topics = []
# else:
# topics = [
# topic.strip()
# for topic in ",".join(topics).replace("", ",").replace("、", ",").replace(" ", ",").split(",")
# if topic.strip()
# ]
# logger.info(f"从LLM提取的主题: {', '.join(topics)}")
# except Exception as e:
# logger.error(f"从LLM提取主题失败: {str(e)}")
# # 如果LLM提取失败使用jieba分词提取关键词作为备选
# words = jieba.cut(message)
# topics = [word for word in words if len(word) > 1][:5]
# logger.info(f"使用jieba提取的主题: {', '.join(topics)}")
# 如果无法提取到主题,直接使用整个消息
if not topics:
logger.info("未能提取到任何主题,使用整个消息进行查询")
embedding = await get_embedding(message, request_type="prompt_build")
if not embedding:
logger.error("获取消息嵌入向量失败")
return ""
related_info = self.get_info_from_db(embedding, limit=3, threshold=threshold)
logger.info(f"知识库检索完成,总耗时: {time.time() - start_time:.3f}")
return related_info
def get_info_from_db(self, query_embedding: list, limit: int = 1, threshold: float = 0.5) -> str:
if not query_embedding:
# 2. 对每个主题进行知识库查询
logger.info(f"开始处理{len(topics)}个主题的知识库查询")
# 优化批量获取嵌入向量减少API调用
embeddings = {}
topics_batch = [topic for topic in topics if len(topic) > 0]
if message: # 确保消息非空
topics_batch.append(message)
# 批量获取嵌入向量
embed_start_time = time.time()
for text in topics_batch:
if not text or len(text.strip()) == 0:
continue
try:
embedding = await get_embedding(text, request_type="prompt_build")
if embedding:
embeddings[text] = embedding
else:
logger.warning(f"获取'{text}'的嵌入向量失败")
except Exception as e:
logger.error(f"获取'{text}'的嵌入向量时发生错误: {str(e)}")
logger.info(f"批量获取嵌入向量完成,耗时: {time.time() - embed_start_time:.3f}")
if not embeddings:
logger.error("所有嵌入向量获取失败")
return ""
# 3. 对每个主题进行知识库查询
all_results = []
query_start_time = time.time()
# 首先添加原始消息的查询结果
if message in embeddings:
original_results = self.get_info_from_db(embeddings[message], limit=3, threshold=threshold, return_raw=True)
if original_results:
for result in original_results:
result["topic"] = "原始消息"
all_results.extend(original_results)
logger.info(f"原始消息查询到{len(original_results)}条结果")
# 然后添加每个主题的查询结果
for topic in topics:
if not topic or topic not in embeddings:
continue
try:
topic_results = self.get_info_from_db(embeddings[topic], limit=3, threshold=threshold, return_raw=True)
if topic_results:
# 添加主题标记
for result in topic_results:
result["topic"] = topic
all_results.extend(topic_results)
logger.info(f"主题'{topic}'查询到{len(topic_results)}条结果")
except Exception as e:
logger.error(f"查询主题'{topic}'时发生错误: {str(e)}")
logger.info(f"知识库查询完成,耗时: {time.time() - query_start_time:.3f}秒,共获取{len(all_results)}条结果")
# 4. 去重和过滤
process_start_time = time.time()
unique_contents = set()
filtered_results = []
for result in all_results:
content = result["content"]
if content not in unique_contents:
unique_contents.add(content)
filtered_results.append(result)
# 5. 按相似度排序
filtered_results.sort(key=lambda x: x["similarity"], reverse=True)
# 6. 限制总数量最多10条
filtered_results = filtered_results[:10]
logger.info(f"结果处理完成,耗时: {time.time() - process_start_time:.3f}秒,过滤后剩余{len(filtered_results)}条结果")
# 7. 格式化输出
if filtered_results:
format_start_time = time.time()
grouped_results = {}
for result in filtered_results:
topic = result["topic"]
if topic not in grouped_results:
grouped_results[topic] = []
grouped_results[topic].append(result)
# 按主题组织输出
for topic, results in grouped_results.items():
related_info += f"【主题: {topic}\n"
for _i, result in enumerate(results, 1):
_similarity = result["similarity"]
content = result["content"].strip()
# 调试:为内容添加序号和相似度信息
# related_info += f"{i}. [{similarity:.2f}] {content}\n"
related_info += f"{content}\n"
related_info += "\n"
logger.info(f"格式化输出完成,耗时: {time.time() - format_start_time:.3f}")
logger.info(f"知识库检索总耗时: {time.time() - start_time:.3f}")
return related_info
def get_info_from_db(self, query_embedding: list, limit: int = 1, threshold: float = 0.5, return_raw: bool = False) -> Union[str, list]:
if not query_embedding:
return "" if not return_raw else []
# 使用余弦相似度计算
pipeline = [
{
@@ -221,11 +365,14 @@ class PromptBuilder:
]
results = list(db.knowledges.aggregate(pipeline))
# print(f"\033[1;34m[调试]\033[0m获取知识库内容结果: {results}")
logger.debug(f"知识库查询结果数量: {len(results)}")
if not results:
return ""
return "" if not return_raw else []
if return_raw:
return results
else:
# 返回所有找到的内容,用换行分隔
return "\n".join(str(result["content"]) for result in results)

View File

@@ -18,6 +18,7 @@ from src.heart_flow.heartflow import heartflow
from src.common.logger import get_module_logger, CHAT_STYLE_CONFIG, LogConfig
from ...chat.chat_stream import chat_manager
from ...person_info.relationship_manager import relationship_manager
from ...chat.message_buffer import message_buffer
# 定义日志配置
chat_config = LogConfig(
@@ -95,6 +96,8 @@ class ThinkFlowChat:
)
if not mark_head:
mark_head = True
# print(f"thinking_start_time:{bot_message.thinking_start_time}")
message_set.add_message(bot_message)
message_manager.add_message(message_set)
@@ -161,6 +164,8 @@ class ThinkFlowChat:
userinfo = message.message_info.user_info
messageinfo = message.message_info
# 消息加入缓冲池
await message_buffer.start_caching_messages(message)
# 创建聊天流
chat = await chat_manager.get_or_create_stream(
@@ -195,8 +200,20 @@ class ThinkFlowChat:
timing_results["记忆激活"] = timer2 - timer1
logger.debug(f"记忆激活: {interested_rate}")
# 查询缓冲器结果会整合前面跳过的消息改变processed_plain_text
buffer_result = await message_buffer.query_buffer_result(message)
if not buffer_result:
if message.message_segment.type == "text":
logger.info(f"触发缓冲,已炸飞消息:{message.processed_plain_text}")
elif message.message_segment.type == "image":
logger.info("触发缓冲,已炸飞表情包/图片")
elif message.message_segment.type == "seglist":
logger.info("触发缓冲,已炸飞消息列")
return
is_mentioned = is_mentioned_bot_in_message(message)
# 计算回复意愿
current_willing_old = willing_manager.get_willing(chat_stream=chat)
# current_willing_new = (heartflow.get_subheartflow(chat.stream_id).current_state.willing - 5) / 4
@@ -236,25 +253,35 @@ class ThinkFlowChat:
do_reply = False
if random() < reply_probability:
try:
do_reply = True
# 创建思考消息
try:
timer1 = time.time()
thinking_id = await self._create_thinking_message(message, chat, userinfo, messageinfo)
timer2 = time.time()
timing_results["创建思考消息"] = timer2 - timer1
except Exception as e:
logger.error(f"心流创建思考消息失败: {e}")
try:
# 观察
timer1 = time.time()
await heartflow.get_subheartflow(chat.stream_id).do_observe()
timer2 = time.time()
timing_results["观察"] = timer2 - timer1
except Exception as e:
logger.error(f"心流观察失败: {e}")
# 思考前脑内状态
try:
timer1 = time.time()
await heartflow.get_subheartflow(chat.stream_id).do_thinking_before_reply(message.processed_plain_text)
timer2 = time.time()
timing_results["思考前脑内状态"] = timer2 - timer1
except Exception as e:
logger.error(f"心流思考前脑内状态失败: {e}")
# 生成回复
timer1 = time.time()
@@ -267,28 +294,43 @@ class ThinkFlowChat:
return
# 发送消息
try:
timer1 = time.time()
await self._send_response_messages(message, chat, response_set, thinking_id)
timer2 = time.time()
timing_results["发送消息"] = timer2 - timer1
except Exception as e:
logger.error(f"心流发送消息失败: {e}")
# 处理表情包
try:
timer1 = time.time()
await self._handle_emoji(message, chat, response_set)
timer2 = time.time()
timing_results["处理表情包"] = timer2 - timer1
except Exception as e:
logger.error(f"心流处理表情包失败: {e}")
# 更新心流
try:
timer1 = time.time()
await self._update_using_response(message, response_set)
timer2 = time.time()
timing_results["更新心流"] = timer2 - timer1
except Exception as e:
logger.error(f"心流更新失败: {e}")
# 更新关系情绪
try:
timer1 = time.time()
await self._update_relationship(message, response_set)
timer2 = time.time()
timing_results["更新关系情绪"] = timer2 - timer1
except Exception as e:
logger.error(f"心流更新关系情绪失败: {e}")
except Exception as e:
logger.error(f"心流处理消息失败: {e}")
# 输出性能计时结果
if do_reply:

View File

@@ -1,16 +1,13 @@
import random
import time
from typing import Optional
from ...memory_system.Hippocampus import HippocampusManager
from ...moods.moods import MoodManager
from ...schedule.schedule_generator import bot_schedule
from ...config.config import global_config
from ...chat.utils import get_recent_group_detailed_plain_text, get_recent_group_speaker
from ...chat.chat_stream import chat_manager
from src.common.logger import get_module_logger
from ...person_info.relationship_manager import relationship_manager
from ....individuality.individuality import Individuality
from src.heart_flow.heartflow import heartflow
logger = get_module_logger("prompt")
@@ -27,8 +24,9 @@ class PromptBuilder:
current_mind_info = heartflow.get_subheartflow(stream_id).current_mind
# 开始构建prompt
individuality = Individuality.get_instance()
prompt_personality = individuality.get_prompt(type = "personality",x_person = 2,level = 1)
prompt_identity = individuality.get_prompt(type = "identity",x_person = 2,level = 1)
# 关系
who_chat_in_group = [(chat_stream.user_info.platform,
chat_stream.user_info.user_id,
@@ -90,20 +88,6 @@ class PromptBuilder:
)
keywords_reaction_prompt += rule.get("reaction", "") + ""
# 人格选择
personality = global_config.PROMPT_PERSONALITY
probability_1 = global_config.PERSONALITY_1
probability_2 = global_config.PERSONALITY_2
personality_choice = random.random()
if personality_choice < probability_1: # 第一种风格
prompt_personality = personality[0]
elif personality_choice < probability_1 + probability_2: # 第二种风格
prompt_personality = personality[1]
else: # 第三种人格
prompt_personality = personality[2]
# 中文高手(新加的好玩功能)
prompt_ger = ""
if random.random() < 0.04:
@@ -123,8 +107,8 @@ class PromptBuilder:
{chat_talking_prompt}
你刚刚脑子里在想:
{current_mind_info}
现在"{sender_name}"说的:{message_txt}。引起了你的注意,你想要在群里发言发言或者回复这条消息。{relation_prompt_all}\n
你的网名叫{global_config.BOT_NICKNAME},有人也叫你{"/".join(global_config.BOT_ALIAS_NAMES)}{prompt_personality}
现在"{sender_name}"说的:{message_txt}。引起了你的注意,你想要在群里发言发言或者回复这条消息。\n
你的网名叫{global_config.BOT_NICKNAME},有人也叫你{"/".join(global_config.BOT_ALIAS_NAMES)}{prompt_personality} {prompt_identity}
你正在{chat_target_2},现在请你读读之前的聊天记录,然后给出日常且口语化的回复,平淡一些,
尽量简短一些。{keywords_reaction_prompt}请注意把握聊天内容,不要回复的太有条理,可以有个性。{prompt_ger}
请回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景,尽量不要说你说过的话
@@ -133,73 +117,5 @@ class PromptBuilder:
return prompt
def _build_initiative_prompt_select(self, group_id, probability_1=0.8, probability_2=0.1):
current_date = time.strftime("%Y-%m-%d", time.localtime())
current_time = time.strftime("%H:%M:%S", time.localtime())
bot_schedule_now_time, bot_schedule_now_activity = bot_schedule.get_current_task()
prompt_date = f"""今天是{current_date},现在是{current_time},你今天的日程是:
{bot_schedule.today_schedule}
你现在正在{bot_schedule_now_activity}
"""
chat_talking_prompt = ""
if group_id:
chat_talking_prompt = get_recent_group_detailed_plain_text(
group_id, limit=global_config.MAX_CONTEXT_SIZE, combine=True
)
chat_talking_prompt = f"以下是群里正在聊天的内容:\n{chat_talking_prompt}"
# print(f"\033[1;34m[调试]\033[0m 已从数据库获取群 {group_id} 的消息记录:{chat_talking_prompt}")
# 获取主动发言的话题
all_nodes = HippocampusManager.get_instance().memory_graph.dots
all_nodes = filter(lambda dot: len(dot[1]["memory_items"]) > 3, all_nodes)
nodes_for_select = random.sample(all_nodes, 5)
topics = [info[0] for info in nodes_for_select]
# 激活prompt构建
activate_prompt = ""
activate_prompt = "以上是群里正在进行的聊天。"
personality = global_config.PROMPT_PERSONALITY
prompt_personality = ""
personality_choice = random.random()
if personality_choice < probability_1: # 第一种人格
prompt_personality = f"""{activate_prompt}你的网名叫{global_config.BOT_NICKNAME}{personality[0]}"""
elif personality_choice < probability_1 + probability_2: # 第二种人格
prompt_personality = f"""{activate_prompt}你的网名叫{global_config.BOT_NICKNAME}{personality[1]}"""
else: # 第三种人格
prompt_personality = f"""{activate_prompt}你的网名叫{global_config.BOT_NICKNAME}{personality[2]}"""
topics_str = ",".join(f'"{topics}"')
prompt_for_select = (
f"你现在想在群里发言,回忆了一下,想到几个话题,分别是{topics_str},综合当前状态以及群内气氛,"
f"请你在其中选择一个合适的话题,注意只需要输出话题,除了话题什么也不要输出(双引号也不要输出)"
)
prompt_initiative_select = f"{prompt_date}\n{prompt_personality}\n{prompt_for_select}"
prompt_regular = f"{prompt_date}\n{prompt_personality}"
return prompt_initiative_select, nodes_for_select, prompt_regular
def _build_initiative_prompt_check(self, selected_node, prompt_regular):
memory = random.sample(selected_node["memory_items"], 3)
memory = "\n".join(memory)
prompt_for_check = (
f"{prompt_regular}你现在想在群里发言,回忆了一下,想到一个话题,是{selected_node['concept']}"
f"关于这个话题的记忆有\n{memory}\n,以这个作为主题发言合适吗?请在把握群里的聊天内容的基础上,"
f"综合群内的氛围如果认为应该发言请输出yes否则输出no请注意是决定是否需要发言而不是编写回复内容"
f"除了yes和no不要输出任何回复内容。"
)
return prompt_for_check, memory
def _build_initiative_prompt(self, selected_node, prompt_regular, memory):
prompt_for_initiative = (
f"{prompt_regular}你现在想在群里发言,回忆了一下,想到一个话题,是{selected_node['concept']}"
f"关于这个话题的记忆有\n{memory}\n,请在把握群里的聊天内容的基础上,综合群内的氛围,"
f"以日常且口语化的口吻,简短且随意一点进行发言,不要说的太有条理,可以有个性。"
f"记住不要输出多余内容(包括前后缀,冒号和引号,括号,表情,@等)"
)
return prompt_for_initiative
prompt_builder = PromptBuilder()

View File

@@ -25,10 +25,17 @@ config_config = LogConfig(
logger = get_module_logger("config", config=config_config)
#考虑到实际上配置文件中的mai_version是不会自动更新的,所以采用硬编码
mai_version_main = "0.6.0"
is_test = False
mai_version_main = "0.6.1"
mai_version_fix = ""
if mai_version_fix:
if is_test:
mai_version = f"test-{mai_version_main}-{mai_version_fix}"
else:
mai_version = f"{mai_version_main}-{mai_version_fix}"
else:
if is_test:
mai_version = f"test-{mai_version_main}"
else:
mai_version = mai_version_main
@@ -141,14 +148,22 @@ class BotConfig:
ban_user_id = set()
# personality
PROMPT_PERSONALITY = [
"用一句话或几句话描述性格特点和其他特征",
"例如,是一个热爱国家热爱党的新时代好青年",
"例如,曾经是一个学习地质的女大学生,现在学习心理学和脑科学,你会刷贴吧",
]
PERSONALITY_1: float = 0.6 # 第一种人格概率
PERSONALITY_2: float = 0.3 # 第二种人格概率
PERSONALITY_3: float = 0.1 # 第三种人格概率
personality_core = "用一句话或几句话描述人格的核心特点" # 建议20字以内谁再写3000字小作文敲谁脑袋
personality_sides: List[str] = field(default_factory=lambda: [
"用一句话或几句话描述人格的一些侧面",
"用一句话或几句话描述人格的一些侧面",
"用一句话或几句话描述人格的一些侧面"
])
# identity
identity_detail: List[str] = field(default_factory=lambda: [
"身份特点",
"身份特点",
])
height: int = 170 # 身高 单位厘米
weight: int = 50 # 体重 单位千克
age: int = 20 # 年龄 单位岁
gender: str = "" # 性别
appearance: str = "用几句话描述外貌特征" # 外貌特征
# schedule
ENABLE_SCHEDULE_GEN: bool = False # 是否启用日程生成
@@ -162,6 +177,7 @@ class BotConfig:
emoji_chance: float = 0.2 # 发送表情包的基础概率
thinking_timeout: int = 120 # 思考时间
max_response_length: int = 1024 # 最大回复长度
message_buffer: bool = True # 消息缓冲器
ban_words = set()
ban_msgs_regex = set()
@@ -339,14 +355,19 @@ class BotConfig:
def personality(parent: dict):
personality_config = parent["personality"]
personality = personality_config.get("prompt_personality")
if len(personality) >= 2:
logger.info(f"载入自定义人格:{personality}")
config.PROMPT_PERSONALITY = personality_config.get("prompt_personality", config.PROMPT_PERSONALITY)
if config.INNER_VERSION in SpecifierSet(">=1.2.4"):
config.personality_core = personality_config.get("personality_core", config.personality_core)
config.personality_sides = personality_config.get("personality_sides", config.personality_sides)
config.PERSONALITY_1 = personality_config.get("personality_1_probability", config.PERSONALITY_1)
config.PERSONALITY_2 = personality_config.get("personality_2_probability", config.PERSONALITY_2)
config.PERSONALITY_3 = personality_config.get("personality_3_probability", config.PERSONALITY_3)
def identity(parent: dict):
identity_config = parent["identity"]
if config.INNER_VERSION in SpecifierSet(">=1.2.4"):
config.identity_detail = identity_config.get("identity_detail", config.identity_detail)
config.height = identity_config.get("height", config.height)
config.weight = identity_config.get("weight", config.weight)
config.age = identity_config.get("age", config.age)
config.gender = identity_config.get("gender", config.gender)
config.appearance = identity_config.get("appearance", config.appearance)
def schedule(parent: dict):
schedule_config = parent["schedule"]
@@ -505,6 +526,8 @@ class BotConfig:
if config.INNER_VERSION in SpecifierSet(">=0.0.11"):
config.max_response_length = msg_config.get("max_response_length", config.max_response_length)
if config.INNER_VERSION in SpecifierSet(">=1.1.4"):
config.message_buffer = msg_config.get("message_buffer", config.message_buffer)
def memory(parent: dict):
memory_config = parent["memory"]
@@ -601,6 +624,7 @@ class BotConfig:
"bot": {"func": bot, "support": ">=0.0.0"},
"groups": {"func": groups, "support": ">=0.0.0"},
"personality": {"func": personality, "support": ">=0.0.0"},
"identity": {"func": identity, "support": ">=1.2.4"},
"schedule": {"func": schedule, "support": ">=0.0.11", "necessary": False},
"message": {"func": message, "support": ">=0.0.0"},
"willing": {"func": willing, "support": ">=0.0.9", "necessary": False},

View File

@@ -29,7 +29,10 @@ class BaseMessageHandler:
try:
tasks.append(handler(message))
except Exception as e:
raise RuntimeError(str(e)) from e
logger.error(f"消息处理出错: {str(e)}")
logger.error(traceback.format_exc())
# 不抛出异常,而是记录错误并继续处理其他消息
continue
if tasks:
await asyncio.gather(*tasks, return_exceptions=True)
@@ -212,9 +215,8 @@ class MessageServer(BaseMessageHandler):
try:
async with session.post(url, json=data, headers={"Content-Type": "application/json"}) as response:
return await response.json()
except Exception:
# logger.error(f"发送消息失败: {str(e)}")
pass
except Exception as e:
raise e
class BaseMessageAPI:

View File

@@ -6,6 +6,7 @@ from dataclasses import dataclass
from ..config.config import global_config
from src.common.logger import get_module_logger, LogConfig, MOOD_STYLE_CONFIG
from ..person_info.relationship_manager import relationship_manager
from src.individuality.individuality import Individuality
mood_config = LogConfig(
# 使用海马体专用样式
@@ -17,8 +18,8 @@ logger = get_module_logger("mood_manager", config=mood_config)
@dataclass
class MoodState:
valence: float # 愉悦度 (-1 到 1)
arousal: float # 唤醒度 (0 到 1)
valence: float # 愉悦度 (-1.0 到 1.0)-1表示极度负面1表示极度正面
arousal: float # 唤醒度 (0.0 到 1.0)0表示完全平静1表示极度兴奋
text: str # 心情文本描述
@@ -125,20 +126,48 @@ class MoodManager:
time.sleep(update_interval)
def _apply_decay(self) -> None:
"""应用情绪衰减"""
"""应用情绪衰减,正向和负向情绪分开计算"""
current_time = time.time()
time_diff = current_time - self.last_update
agreeableness_factor = 1
agreeableness_bias = 0
neuroticism_factor = 0.5
# Valence 向中性0回归
valence_target = 0
# 获取人格特质
personality = Individuality.get_instance().personality
if personality:
# 神经质:影响情绪变化速度
neuroticism_factor = 1 + (personality.neuroticism - 0.5) * 0.5
agreeableness_factor = 1 + (personality.agreeableness - 0.5) * 0.5
# 宜人性:影响情绪基准线
if personality.agreeableness < 0.2:
agreeableness_bias = (personality.agreeableness - 0.2) * 2
elif personality.agreeableness > 0.8:
agreeableness_bias = (personality.agreeableness - 0.8) * 2
else:
agreeableness_bias = 0
# 分别计算正向和负向的衰减率
if self.current_mood.valence >= 0:
# 正向情绪衰减
decay_rate_positive = self.decay_rate_valence * (1/agreeableness_factor)
valence_target = 0 + agreeableness_bias
self.current_mood.valence = valence_target + (self.current_mood.valence - valence_target) * math.exp(
-self.decay_rate_valence * time_diff
-decay_rate_positive * time_diff * neuroticism_factor
)
else:
# 负向情绪衰减
decay_rate_negative = self.decay_rate_valence * agreeableness_factor
valence_target = 0 + agreeableness_bias
self.current_mood.valence = valence_target + (self.current_mood.valence - valence_target) * math.exp(
-decay_rate_negative * time_diff * neuroticism_factor
)
# Arousal 向中性0.5)回归
arousal_target = 0.5
self.current_mood.arousal = arousal_target + (self.current_mood.arousal - arousal_target) * math.exp(
-self.decay_rate_arousal * time_diff
-self.decay_rate_arousal * time_diff * neuroticism_factor
)
# 确保值在合理范围内
@@ -237,7 +266,7 @@ class MoodManager:
old_arousal = self.current_mood.arousal
old_mood = self.current_mood.text
valence_change *= relationship_manager.gain_coefficient[relationship_manager.positive_feedback_value]
valence_change = relationship_manager.feedback_to_mood(valence_change)
# 应用情绪强度
valence_change *= intensity

View File

@@ -2,8 +2,14 @@ from src.common.logger import get_module_logger
from ...common.database import db
import copy
import hashlib
from typing import Any, Callable, Dict, TypeVar
T = TypeVar('T') # 泛型类型
from typing import Any, Callable, Dict
import datetime
import asyncio
import numpy
# import matplotlib.pyplot as plt
# from pathlib import Path
# import pandas as pd
"""
PersonInfoManager 类方法功能摘要:
@@ -15,6 +21,7 @@ PersonInfoManager 类方法功能摘要:
6. get_values - 批量获取字段值(任一字段无效则返回空字典)
7. del_all_undefined_field - 清理全集合中未定义的字段
8. get_specific_value_list - 根据指定条件返回person_id,value字典
9. personal_habit_deduction - 定时推断个人习惯
"""
logger = get_module_logger("person_info")
@@ -30,6 +37,8 @@ person_info_default = {
# "impression" : None,
# "gender" : Unkown,
"konw_time" : 0,
"msg_interval": 3000,
"msg_interval_list": []
} # 个人信息的各项与默认值在此定义,以下处理会自动创建/补全每一项
class PersonInfoManager:
@@ -108,8 +117,9 @@ class PersonInfoManager:
if document and field_name in document:
return document[field_name]
else:
logger.debug(f"获取{person_id}{field_name}失败,已返回默认值{person_info_default[field_name]}")
return person_info_default[field_name]
default_value = copy.deepcopy(person_info_default[field_name])
logger.debug(f"获取{person_id}{field_name}失败,已返回默认值{default_value}")
return default_value
async def get_values(self, person_id: str, field_names: list) -> dict:
"""获取指定person_id文档的多个字段值若不存在该字段则返回该字段的全局默认值"""
@@ -133,7 +143,10 @@ class PersonInfoManager:
result = {}
for field in field_names:
result[field] = document.get(field, person_info_default[field]) if document else person_info_default[field]
result[field] = copy.deepcopy(
document.get(field, person_info_default[field])
if document else person_info_default[field]
)
return result
@@ -210,4 +223,46 @@ class PersonInfoManager:
logger.error(f"数据库查询失败: {str(e)}", exc_info=True)
return {}
async def personal_habit_deduction(self):
"""启动个人信息推断,每天根据一定条件推断一次"""
try:
while(1):
await asyncio.sleep(60)
current_time = datetime.datetime.now()
logger.info(f"个人信息推断启动: {current_time.strftime('%Y-%m-%d %H:%M:%S')}")
# "msg_interval"推断
msg_interval_lists = await self.get_specific_value_list(
"msg_interval_list",
lambda x: isinstance(x, list) and len(x) >= 100
)
for person_id, msg_interval_list_ in msg_interval_lists.items():
try:
time_interval = []
for t1, t2 in zip(msg_interval_list_, msg_interval_list_[1:]):
delta = t2 - t1
if delta < 8000 and delta > 0: # 小于8秒
time_interval.append(delta)
if len(time_interval) > 30:
# 移除matplotlib相关的绘图功能
filtered_intervals = [t for t in time_interval if t >= 500]
if len(filtered_intervals) > 25:
msg_interval = int(round(numpy.percentile(filtered_intervals, 80)))
await self.update_one_field(person_id, "msg_interval", msg_interval)
logger.debug(f"用户{person_id}的msg_interval已经被更新为{msg_interval}")
except Exception as e:
logger.debug(f"处理用户{person_id}msg_interval推断时出错: {str(e)}")
continue
# 其他...
logger.info(f"个人信息推断结束: {current_time.strftime('%Y-%m-%d %H:%M:%S')}")
await asyncio.sleep(86400)
except Exception as e:
logger.error(f"个人信息推断运行时出错: {str(e)}")
logger.exception("详细错误信息:")
person_info_manager = PersonInfoManager()

View File

@@ -64,6 +64,14 @@ class RelationshipManager:
logger.info(f"当前relationship增益系数{mood_gain:.3f}")
return value
def feedback_to_mood(self, mood_value):
"""对情绪的反馈"""
coefficient = self.gain_coefficient[abs(self.positive_feedback_value)]
if (mood_value > 0 and self.positive_feedback_value > 0
or mood_value < 0 and self.positive_feedback_value < 0):
return mood_value*coefficient
else:
return mood_value/coefficient
async def calculate_update_relationship_value(self, chat_stream: ChatStream, label: str, stance: str) -> None:
"""计算并变更关系值

View File

@@ -1,195 +0,0 @@
"""
The definition of artificial personality in this paper follows the dispositional para-digm and adapts a definition of
personality developed for humans [17]:
Personality for a human is the "whole and organisation of relatively stable tendencies and patterns of experience and
behaviour within one person (distinguishing it from other persons)". This definition is modified for artificial
personality:
Artificial personality describes the relatively stable tendencies and patterns of behav-iour of an AI-based machine that
can be designed by developers and designers via different modalities, such as language, creating the impression
of individuality of a humanized social agent when users interact with the machine."""
from typing import Dict, List
import json
import os
from pathlib import Path
from dotenv import load_dotenv
import sys
"""
第一种方案:基于情景评估的人格测定
"""
current_dir = Path(__file__).resolve().parent
project_root = current_dir.parent.parent.parent
env_path = project_root / ".env"
root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../.."))
sys.path.append(root_path)
from src.plugins.personality.scene import get_scene_by_factor, PERSONALITY_SCENES # noqa: E402
from src.plugins.personality.questionnaire import FACTOR_DESCRIPTIONS # noqa: E402
from src.plugins.personality.offline_llm import LLMModel # noqa: E402
# 加载环境变量
if env_path.exists():
print(f"{env_path} 加载环境变量")
load_dotenv(env_path)
else:
print(f"未找到环境变量文件: {env_path}")
print("将使用默认配置")
class PersonalityEvaluator_direct:
def __init__(self):
self.personality_traits = {"开放性": 0, "严谨性": 0, "外向性": 0, "宜人性": 0, "神经质": 0}
self.scenarios = []
# 为每个人格特质获取对应的场景
for trait in PERSONALITY_SCENES:
scenes = get_scene_by_factor(trait)
if not scenes:
continue
# 从每个维度选择3个场景
import random
scene_keys = list(scenes.keys())
selected_scenes = random.sample(scene_keys, min(3, len(scene_keys)))
for scene_key in selected_scenes:
scene = scenes[scene_key]
# 为每个场景添加评估维度
# 主维度是当前特质,次维度随机选择一个其他特质
other_traits = [t for t in PERSONALITY_SCENES if t != trait]
secondary_trait = random.choice(other_traits)
self.scenarios.append(
{"场景": scene["scenario"], "评估维度": [trait, secondary_trait], "场景编号": scene_key}
)
self.llm = LLMModel()
def evaluate_response(self, scenario: str, response: str, dimensions: List[str]) -> Dict[str, float]:
"""
使用 DeepSeek AI 评估用户对特定场景的反应
"""
# 构建维度描述
dimension_descriptions = []
for dim in dimensions:
desc = FACTOR_DESCRIPTIONS.get(dim, "")
if desc:
dimension_descriptions.append(f"- {dim}{desc}")
dimensions_text = "\n".join(dimension_descriptions)
prompt = f"""请根据以下场景和用户描述评估用户在大五人格模型中的相关维度得分1-6分
场景描述:
{scenario}
用户回应:
{response}
需要评估的维度说明:
{dimensions_text}
请按照以下格式输出评估结果仅输出JSON格式
{{
"{dimensions[0]}": 分数,
"{dimensions[1]}": 分数
}}
评分标准:
1 = 非常不符合该维度特征
2 = 比较不符合该维度特征
3 = 有点不符合该维度特征
4 = 有点符合该维度特征
5 = 比较符合该维度特征
6 = 非常符合该维度特征
请根据用户的回应结合场景和维度说明进行评分。确保分数在1-6之间并给出合理的评估。"""
try:
ai_response, _ = self.llm.generate_response(prompt)
# 尝试从AI响应中提取JSON部分
start_idx = ai_response.find("{")
end_idx = ai_response.rfind("}") + 1
if start_idx != -1 and end_idx != 0:
json_str = ai_response[start_idx:end_idx]
scores = json.loads(json_str)
# 确保所有分数在1-6之间
return {k: max(1, min(6, float(v))) for k, v in scores.items()}
else:
print("AI响应格式不正确使用默认评分")
return {dim: 3.5 for dim in dimensions}
except Exception as e:
print(f"评估过程出错:{str(e)}")
return {dim: 3.5 for dim in dimensions}
def main():
print("欢迎使用人格形象创建程序!")
print("接下来您将面对一系列场景共15个。请根据您想要创建的角色形象描述在该场景下可能的反应。")
print("每个场景都会评估不同的人格维度,最终得出完整的人格特征评估。")
print("评分标准1=非常不符合2=比较不符合3=有点不符合4=有点符合5=比较符合6=非常符合")
print("\n准备好了吗?按回车键开始...")
input()
evaluator = PersonalityEvaluator_direct()
final_scores = {"开放性": 0, "严谨性": 0, "外向性": 0, "宜人性": 0, "神经质": 0}
dimension_counts = {trait: 0 for trait in final_scores.keys()}
for i, scenario_data in enumerate(evaluator.scenarios, 1):
print(f"\n场景 {i}/{len(evaluator.scenarios)} - {scenario_data['场景编号']}:")
print("-" * 50)
print(scenario_data["场景"])
print("\n请描述您的角色在这种情况下会如何反应:")
response = input().strip()
if not response:
print("反应描述不能为空!")
continue
print("\n正在评估您的描述...")
scores = evaluator.evaluate_response(scenario_data["场景"], response, scenario_data["评估维度"])
# 更新最终分数
for dimension, score in scores.items():
final_scores[dimension] += score
dimension_counts[dimension] += 1
print("\n当前评估结果:")
print("-" * 30)
for dimension, score in scores.items():
print(f"{dimension}: {score}/6")
if i < len(evaluator.scenarios):
print("\n按回车键继续下一个场景...")
input()
# 计算平均分
for dimension in final_scores:
if dimension_counts[dimension] > 0:
final_scores[dimension] = round(final_scores[dimension] / dimension_counts[dimension], 2)
print("\n最终人格特征评估结果:")
print("-" * 30)
for trait, score in final_scores.items():
print(f"{trait}: {score}/6")
print(f"测试场景数:{dimension_counts[trait]}")
# 保存结果
result = {"final_scores": final_scores, "dimension_counts": dimension_counts, "scenarios": evaluator.scenarios}
# 确保目录存在
os.makedirs("results", exist_ok=True)
# 保存到文件
with open("results/personality_result.json", "w", encoding="utf-8") as f:
json.dump(result, f, ensure_ascii=False, indent=2)
print("\n结果已保存到 results/personality_result.json")
if __name__ == "__main__":
main()

View File

@@ -1,261 +0,0 @@
from typing import Dict
PERSONALITY_SCENES = {
"外向性": {
"场景1": {
"scenario": """你刚刚搬到一个新的城市工作。今天是你入职的第一天,在公司的电梯里,一位同事微笑着和你打招呼:
同事:「嗨!你是新来的同事吧?我是市场部的小林。」
同事看起来很友善,还主动介绍说:「待会午饭时间,我们部门有几个人准备一起去楼下新开的餐厅,你要一起来吗?可以认识一下其他同事。」""",
"explanation": "这个场景通过职场社交情境,观察个体对于新环境、新社交圈的态度和反应倾向。",
},
"场景2": {
"scenario": """在大学班级群里,班长发起了一个组织班级联谊活动的投票:
班长「大家好下周末我们准备举办一次班级联谊活动地点在学校附近的KTV。想请大家报名参加也欢迎大家邀请其他班级的同学
已经有几个同学在群里积极响应,有人@你问你要不要一起参加。""",
"explanation": "通过班级活动场景,观察个体对群体社交活动的参与意愿。",
},
"场景3": {
"scenario": """你在社交平台上发布了一条动态,收到了很多陌生网友的评论和私信:
网友A「你说的这个观点很有意思想和你多交流一下。」
网友B「我也对这个话题很感兴趣要不要建个群一起讨论""",
"explanation": "通过网络社交场景,观察个体对线上社交的态度。",
},
"场景4": {
"scenario": """你暗恋的对象今天主动来找你:
对方:「那个...我最近在准备一个演讲比赛,听说你口才很好。能不能请你帮我看看演讲稿,顺便给我一些建议?"""
"""如果你有时间的话,可以一起吃个饭聊聊。」""",
"explanation": "通过恋爱情境,观察个体在面对心仪对象时的社交表现。",
},
"场景5": {
"scenario": """在一次线下读书会上,主持人突然点名让你分享读后感:
主持人:「听说你对这本书很有见解,能不能和大家分享一下你的想法?」
现场有二十多个陌生的读书爱好者,都期待地看着你。""",
"explanation": "通过即兴发言场景,观察个体的社交表现欲和公众表达能力。",
},
},
"神经质": {
"场景1": {
"scenario": """你正在准备一个重要的项目演示,这关系到你的晋升机会。"""
"""就在演示前30分钟你收到了主管发来的消息
主管「临时有个变动CEO也会来听你的演示。他对这个项目特别感兴趣。」
正当你准备回复时主管又发来一条「对了能不能把演示时间压缩到15分钟CEO下午还有其他安排。你之前准备的是30分钟的版本对吧""",
"explanation": "这个场景通过突发的压力情境,观察个体在面对计划外变化时的情绪反应和调节能力。",
},
"场景2": {
"scenario": """期末考试前一天晚上,你收到了好朋友发来的消息:
好朋友:「不好意思这么晚打扰你...我看你平时成绩很好,能不能帮我解答几个问题?我真的很担心明天的考试。」
你看了看时间已经是晚上11点而你原本计划的复习还没完成。""",
"explanation": "通过考试压力场景,观察个体在时间紧张时的情绪管理。",
},
"场景3": {
"scenario": """你在社交媒体上发表的一个观点引发了争议,有不少人开始批评你:
网友A「这种观点也好意思说出来真是无知。」
网友B「建议楼主先去补补课再来发言。」
评论区里的负面评论越来越多,还有人开始人身攻击。""",
"explanation": "通过网络争议场景,观察个体面对批评时的心理承受能力。",
},
"场景4": {
"scenario": """你和恋人约好今天一起看电影,但在约定时间前半小时,对方发来消息:
恋人:「对不起,我临时有点事,可能要迟到一会儿。」
二十分钟后,对方又发来消息:「可能要再等等,抱歉!」
电影快要开始了,但对方还是没有出现。""",
"explanation": "通过恋爱情境,观察个体对不确定性的忍耐程度。",
},
"场景5": {
"scenario": """在一次重要的小组展示中,你的组员在演示途中突然卡壳了:
组员小声对你说:「我忘词了,接下来的部分是什么来着...」
台下的老师和同学都在等待,气氛有些尴尬。""",
"explanation": "通过公开场合的突发状况,观察个体的应急反应和压力处理能力。",
},
},
"严谨性": {
"场景1": {
"scenario": """你是团队的项目负责人,刚刚接手了一个为期两个月的重要项目。在第一次团队会议上:
小王:「老大,我觉得两个月时间很充裕,我们先做着看吧,遇到问题再解决。」
小张:「要不要先列个时间表?不过感觉太详细的计划也没必要,点到为止就行。」
小李:「客户那边说如果能提前完成有奖励,我觉得我们可以先做快一点的部分。」""",
"explanation": "这个场景通过项目管理情境,体现个体在工作方法、计划性和责任心方面的特征。",
},
"场景2": {
"scenario": """期末小组作业,组长让大家分工完成一份研究报告。在截止日期前三天:
组员A「我的部分大概写完了感觉还行。」
组员B「我这边可能还要一天才能完成最近太忙了。」
组员C发来一份没有任何引用出处、可能存在抄袭的内容「我写完了你们看看怎么样""",
"explanation": "通过学习场景,观察个体对学术规范和质量要求的重视程度。",
},
"场景3": {
"scenario": """你在一个兴趣小组的群聊中,大家正在讨论举办一次线下活动:
成员A「到时候见面就知道具体怎么玩了
成员B「对啊随意一点挺好的。」
成员C「人来了自然就热闹了。」""",
"explanation": "通过活动组织场景,观察个体对活动计划的态度。",
},
"场景4": {
"scenario": """你和恋人计划一起去旅游,对方说:
恋人:「我们就随心而行吧!订个目的地,其他的到了再说,这样更有意思。」
距离出发还有一周时间,但机票、住宿和具体行程都还没有确定。""",
"explanation": "通过旅行规划场景,观察个体的计划性和对不确定性的接受程度。",
},
"场景5": {
"scenario": """在一个重要的团队项目中,你发现一个同事的工作存在明显错误:
同事:「差不多就行了,反正领导也看不出来。」
这个错误可能不会立即造成问题,但长期来看可能会影响项目质量。""",
"explanation": "通过工作质量场景,观察个体对细节和标准的坚持程度。",
},
},
"开放性": {
"场景1": {
"scenario": """周末下午,你的好友小美兴致勃勃地给你打电话:
小美:「我刚发现一个特别有意思的沉浸式艺术展!不是传统那种挂画的展览,而是把整个空间都变成了艺术品。"""
"""观众要穿特制的服装还要带上VR眼镜好像还有AI实时互动
小美继续说:「虽然票价不便宜,但听说体验很独特。网上评价两极分化,有人说是前所未有的艺术革新,也有人说是哗众取宠。"""
"""要不要周末一起去体验一下?」""",
"explanation": "这个场景通过新型艺术体验,反映个体对创新事物的接受程度和尝试意愿。",
},
"场景2": {
"scenario": """在一节创意写作课上,老师提出了一个特别的作业:
老师「下周的作业是用AI写作工具协助创作一篇小说。你们可以自由探索如何与AI合作打破传统写作方式。」
班上随即展开了激烈讨论,有人认为这是对创作的亵渎,也有人对这种新形式感到兴奋。""",
"explanation": "通过新技术应用场景,观察个体对创新学习方式的态度。",
},
"场景3": {
"scenario": """在社交媒体上,你看到一个朋友分享了一种新的生活方式:
「最近我在尝试'数字游牧'生活,就是一边远程工作一边环游世界。"""
"""没有固定住所,住青旅或短租,认识来自世界各地的朋友。虽然有时会很不稳定,但这种自由的生活方式真的很棒!」
评论区里争论不断,有人向往这种生活,也有人觉得太冒险。""",
"explanation": "通过另类生活方式,观察个体对非传统选择的态度。",
},
"场景4": {
"scenario": """你的恋人突然提出了一个想法:
恋人:「我们要不要尝试一下开放式关系?就是在保持彼此关系的同时,也允许和其他人发展感情。现在国外很多年轻人都这样。」
这个提议让你感到意外,你之前从未考虑过这种可能性。""",
"explanation": "通过感情观念场景,观察个体对非传统关系模式的接受度。",
},
"场景5": {
"scenario": """在一次朋友聚会上,大家正在讨论未来职业规划:
朋友A「我准备辞职去做自媒体专门介绍一些小众的文化和艺术。」
朋友B「我想去学习生物科技准备转行做人造肉研发。」
朋友C「我在考虑加入一个区块链创业项目虽然风险很大。」""",
"explanation": "通过职业选择场景,观察个体对新兴领域的探索意愿。",
},
},
"宜人性": {
"场景1": {
"scenario": """在回家的公交车上,你遇到这样一幕:
一位老奶奶颤颤巍巍地上了车,车上座位已经坐满了。她站在你旁边,看起来很疲惫。这时你听到前排两个年轻人的对话:
年轻人A「那个老太太好像站不稳看起来挺累的。」
年轻人B「现在的老年人真是...我看她包里还有菜,肯定是去菜市场买完菜回来的,这么多人都不知道叫子女开车接送。」
就在这时,老奶奶一个趔趄,差点摔倒。她扶住了扶手,但包里的东西洒了一些出来。""",
"explanation": "这个场景通过公共场合的助人情境,体现个体的同理心和对他人需求的关注程度。",
},
"场景2": {
"scenario": """在班级群里,有同学发起为生病住院的同学捐款:
同学A「大家好小林最近得了重病住院医药费很贵家里负担很重。我们要不要一起帮帮他
同学B「我觉得这是他家里的事我们不方便参与吧。」
同学C「但是都是同学一场帮帮忙也是应该的。」""",
"explanation": "通过同学互助场景,观察个体的助人意愿和同理心。",
},
"场景3": {
"scenario": """在一个网络讨论组里,有人发布了求助信息:
求助者:「最近心情很低落,感觉生活很压抑,不知道该怎么办...」
评论区里已经有一些回复:
「生活本来就是这样,想开点!」
「你这样子太消极了,要积极面对。」
「谁还没点烦心事啊,过段时间就好了。」""",
"explanation": "通过网络互助场景,观察个体的共情能力和安慰方式。",
},
"场景4": {
"scenario": """你的恋人向你倾诉工作压力:
恋人:「最近工作真的好累,感觉快坚持不下去了...」
但今天你也遇到了很多烦心事,心情也不太好。""",
"explanation": "通过感情关系场景,观察个体在自身状态不佳时的关怀能力。",
},
"场景5": {
"scenario": """在一次团队项目中,新来的同事小王因为经验不足,造成了一个严重的错误。在部门会议上:
主管:「这个错误造成了很大的损失,是谁负责的这部分?」
小王看起来很紧张,欲言又止。你知道是他造成的错误,同时你也是这个项目的共同负责人。""",
"explanation": "通过职场情境,观察个体在面对他人过错时的态度和处理方式。",
},
},
}
def get_scene_by_factor(factor: str) -> Dict:
"""
根据人格因子获取对应的情景测试
Args:
factor (str): 人格因子名称
Returns:
Dict: 包含情景描述的字典
"""
return PERSONALITY_SCENES.get(factor, None)
def get_all_scenes() -> Dict:
"""
获取所有情景测试
Returns:
Dict: 所有情景测试的字典
"""
return PERSONALITY_SCENES

View File

@@ -0,0 +1,142 @@
# 人格测试问卷题目
# 王孟成, 戴晓阳, & 姚树桥. (2011).
# 中国大五人格问卷的初步编制Ⅲ:简式版的制定及信效度检验. 中国临床心理学杂志, 19(04), Article 04.
# 王孟成, 戴晓阳, & 姚树桥. (2010).
# 中国大五人格问卷的初步编制Ⅰ:理论框架与信度分析. 中国临床心理学杂志, 18(05), Article 05.
PERSONALITY_QUESTIONS = [
# 神经质维度 (F1)
{"id": 1, "content": "我常担心有什么不好的事情要发生", "factor": "神经质", "reverse_scoring": False},
{"id": 2, "content": "我常感到害怕", "factor": "神经质", "reverse_scoring": False},
{"id": 3, "content": "有时我觉得自己一无是处", "factor": "神经质", "reverse_scoring": False},
{"id": 4, "content": "我很少感到忧郁或沮丧", "factor": "神经质", "reverse_scoring": True},
{"id": 5, "content": "别人一句漫不经心的话,我常会联系在自己身上", "factor": "神经质", "reverse_scoring": False},
{"id": 6, "content": "在面对压力时,我有种快要崩溃的感觉", "factor": "神经质", "reverse_scoring": False},
{"id": 7, "content": "我常担忧一些无关紧要的事情", "factor": "神经质", "reverse_scoring": False},
{"id": 8, "content": "我常常感到内心不踏实", "factor": "神经质", "reverse_scoring": False},
# 严谨性维度 (F2)
{"id": 9, "content": "在工作上,我常只求能应付过去便可", "factor": "严谨性", "reverse_scoring": True},
{"id": 10, "content": "一旦确定了目标,我会坚持努力地实现它", "factor": "严谨性", "reverse_scoring": False},
{"id": 11, "content": "我常常是仔细考虑之后才做出决定", "factor": "严谨性", "reverse_scoring": False},
{"id": 12, "content": "别人认为我是个慎重的人", "factor": "严谨性", "reverse_scoring": False},
{"id": 13, "content": "做事讲究逻辑和条理是我的一个特点", "factor": "严谨性", "reverse_scoring": False},
{"id": 14, "content": "我喜欢一开头就把事情计划好", "factor": "严谨性", "reverse_scoring": False},
{"id": 15, "content": "我工作或学习很勤奋", "factor": "严谨性", "reverse_scoring": False},
{"id": 16, "content": "我是个倾尽全力做事的人", "factor": "严谨性", "reverse_scoring": False},
# 宜人性维度 (F3)
{
"id": 17,
"content": "尽管人类社会存在着一些阴暗的东西(如战争、罪恶、欺诈),我仍然相信人性总的来说是善良的",
"factor": "宜人性",
"reverse_scoring": False,
},
{"id": 18, "content": "我觉得大部分人基本上是心怀善意的", "factor": "宜人性", "reverse_scoring": False},
{"id": 19, "content": "虽然社会上有骗子,但我觉得大部分人还是可信的", "factor": "宜人性", "reverse_scoring": False},
{"id": 20, "content": "我不太关心别人是否受到不公正的待遇", "factor": "宜人性", "reverse_scoring": True},
{"id": 21, "content": "我时常觉得别人的痛苦与我无关", "factor": "宜人性", "reverse_scoring": True},
{"id": 22, "content": "我常为那些遭遇不幸的人感到难过", "factor": "宜人性", "reverse_scoring": False},
{"id": 23, "content": "我是那种只照顾好自己,不替别人担忧的人", "factor": "宜人性", "reverse_scoring": True},
{"id": 24, "content": "当别人向我诉说不幸时,我常感到难过", "factor": "宜人性", "reverse_scoring": False},
# 开放性维度 (F4)
{"id": 25, "content": "我的想象力相当丰富", "factor": "开放性", "reverse_scoring": False},
{"id": 26, "content": "我头脑中经常充满生动的画面", "factor": "开放性", "reverse_scoring": False},
{"id": 27, "content": "我对许多事情有着很强的好奇心", "factor": "开放性", "reverse_scoring": False},
{"id": 28, "content": "我喜欢冒险", "factor": "开放性", "reverse_scoring": False},
{"id": 29, "content": "我是个勇于冒险,突破常规的人", "factor": "开放性", "reverse_scoring": False},
{"id": 30, "content": "我身上具有别人没有的冒险精神", "factor": "开放性", "reverse_scoring": False},
{
"id": 31,
"content": "我渴望学习一些新东西,即使它们与我的日常生活无关",
"factor": "开放性",
"reverse_scoring": False,
},
{
"id": 32,
"content": "我很愿意也很容易接受那些新事物、新观点、新想法",
"factor": "开放性",
"reverse_scoring": False,
},
# 外向性维度 (F5)
{"id": 33, "content": "我喜欢参加社交与娱乐聚会", "factor": "外向性", "reverse_scoring": False},
{"id": 34, "content": "我对人多的聚会感到乏味", "factor": "外向性", "reverse_scoring": True},
{"id": 35, "content": "我尽量避免参加人多的聚会和嘈杂的环境", "factor": "外向性", "reverse_scoring": True},
{"id": 36, "content": "在热闹的聚会上,我常常表现主动并尽情玩耍", "factor": "外向性", "reverse_scoring": False},
{"id": 37, "content": "有我在的场合一般不会冷场", "factor": "外向性", "reverse_scoring": False},
{"id": 38, "content": "我希望成为领导者而不是被领导者", "factor": "外向性", "reverse_scoring": False},
{"id": 39, "content": "在一个团体中,我希望处于领导地位", "factor": "外向性", "reverse_scoring": False},
{"id": 40, "content": "别人多认为我是一个热情和友好的人", "factor": "外向性", "reverse_scoring": False},
]
# 因子维度说明
FACTOR_DESCRIPTIONS = {
"外向性": {
"description": "反映个体神经系统的强弱和动力特征。外向性主要表现为个体在人际交往和社交活动中的倾向性,"
"包括对社交活动的兴趣、"
"对人群的态度、社交互动中的主动程度以及在群体中的影响力。高分者倾向于积极参与社交活动,乐于与人交往,善于表达自我,"
"并往往在群体中发挥领导作用;低分者则倾向于独处,不喜欢热闹的社交场合,表现出内向、安静的特征。",
"trait_words": ["热情", "活力", "社交", "主动"],
"subfactors": {
"合群性": "个体愿意与他人聚在一起,即接近人群的倾向;高分表现乐群、好交际,低分表现封闭、独处",
"热情": "个体对待别人时所表现出的态度;高分表现热情好客,低分表现冷淡",
"支配性": "个体喜欢指使、操纵他人,倾向于领导别人的特点;高分表现好强、发号施令,低分表现顺从、低调",
"活跃": "个体精力充沛,活跃、主动性等特点;高分表现活跃,低分表现安静",
},
},
"神经质": {
"description": "反映个体情绪的状态和体验内心苦恼的倾向性。这个维度主要关注个体在面对压力、"
"挫折和日常生活挑战时的情绪稳定性和适应能力。它包含了对焦虑、抑郁、愤怒等负面情绪的敏感程度,"
"以及个体对这些情绪的调节和控制能力。高分者容易体验负面情绪,对压力较为敏感,情绪波动较大;"
"低分者则表现出较强的情绪稳定性,能够较好地应对压力和挫折。",
"trait_words": ["稳定", "沉着", "从容", "坚韧"],
"subfactors": {
"焦虑": "个体体验焦虑感的个体差异;高分表现坐立不安,低分表现平静",
"抑郁": "个体体验抑郁情感的个体差异;高分表现郁郁寡欢,低分表现平静",
"敏感多疑": "个体常常关注自己的内心活动,行为和过于意识人对自己的看法、评价;高分表现敏感多疑,"
"低分表现淡定、自信",
"脆弱性": "个体在危机或困难面前无力、脆弱的特点;高分表现无能、易受伤、逃避,低分表现坚强",
"愤怒-敌意": "个体准备体验愤怒,及相关情绪的状态;高分表现暴躁易怒,低分表现平静",
},
},
"严谨性": {
"description": "反映个体在目标导向行为上的组织、坚持和动机特征。这个维度体现了个体在工作、"
"学习等目标性活动中的自我约束和行为管理能力。它涉及到个体的责任感、自律性、计划性、条理性以及完成任务的态度。"
"高分者往往表现出强烈的责任心、良好的组织能力、谨慎的决策风格和持续的努力精神;低分者则可能表现出随意性强、"
"缺乏规划、做事马虎或易放弃的特点。",
"trait_words": ["负责", "自律", "条理", "勤奋"],
"subfactors": {
"责任心": "个体对待任务和他人认真负责,以及对自己承诺的信守;高分表现有责任心、负责任,"
"低分表现推卸责任、逃避处罚",
"自我控制": "个体约束自己的能力,及自始至终的坚持性;高分表现自制、有毅力,低分表现冲动、无毅力",
"审慎性": "个体在采取具体行动前的心理状态;高分表现谨慎、小心,低分表现鲁莽、草率",
"条理性": "个体处理事务和工作的秩序,条理和逻辑性;高分表现整洁、有秩序,低分表现混乱、遗漏",
"勤奋": "个体工作和学习的努力程度及为达到目标而表现出的进取精神;高分表现勤奋、刻苦,低分表现懒散",
},
},
"开放性": {
"description": "反映个体对新异事物、新观念和新经验的接受程度,以及在思维和行为方面的创新倾向。"
"这个维度体现了个体在认知和体验方面的广度、深度和灵活性。它包括对艺术的欣赏能力、对知识的求知欲、想象力的丰富程度,"
"以及对冒险和创新的态度。高分者往往具有丰富的想象力、广泛的兴趣、开放的思维方式和创新的倾向;低分者则倾向于保守、"
"传统,喜欢熟悉和常规的事物。",
"trait_words": ["创新", "好奇", "艺术", "冒险"],
"subfactors": {
"幻想": "个体富于幻想和想象的水平;高分表现想象力丰富,低分表现想象力匮乏",
"审美": "个体对于艺术和美的敏感与热爱程度;高分表现富有艺术气息,低分表现一般对艺术不敏感",
"好奇心": "个体对未知事物的态度;高分表现兴趣广泛、好奇心浓,低分表现兴趣少、无好奇心",
"冒险精神": "个体愿意尝试有风险活动的个体差异;高分表现好冒险,低分表现保守",
"价值观念": "个体对新事物、新观念、怪异想法的态度;高分表现开放、坦然接受新事物,低分则相反",
},
},
"宜人性": {
"description": "反映个体在人际关系中的亲和倾向,体现了对他人的关心、同情和合作意愿。"
"这个维度主要关注个体与他人互动时的态度和行为特征,包括对他人的信任程度、同理心水平、"
"助人意愿以及在人际冲突中的处理方式。高分者通常表现出友善、富有同情心、乐于助人的特质,善于与他人建立和谐关系;"
"低分者则可能表现出较少的人际关注,在社交互动中更注重自身利益,较少考虑他人感受。",
"trait_words": ["友善", "同理", "信任", "合作"],
"subfactors": {
"信任": "个体对他人和/或他人言论的相信程度;高分表现信任他人,低分表现怀疑",
"体贴": "个体对别人的兴趣和需要的关注程度;高分表现体贴、温存,低分表现冷漠、不在乎",
"同情": "个体对处于不利地位的人或物的态度;高分表现富有同情心,低分表现冷漠",
},
},
}

View File

@@ -62,9 +62,7 @@ class ScheduleGenerator:
self.name = name
self.behavior = behavior
self.schedule_doing_update_interval = interval
for pers in personality:
self.personality += pers + "\n"
self.personality = personality
async def mai_schedule_start(self):
"""启动日程系统每5分钟执行一次move_doing并在日期变化时重新检查日程"""

View File

@@ -41,7 +41,7 @@ class KnowledgeLibrary:
return f.read()
def split_content(self, content: str, max_length: int = 512) -> list:
"""将内容分割成适当大小的块,保持段落完整性
"""将内容分割成适当大小的块,按空行分割
Args:
content: 要分割的文本内容
@@ -50,66 +50,20 @@ class KnowledgeLibrary:
Returns:
list: 分割后的文本块列表
"""
# 首先按段落分割
# 按空行分割内容
paragraphs = [p.strip() for p in content.split("\n\n") if p.strip()]
chunks = []
current_chunk = []
current_length = 0
for para in paragraphs:
para_length = len(para)
# 如果单个段落就超过最大长度
if para_length > max_length:
# 如果当前chunk不为空先保存
if current_chunk:
chunks.append("\n".join(current_chunk))
current_chunk = []
current_length = 0
# 将长段落按句子分割
sentences = [
s.strip()
for s in para.replace("", "\n").replace("", "\n").replace("", "\n").split("\n")
if s.strip()
]
temp_chunk = []
temp_length = 0
for sentence in sentences:
sentence_length = len(sentence)
if sentence_length > max_length:
# 如果单个句子超长,强制按长度分割
if temp_chunk:
chunks.append("\n".join(temp_chunk))
temp_chunk = []
temp_length = 0
for i in range(0, len(sentence), max_length):
chunks.append(sentence[i : i + max_length])
elif temp_length + sentence_length + 1 <= max_length:
temp_chunk.append(sentence)
temp_length += sentence_length + 1
# 如果段落长度小于等于最大长度,直接添加
if para_length <= max_length:
chunks.append(para)
else:
chunks.append("\n".join(temp_chunk))
temp_chunk = [sentence]
temp_length = sentence_length
if temp_chunk:
chunks.append("\n".join(temp_chunk))
# 如果当前段落加上现有chunk不超过最大长度
elif current_length + para_length + 1 <= max_length:
current_chunk.append(para)
current_length += para_length + 1
else:
# 保存当前chunk并开始新的chunk
chunks.append("\n".join(current_chunk))
current_chunk = [para]
current_length = para_length
# 添加最后一个chunk
if current_chunk:
chunks.append("\n".join(current_chunk))
# 如果段落超过最大长度,则按最大长度切分
for i in range(0, para_length, max_length):
chunks.append(para[i:i + max_length])
return chunks

1375
temp_utils_ui/temp_ui.py Normal file

File diff suppressed because it is too large Load Diff

View File

View File

@@ -1,5 +1,5 @@
[inner]
version = "1.1.3"
version = "1.2.4"
#以下是给开发人员阅读的,一般用户不需要阅读
@@ -33,15 +33,28 @@ talk_allowed = [
talk_frequency_down = [] #降低回复频率的群号码
ban_user_id = [] #禁止回复和读取消息的QQ号
[personality]
prompt_personality = [
"用一句话或几句话描述性格特点和其他特征",
"例如,是一个热爱国家热爱党的新时代好青年",
"例如,曾经是一个学习地质的女大学生,现在学习心理学和脑科学,你会刷贴吧"
]
personality_1_probability = 0.7 # 第一种人格出现概率
personality_2_probability = 0.2 # 第二种人格出现概率可以为0
personality_3_probability = 0.1 # 第三种人格出现概率请确保三个概率相加等于1
[personality] #未完善
personality_core = "用一句话或几句话描述人格的核心特点" # 建议20字以内谁再写3000字小作文敲谁脑袋
personality_sides = [
"用一句话或几句话描述人格的一些细节",
"用一句话或几句话描述人格的一些细节",
"用一句话或几句话描述人格的一些细节",
"用一句话或几句话描述人格的一些细节",
"用一句话或几句话描述人格的一些细节",
]# 条数任意
[identity] #アイデンティティがない 生まれないらららら
# 兴趣爱好 未完善,有些条目未使用
identity_detail = [
"身份特点",
"身份特点",
]# 条数任意
#外貌特征
height = 170 # 身高 单位厘米
weight = 50 # 体重 单位千克
age = 20 # 年龄 单位岁
gender = "男" # 性别
appearance = "用几句话描述外貌特征" # 外貌特征
[schedule]
enable_schedule_gen = true # 是否启用日程表(尚未完成)
@@ -60,7 +73,7 @@ response_mode = "heart_flow" # 回复策略可选值heart_flow心流
model_r1_probability = 0.7 # 麦麦回答时选择主要回复模型1 模型的概率
model_v3_probability = 0.3 # 麦麦回答时选择次要回复模型2 模型的概率
[heartflow] # 注意可能会消耗大量token请谨慎开启
[heartflow] # 注意可能会消耗大量token请谨慎开启仅会使用v3模型
sub_heart_flow_update_interval = 60 # 子心流更新频率,间隔 单位秒
sub_heart_flow_freeze_time = 120 # 子心流冻结时间,超过这个时间没有回复,子心流会冻结,间隔 单位秒
sub_heart_flow_stop_time = 600 # 子心流停止时间,超过这个时间没有回复,子心流会停止,间隔 单位秒
@@ -72,6 +85,7 @@ max_context_size = 12 # 麦麦获得的上文数量建议12太短太长都
emoji_chance = 0.2 # 麦麦使用表情包的概率
thinking_timeout = 60 # 麦麦最长思考时间,超过这个时间的思考会放弃
max_response_length = 256 # 麦麦回答的最大token数
message_buffer = true # 启用消息缓冲器?启用此项以解决消息的拆分问题,但会使麦麦的回复延迟
ban_words = [
# "403","张三"
]
@@ -85,7 +99,7 @@ ban_msgs_regex = [
[willing]
willing_mode = "classical" # 回复意愿模式 经典模式
# willing_mode = "dynamic" # 动态模式(可能不兼容)
# willing_mode = "dynamic" # 动态模式(不兼容,需要维护)
# willing_mode = "custom" # 自定义模式(可自行调整
response_willing_amplifier = 1 # 麦麦回复意愿放大系数一般为1
response_interested_rate_amplifier = 1 # 麦麦回复兴趣度放大系数,听到记忆里的内容时放大系数
@@ -151,7 +165,7 @@ enable = true
[experimental]
enable_friend_chat = false # 是否启用好友聊天
pfc_chatting = false # 是否启用PFC聊天
pfc_chatting = false # 是否启用PFC聊天,该功能仅作用于私聊,与回复模式独立
#下面的模型若使用硅基流动则不需要更改使用ds官方则改成.env自定义的宏使用自定义模型则选择定位相似的模型自己填写
#推理模型
@@ -162,7 +176,7 @@ pfc_chatting = false # 是否启用PFC聊天
# stream = <true|false> : 用于指定模型是否是使用流式输出
# 如果不指定,则该项是 False
[model.llm_reasoning] #暂时未使
[model.llm_reasoning] #只在回复模式为reasoning时启
name = "Pro/deepseek-ai/DeepSeek-R1"
# name = "Qwen/QwQ-32B"
provider = "SILICONFLOW"

View File

@@ -0,0 +1 @@
该版本变动了人格相关设置,原有的配置内容可能被自动更新,如果你没有备份,可以在\config\old找回

View File

@@ -0,0 +1,56 @@
@echo off
chcp 65001 > nul
setlocal enabledelayedexpansion
cd /d %~dp0
title 麦麦学习系统
cls
echo ======================================
echo 警告提示
echo ======================================
echo 1.这是一个demo系统,不完善不稳定,仅用于体验/不要塞入过长过大的文本,这会导致信息提取迟缓
echo ======================================
echo.
echo ======================================
echo 请选择Python环境:
echo 1 - venv (推荐)
echo 2 - conda
echo ======================================
choice /c 12 /n /m "请输入数字选择(1或2): "
if errorlevel 2 (
echo ======================================
set "CONDA_ENV="
set /p CONDA_ENV="请输入要激活的 conda 环境名称: "
:: 检查输入是否为空
if "!CONDA_ENV!"=="" (
echo 错误:环境名称不能为空
pause
exit /b 1
)
call conda activate !CONDA_ENV!
if errorlevel 1 (
echo 激活 conda 环境失败
pause
exit /b 1
)
echo Conda 环境 "!CONDA_ENV!" 激活成功
python src/plugins/zhishi/knowledge_library.py
) else (
if exist "venv\Scripts\python.exe" (
venv\Scripts\python src/plugins/zhishi/knowledge_library.py
) else (
echo ======================================
echo 错误: venv环境不存在请先创建虚拟环境
pause
exit /b 1
)
)
endlocal
pause

View File

@@ -0,0 +1,56 @@
@echo off
chcp 65001 > nul
setlocal enabledelayedexpansion
cd /d %~dp0
title 麦麦人格生成
cls
echo ======================================
echo 警告提示
echo ======================================
echo 1.这是一个demo系统,仅供体验,特性可能会在将来移除
echo ======================================
echo.
echo ======================================
echo 请选择Python环境:
echo 1 - venv (推荐)
echo 2 - conda
echo ======================================
choice /c 12 /n /m "请输入数字选择(1或2): "
if errorlevel 2 (
echo ======================================
set "CONDA_ENV="
set /p CONDA_ENV="请输入要激活的 conda 环境名称: "
:: 检查输入是否为空
if "!CONDA_ENV!"=="" (
echo 错误:环境名称不能为空
pause
exit /b 1
)
call conda activate !CONDA_ENV!
if errorlevel 1 (
echo 激活 conda 环境失败
pause
exit /b 1
)
echo Conda 环境 "!CONDA_ENV!" 激活成功
python src/individuality/per_bf_gen.py
) else (
if exist "venv\Scripts\python.exe" (
venv\Scripts\python src/individuality/per_bf_gen.py
) else (
echo ======================================
echo 错误: venv环境不存在请先创建虚拟环境
pause
exit /b 1
)
)
endlocal
pause