Merge branch 'MaiM-with-u:main' into main
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
import time
|
||||
import asyncio
|
||||
from typing import Optional, Dict, Any, List
|
||||
from typing import Optional, Dict, Any, List, Tuple
|
||||
from src.common.logger import get_module_logger
|
||||
from src.common.database import db
|
||||
from ..message.message_base import UserInfo
|
||||
@@ -57,6 +57,35 @@ class ChatObserver:
|
||||
self._update_event = asyncio.Event() # 触发更新的事件
|
||||
self._update_complete = asyncio.Event() # 更新完成的事件
|
||||
|
||||
def check(self) -> bool:
|
||||
"""检查距离上一次观察之后是否有了新消息
|
||||
|
||||
Returns:
|
||||
bool: 是否有新消息
|
||||
"""
|
||||
logger.debug(f"检查距离上一次观察之后是否有了新消息: {self.last_check_time}")
|
||||
|
||||
query = {
|
||||
"chat_id": self.stream_id,
|
||||
"time": {"$gt": self.last_check_time}
|
||||
}
|
||||
|
||||
# 只需要查询是否存在,不需要获取具体消息
|
||||
new_message_exists = db.messages.find_one(query) is not None
|
||||
|
||||
if new_message_exists:
|
||||
logger.debug("发现新消息")
|
||||
self.last_check_time = time.time()
|
||||
|
||||
return new_message_exists
|
||||
|
||||
def get_new_message(self) -> Tuple[List[Dict[str, Any]], List[Dict[str, Any]]]:
|
||||
"""获取上一次观察的时间点后的新消息,插入到历史记录中,并返回新消息和历史记录两个对象"""
|
||||
messages = self.get_message_history(self.last_check_time)
|
||||
for message in messages:
|
||||
self._add_message_to_history(message)
|
||||
return messages, self.message_history
|
||||
|
||||
def new_message_after(self, time_point: float) -> bool:
|
||||
"""判断是否在指定时间点后有新消息
|
||||
|
||||
@@ -66,6 +95,7 @@ class ChatObserver:
|
||||
Returns:
|
||||
bool: 是否有新消息
|
||||
"""
|
||||
logger.debug(f"判断是否在指定时间点后有新消息: {self.last_message_time} > {time_point}")
|
||||
return self.last_message_time is None or self.last_message_time > time_point
|
||||
|
||||
def _add_message_to_history(self, message: Dict[str, Any]):
|
||||
|
||||
@@ -17,7 +17,8 @@ from ..storage.storage import MessageStorage
|
||||
from .chat_observer import ChatObserver
|
||||
from .pfc_KnowledgeFetcher import KnowledgeFetcher
|
||||
from .reply_checker import ReplyChecker
|
||||
import json
|
||||
from .pfc_utils import get_items_from_json
|
||||
from src.individuality.individuality import Individuality
|
||||
import time
|
||||
|
||||
logger = get_module_logger("pfc")
|
||||
@@ -51,7 +52,7 @@ class ActionPlanner:
|
||||
max_tokens=1000,
|
||||
request_type="action_planning"
|
||||
)
|
||||
self.personality_info = " ".join(global_config.PROMPT_PERSONALITY)
|
||||
self.personality_info = Individuality.get_instance().get_prompt(type = "personality", x_person = 2, level = 2)
|
||||
self.name = global_config.BOT_NICKNAME
|
||||
self.chat_observer = ChatObserver.get_instance(stream_id)
|
||||
|
||||
@@ -67,7 +68,6 @@ class ActionPlanner:
|
||||
|
||||
Args:
|
||||
goal: 对话目标
|
||||
method: 实现方式
|
||||
reasoning: 目标原因
|
||||
action_history: 行动历史记录
|
||||
|
||||
@@ -128,43 +128,18 @@ judge_conversation: 判断对话是否结束,当发现对话目标已经达到
|
||||
content, _ = await self.llm.generate_response_async(prompt)
|
||||
logger.debug(f"LLM原始返回内容: {content}")
|
||||
|
||||
# 清理内容,尝试提取JSON部分
|
||||
content = content.strip()
|
||||
try:
|
||||
# 尝试直接解析
|
||||
result = json.loads(content)
|
||||
except json.JSONDecodeError:
|
||||
# 如果直接解析失败,尝试查找和提取JSON部分
|
||||
import re
|
||||
json_pattern = r'\{[^{}]*\}'
|
||||
json_match = re.search(json_pattern, content)
|
||||
if json_match:
|
||||
try:
|
||||
result = json.loads(json_match.group())
|
||||
except json.JSONDecodeError:
|
||||
logger.error("提取的JSON内容解析失败,返回默认行动")
|
||||
return "direct_reply", "JSON解析失败,选择直接回复"
|
||||
else:
|
||||
# 如果找不到JSON,尝试从文本中提取行动和原因
|
||||
if "direct_reply" in content.lower():
|
||||
return "direct_reply", "从文本中提取的行动"
|
||||
elif "fetch_knowledge" in content.lower():
|
||||
return "fetch_knowledge", "从文本中提取的行动"
|
||||
elif "wait" in content.lower():
|
||||
return "wait", "从文本中提取的行动"
|
||||
elif "listening" in content.lower():
|
||||
return "listening", "从文本中提取的行动"
|
||||
elif "rethink_goal" in content.lower():
|
||||
return "rethink_goal", "从文本中提取的行动"
|
||||
elif "judge_conversation" in content.lower():
|
||||
return "judge_conversation", "从文本中提取的行动"
|
||||
else:
|
||||
logger.error("无法从返回内容中提取行动类型")
|
||||
return "direct_reply", "无法解析响应,选择直接回复"
|
||||
# 使用简化函数提取JSON内容
|
||||
success, result = get_items_from_json(
|
||||
content,
|
||||
"action", "reason",
|
||||
default_values={"action": "direct_reply", "reason": "默认原因"}
|
||||
)
|
||||
|
||||
# 验证JSON字段
|
||||
action = result.get("action", "direct_reply")
|
||||
reason = result.get("reason", "默认原因")
|
||||
if not success:
|
||||
return "direct_reply", "JSON解析失败,选择直接回复"
|
||||
|
||||
action = result["action"]
|
||||
reason = result["reason"]
|
||||
|
||||
# 验证action类型
|
||||
if action not in ["direct_reply", "fetch_knowledge", "wait", "listening", "rethink_goal", "judge_conversation"]:
|
||||
@@ -191,10 +166,15 @@ class GoalAnalyzer:
|
||||
request_type="conversation_goal"
|
||||
)
|
||||
|
||||
self.personality_info = " ".join(global_config.PROMPT_PERSONALITY)
|
||||
self.personality_info = Individuality.get_instance().get_prompt(type = "personality", x_person = 2, level = 2)
|
||||
self.name = global_config.BOT_NICKNAME
|
||||
self.nick_name = global_config.BOT_ALIAS_NAMES
|
||||
self.chat_observer = ChatObserver.get_instance(stream_id)
|
||||
|
||||
# 多目标存储结构
|
||||
self.goals = [] # 存储多个目标
|
||||
self.max_goals = 3 # 同时保持的最大目标数量
|
||||
self.current_goal_and_reason = None
|
||||
|
||||
async def analyze_goal(self) -> Tuple[str, str, str]:
|
||||
"""分析对话历史并设定目标
|
||||
@@ -220,12 +200,29 @@ class GoalAnalyzer:
|
||||
chat_history_text += f"{time_str},{sender}:{msg.get('processed_plain_text', '')}\n"
|
||||
|
||||
personality_text = f"你的名字是{self.name},{self.personality_info}"
|
||||
|
||||
# 构建当前已有目标的文本
|
||||
existing_goals_text = ""
|
||||
if self.goals:
|
||||
existing_goals_text = "当前已有的对话目标:\n"
|
||||
for i, (goal, _, reason) in enumerate(self.goals):
|
||||
existing_goals_text += f"{i+1}. 目标: {goal}, 原因: {reason}\n"
|
||||
|
||||
prompt = f"""{personality_text}。现在你在参与一场QQ聊天,请分析以下聊天记录,并根据你的性格特征确定一个明确的对话目标。
|
||||
这个目标应该反映出对话的意图和期望的结果。
|
||||
prompt = f"""{personality_text}。现在你在参与一场QQ聊天,请分析以下聊天记录,并根据你的性格特征确定多个明确的对话目标。
|
||||
这些目标应该反映出对话的不同方面和意图。
|
||||
|
||||
{existing_goals_text}
|
||||
|
||||
聊天记录:
|
||||
{chat_history_text}
|
||||
请以JSON格式输出,包含以下字段:
|
||||
|
||||
请分析当前对话并确定最适合的对话目标。你可以:
|
||||
1. 保持现有目标不变
|
||||
2. 修改现有目标
|
||||
3. 添加新目标
|
||||
4. 删除不再相关的目标
|
||||
|
||||
请以JSON格式输出一个当前最主要的对话目标,包含以下字段:
|
||||
1. goal: 对话目标(简短的一句话)
|
||||
2. reasoning: 对话原因,为什么设定这个目标(简要解释)
|
||||
|
||||
@@ -239,51 +236,32 @@ class GoalAnalyzer:
|
||||
content, _ = await self.llm.generate_response_async(prompt)
|
||||
logger.debug(f"LLM原始返回内容: {content}")
|
||||
|
||||
# 清理和验证返回内容
|
||||
if not content or not isinstance(content, str):
|
||||
logger.error("LLM返回内容为空或格式不正确")
|
||||
continue
|
||||
|
||||
# 尝试提取JSON部分
|
||||
content = content.strip()
|
||||
try:
|
||||
# 尝试直接解析
|
||||
result = json.loads(content)
|
||||
except json.JSONDecodeError:
|
||||
# 如果直接解析失败,尝试查找和提取JSON部分
|
||||
import re
|
||||
json_pattern = r'\{[^{}]*\}'
|
||||
json_match = re.search(json_pattern, content)
|
||||
if json_match:
|
||||
try:
|
||||
result = json.loads(json_match.group())
|
||||
except json.JSONDecodeError:
|
||||
logger.error(f"提取的JSON内容解析失败,重试第{retry + 1}次")
|
||||
continue
|
||||
else:
|
||||
logger.error(f"无法在返回内容中找到有效的JSON,重试第{retry + 1}次")
|
||||
continue
|
||||
# 使用简化函数提取JSON内容
|
||||
success, result = get_items_from_json(
|
||||
content,
|
||||
"goal", "reasoning",
|
||||
required_types={"goal": str, "reasoning": str}
|
||||
)
|
||||
|
||||
# 验证JSON字段
|
||||
if not all(key in result for key in ["goal", "reasoning"]):
|
||||
logger.error(f"JSON缺少必要字段,实际内容: {result},重试第{retry + 1}次")
|
||||
if not success:
|
||||
logger.error(f"无法解析JSON,重试第{retry + 1}次")
|
||||
continue
|
||||
|
||||
goal = result["goal"]
|
||||
reasoning = result["reasoning"]
|
||||
|
||||
# 验证字段内容
|
||||
if not isinstance(goal, str) or not isinstance(reasoning, str):
|
||||
logger.error(f"JSON字段类型错误,goal和reasoning必须是字符串,重试第{retry + 1}次")
|
||||
continue
|
||||
|
||||
if not goal.strip() or not reasoning.strip():
|
||||
logger.error(f"JSON字段内容为空,重试第{retry + 1}次")
|
||||
continue
|
||||
|
||||
# 使用默认的方法
|
||||
method = "以友好的态度回应"
|
||||
return goal, method, reasoning
|
||||
|
||||
# 更新目标列表
|
||||
await self._update_goals(goal, method, reasoning)
|
||||
|
||||
# 返回当前最主要的目标
|
||||
if self.goals:
|
||||
current_goal, current_method, current_reasoning = self.goals[0]
|
||||
return current_goal, current_method, current_reasoning
|
||||
else:
|
||||
return goal, method, reasoning
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"分析对话目标时出错: {str(e)},重试第{retry + 1}次")
|
||||
@@ -293,8 +271,69 @@ class GoalAnalyzer:
|
||||
|
||||
# 所有重试都失败后的默认返回
|
||||
return "保持友好的对话", "以友好的态度回应", "确保对话顺利进行"
|
||||
|
||||
async def _update_goals(self, new_goal: str, method: str, reasoning: str):
|
||||
"""更新目标列表
|
||||
|
||||
Args:
|
||||
new_goal: 新的目标
|
||||
method: 实现目标的方法
|
||||
reasoning: 目标的原因
|
||||
"""
|
||||
# 检查新目标是否与现有目标相似
|
||||
for i, (existing_goal, _, _) in enumerate(self.goals):
|
||||
if self._calculate_similarity(new_goal, existing_goal) > 0.7: # 相似度阈值
|
||||
# 更新现有目标
|
||||
self.goals[i] = (new_goal, method, reasoning)
|
||||
# 将此目标移到列表前面(最主要的位置)
|
||||
self.goals.insert(0, self.goals.pop(i))
|
||||
return
|
||||
|
||||
# 添加新目标到列表前面
|
||||
self.goals.insert(0, (new_goal, method, reasoning))
|
||||
|
||||
# 限制目标数量
|
||||
if len(self.goals) > self.max_goals:
|
||||
self.goals.pop() # 移除最老的目标
|
||||
|
||||
def _calculate_similarity(self, goal1: str, goal2: str) -> float:
|
||||
"""简单计算两个目标之间的相似度
|
||||
|
||||
这里使用一个简单的实现,实际可以使用更复杂的文本相似度算法
|
||||
|
||||
Args:
|
||||
goal1: 第一个目标
|
||||
goal2: 第二个目标
|
||||
|
||||
Returns:
|
||||
float: 相似度得分 (0-1)
|
||||
"""
|
||||
# 简单实现:检查重叠字数比例
|
||||
words1 = set(goal1)
|
||||
words2 = set(goal2)
|
||||
overlap = len(words1.intersection(words2))
|
||||
total = len(words1.union(words2))
|
||||
return overlap / total if total > 0 else 0
|
||||
|
||||
async def get_all_goals(self) -> List[Tuple[str, str, str]]:
|
||||
"""获取所有当前目标
|
||||
|
||||
Returns:
|
||||
List[Tuple[str, str, str]]: 目标列表,每项为(目标, 方法, 原因)
|
||||
"""
|
||||
return self.goals.copy()
|
||||
|
||||
async def get_alternative_goals(self) -> List[Tuple[str, str, str]]:
|
||||
"""获取除了当前主要目标外的其他备选目标
|
||||
|
||||
Returns:
|
||||
List[Tuple[str, str, str]]: 备选目标列表
|
||||
"""
|
||||
if len(self.goals) <= 1:
|
||||
return []
|
||||
return self.goals[1:].copy()
|
||||
|
||||
async def analyze_conversation(self,goal,reasoning):
|
||||
async def analyze_conversation(self, goal, reasoning):
|
||||
messages = self.chat_observer.get_message_history()
|
||||
chat_history_text = ""
|
||||
for msg in messages:
|
||||
@@ -330,58 +369,31 @@ class GoalAnalyzer:
|
||||
content, _ = await self.llm.generate_response_async(prompt)
|
||||
logger.debug(f"LLM原始返回内容: {content}")
|
||||
|
||||
# 清理和验证返回内容
|
||||
if not content or not isinstance(content, str):
|
||||
logger.error("LLM返回内容为空或格式不正确")
|
||||
return False, False, "确保对话顺利进行"
|
||||
|
||||
# 尝试提取JSON部分
|
||||
content = content.strip()
|
||||
try:
|
||||
# 尝试直接解析
|
||||
result = json.loads(content)
|
||||
except json.JSONDecodeError:
|
||||
# 如果直接解析失败,尝试查找和提取JSON部分
|
||||
import re
|
||||
json_pattern = r'\{[^{}]*\}'
|
||||
json_match = re.search(json_pattern, content)
|
||||
if json_match:
|
||||
try:
|
||||
result = json.loads(json_match.group())
|
||||
except json.JSONDecodeError as e:
|
||||
logger.error(f"提取的JSON内容解析失败: {e}")
|
||||
return False, False, "确保对话顺利进行"
|
||||
else:
|
||||
logger.error("无法在返回内容中找到有效的JSON")
|
||||
return False, False, "确保对话顺利进行"
|
||||
# 使用简化函数提取JSON内容
|
||||
success, result = get_items_from_json(
|
||||
content,
|
||||
"goal_achieved", "stop_conversation", "reason",
|
||||
required_types={
|
||||
"goal_achieved": bool,
|
||||
"stop_conversation": bool,
|
||||
"reason": str
|
||||
}
|
||||
)
|
||||
|
||||
# 验证JSON字段
|
||||
if not all(key in result for key in ["goal_achieved", "stop_conversation", "reason"]):
|
||||
logger.error(f"JSON缺少必要字段,实际内容: {result}")
|
||||
return False, False, "确保对话顺利进行"
|
||||
|
||||
goal_achieved = result["goal_achieved"]
|
||||
stop_conversation = result["stop_conversation"]
|
||||
reason = result["reason"]
|
||||
|
||||
# 验证字段类型
|
||||
if not isinstance(goal_achieved, bool):
|
||||
logger.error("goal_achieved 必须是布尔值")
|
||||
return False, False, "确保对话顺利进行"
|
||||
|
||||
if not isinstance(stop_conversation, bool):
|
||||
logger.error("stop_conversation 必须是布尔值")
|
||||
return False, False, "确保对话顺利进行"
|
||||
|
||||
if not isinstance(reason, str):
|
||||
logger.error("reason 必须是字符串")
|
||||
return False, False, "确保对话顺利进行"
|
||||
|
||||
if not reason.strip():
|
||||
logger.error("reason 不能为空")
|
||||
if not success:
|
||||
return False, False, "确保对话顺利进行"
|
||||
|
||||
return goal_achieved, stop_conversation, reason
|
||||
# 如果当前目标达成,从目标列表中移除
|
||||
if result["goal_achieved"] and not result["stop_conversation"]:
|
||||
for i, (g, _, _) in enumerate(self.goals):
|
||||
if g == goal:
|
||||
self.goals.pop(i)
|
||||
# 如果还有其他目标,不停止对话
|
||||
if self.goals:
|
||||
result["stop_conversation"] = False
|
||||
break
|
||||
|
||||
return result["goal_achieved"], result["stop_conversation"], result["reason"]
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"分析对话目标时出错: {str(e)}")
|
||||
@@ -392,7 +404,7 @@ class Waiter:
|
||||
"""快 速 等 待"""
|
||||
def __init__(self, stream_id: str):
|
||||
self.chat_observer = ChatObserver.get_instance(stream_id)
|
||||
self.personality_info = " ".join(global_config.PROMPT_PERSONALITY)
|
||||
self.personality_info = Individuality.get_instance().get_prompt(type = "personality", x_person = 2, level = 2)
|
||||
self.name = global_config.BOT_NICKNAME
|
||||
|
||||
async def wait(self) -> bool:
|
||||
@@ -406,8 +418,8 @@ class Waiter:
|
||||
await asyncio.sleep(1)
|
||||
logger.info("等待中...")
|
||||
# 检查是否超过60秒
|
||||
if time.time() - wait_start_time > 60:
|
||||
logger.info("等待超过60秒,结束对话")
|
||||
if time.time() - wait_start_time > 300:
|
||||
logger.info("等待超过300秒,结束对话")
|
||||
return True
|
||||
logger.info("等待结束")
|
||||
return False
|
||||
@@ -423,7 +435,7 @@ class ReplyGenerator:
|
||||
max_tokens=300,
|
||||
request_type="reply_generation"
|
||||
)
|
||||
self.personality_info = " ".join(global_config.PROMPT_PERSONALITY)
|
||||
self.personality_info = Individuality.get_instance().get_prompt(type = "personality", x_person = 2, level = 2)
|
||||
self.name = global_config.BOT_NICKNAME
|
||||
self.chat_observer = ChatObserver.get_instance(stream_id)
|
||||
self.reply_checker = ReplyChecker(stream_id)
|
||||
@@ -435,19 +447,18 @@ class ReplyGenerator:
|
||||
knowledge_cache: Dict[str, str],
|
||||
previous_reply: Optional[str] = None,
|
||||
retry_count: int = 0
|
||||
) -> Tuple[str, bool]:
|
||||
) -> str:
|
||||
"""生成回复
|
||||
|
||||
Args:
|
||||
goal: 对话目标
|
||||
method: 实现方式
|
||||
chat_history: 聊天历史
|
||||
knowledge_cache: 知识缓存
|
||||
previous_reply: 上一次生成的回复(如果有)
|
||||
retry_count: 当前重试次数
|
||||
|
||||
Returns:
|
||||
Tuple[str, bool]: (生成的回复, 是否需要重新规划)
|
||||
str: 生成的回复
|
||||
"""
|
||||
# 构建提示词
|
||||
logger.debug(f"开始生成回复:当前目标: {goal}")
|
||||
@@ -508,53 +519,105 @@ class ReplyGenerator:
|
||||
try:
|
||||
content, _ = await self.llm.generate_response_async(prompt)
|
||||
logger.info(f"生成的回复: {content}")
|
||||
is_new = self.chat_observer.check()
|
||||
logger.debug(f"再看一眼聊天记录,{'有' if is_new else '没有'}新消息")
|
||||
|
||||
# 检查生成的回复是否合适
|
||||
is_suitable, reason, need_replan = await self.reply_checker.check(
|
||||
content, goal, retry_count
|
||||
)
|
||||
|
||||
if not is_suitable:
|
||||
logger.warning(f"生成的回复不合适,原因: {reason}")
|
||||
if need_replan:
|
||||
logger.info("需要重新规划对话目标")
|
||||
return "让我重新思考一下...", True
|
||||
else:
|
||||
# 递归调用,将当前回复作为previous_reply传入
|
||||
return await self.generate(
|
||||
goal, chat_history, knowledge_cache,
|
||||
content, retry_count + 1
|
||||
)
|
||||
# 如果有新消息,重新生成回复
|
||||
if is_new:
|
||||
logger.info("检测到新消息,重新生成回复")
|
||||
return await self.generate(
|
||||
goal, chat_history, knowledge_cache,
|
||||
None, retry_count
|
||||
)
|
||||
|
||||
return content, False
|
||||
return content
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"生成回复时出错: {e}")
|
||||
return "抱歉,我现在有点混乱,让我重新思考一下...", True
|
||||
return "抱歉,我现在有点混乱,让我重新思考一下..."
|
||||
|
||||
async def check_reply(
|
||||
self,
|
||||
reply: str,
|
||||
goal: str,
|
||||
retry_count: int = 0
|
||||
) -> Tuple[bool, str, bool]:
|
||||
"""检查回复是否合适
|
||||
|
||||
Args:
|
||||
reply: 生成的回复
|
||||
goal: 对话目标
|
||||
retry_count: 当前重试次数
|
||||
|
||||
Returns:
|
||||
Tuple[bool, str, bool]: (是否合适, 原因, 是否需要重新规划)
|
||||
"""
|
||||
return await self.reply_checker.check(reply, goal, retry_count)
|
||||
|
||||
|
||||
class Conversation:
|
||||
# 类级别的实例管理
|
||||
_instances: Dict[str, 'Conversation'] = {}
|
||||
_instance_lock = asyncio.Lock() # 类级别的全局锁
|
||||
_init_events: Dict[str, asyncio.Event] = {} # 初始化完成事件
|
||||
_initializing: Dict[str, bool] = {} # 标记是否正在初始化
|
||||
|
||||
@classmethod
|
||||
def get_instance(cls, stream_id: str) -> 'Conversation':
|
||||
"""获取或创建对话实例"""
|
||||
if stream_id not in cls._instances:
|
||||
cls._instances[stream_id] = cls(stream_id)
|
||||
logger.info(f"创建新的对话实例: {stream_id}")
|
||||
return cls._instances[stream_id]
|
||||
async def get_instance(cls, stream_id: str) -> Optional['Conversation']:
|
||||
"""获取或创建对话实例
|
||||
|
||||
Args:
|
||||
stream_id: 聊天流ID
|
||||
|
||||
Returns:
|
||||
Optional[Conversation]: 对话实例,如果创建或等待失败则返回None
|
||||
"""
|
||||
try:
|
||||
# 使用全局锁来确保线程安全
|
||||
async with cls._instance_lock:
|
||||
# 如果已经在初始化中,等待初始化完成
|
||||
if stream_id in cls._initializing and cls._initializing[stream_id]:
|
||||
# 释放锁等待初始化
|
||||
cls._instance_lock.release()
|
||||
try:
|
||||
await asyncio.wait_for(cls._init_events[stream_id].wait(), timeout=5.0)
|
||||
except asyncio.TimeoutError:
|
||||
logger.error(f"等待实例 {stream_id} 初始化超时")
|
||||
return None
|
||||
finally:
|
||||
await cls._instance_lock.acquire()
|
||||
|
||||
# 如果实例不存在,创建新实例
|
||||
if stream_id not in cls._instances:
|
||||
cls._instances[stream_id] = cls(stream_id)
|
||||
cls._init_events[stream_id] = asyncio.Event()
|
||||
cls._initializing[stream_id] = True
|
||||
logger.info(f"创建新的对话实例: {stream_id}")
|
||||
|
||||
return cls._instances[stream_id]
|
||||
except Exception as e:
|
||||
logger.error(f"获取对话实例失败: {e}")
|
||||
return None
|
||||
|
||||
@classmethod
|
||||
def remove_instance(cls, stream_id: str):
|
||||
"""删除对话实例"""
|
||||
if stream_id in cls._instances:
|
||||
# 停止相关组件
|
||||
instance = cls._instances[stream_id]
|
||||
instance.chat_observer.stop()
|
||||
# 删除实例
|
||||
del cls._instances[stream_id]
|
||||
logger.info(f"已删除对话实例 {stream_id}")
|
||||
async def remove_instance(cls, stream_id: str):
|
||||
"""删除对话实例
|
||||
|
||||
Args:
|
||||
stream_id: 聊天流ID
|
||||
"""
|
||||
async with cls._instance_lock:
|
||||
if stream_id in cls._instances:
|
||||
# 停止相关组件
|
||||
instance = cls._instances[stream_id]
|
||||
instance.chat_observer.stop()
|
||||
# 删除实例
|
||||
del cls._instances[stream_id]
|
||||
if stream_id in cls._init_events:
|
||||
del cls._init_events[stream_id]
|
||||
if stream_id in cls._initializing:
|
||||
del cls._initializing[stream_id]
|
||||
logger.info(f"已删除对话实例 {stream_id}")
|
||||
|
||||
def __init__(self, stream_id: str):
|
||||
"""初始化对话系统"""
|
||||
@@ -592,13 +655,21 @@ class Conversation:
|
||||
|
||||
async def start(self):
|
||||
"""开始对话流程"""
|
||||
logger.info("对话系统启动")
|
||||
self.should_continue = True
|
||||
self.chat_observer.start() # 启动观察器
|
||||
await asyncio.sleep(1)
|
||||
# 启动对话循环
|
||||
await self._conversation_loop()
|
||||
|
||||
try:
|
||||
logger.info("对话系统启动")
|
||||
self.should_continue = True
|
||||
self.chat_observer.start() # 启动观察器
|
||||
await asyncio.sleep(1)
|
||||
# 启动对话循环
|
||||
await self._conversation_loop()
|
||||
except Exception as e:
|
||||
logger.error(f"启动对话系统失败: {e}")
|
||||
raise
|
||||
finally:
|
||||
# 标记初始化完成
|
||||
self._init_events[self.stream_id].set()
|
||||
self._initializing[self.stream_id] = False
|
||||
|
||||
async def _conversation_loop(self):
|
||||
"""对话循环"""
|
||||
# 获取最近的消息历史
|
||||
@@ -658,17 +729,101 @@ class Conversation:
|
||||
if action == "direct_reply":
|
||||
self.state = ConversationState.GENERATING
|
||||
messages = self.chat_observer.get_message_history(limit=30)
|
||||
self.generated_reply, need_replan = await self.reply_generator.generate(
|
||||
self.generated_reply = await self.reply_generator.generate(
|
||||
self.current_goal,
|
||||
self.current_method,
|
||||
[self._convert_to_message(msg) for msg in messages],
|
||||
self.knowledge_cache
|
||||
)
|
||||
if need_replan:
|
||||
self.state = ConversationState.RETHINKING
|
||||
self.current_goal, self.current_method, self.goal_reasoning = await self.goal_analyzer.analyze_goal()
|
||||
else:
|
||||
await self._send_reply()
|
||||
|
||||
# 检查回复是否合适
|
||||
is_suitable, reason, need_replan = await self.reply_generator.check_reply(
|
||||
self.generated_reply,
|
||||
self.current_goal
|
||||
)
|
||||
|
||||
if not is_suitable:
|
||||
logger.warning(f"生成的回复不合适,原因: {reason}")
|
||||
if need_replan:
|
||||
# 尝试切换到其他备选目标
|
||||
alternative_goals = await self.goal_analyzer.get_alternative_goals()
|
||||
if alternative_goals:
|
||||
# 有备选目标,尝试使用下一个目标
|
||||
self.current_goal, self.current_method, self.goal_reasoning = alternative_goals[0]
|
||||
logger.info(f"切换到备选目标: {self.current_goal}")
|
||||
# 使用新目标生成回复
|
||||
self.generated_reply = await self.reply_generator.generate(
|
||||
self.current_goal,
|
||||
self.current_method,
|
||||
[self._convert_to_message(msg) for msg in messages],
|
||||
self.knowledge_cache
|
||||
)
|
||||
# 检查使用新目标生成的回复是否合适
|
||||
is_suitable, reason, _ = await self.reply_generator.check_reply(
|
||||
self.generated_reply,
|
||||
self.current_goal
|
||||
)
|
||||
if is_suitable:
|
||||
# 如果新目标的回复合适,调整目标优先级
|
||||
await self.goal_analyzer._update_goals(
|
||||
self.current_goal,
|
||||
self.current_method,
|
||||
self.goal_reasoning
|
||||
)
|
||||
else:
|
||||
# 如果新目标还是不合适,重新思考目标
|
||||
self.state = ConversationState.RETHINKING
|
||||
self.current_goal, self.current_method, self.goal_reasoning = await self.goal_analyzer.analyze_goal()
|
||||
return
|
||||
else:
|
||||
# 没有备选目标,重新分析
|
||||
self.state = ConversationState.RETHINKING
|
||||
self.current_goal, self.current_method, self.goal_reasoning = await self.goal_analyzer.analyze_goal()
|
||||
return
|
||||
else:
|
||||
# 重新生成回复
|
||||
self.generated_reply = await self.reply_generator.generate(
|
||||
self.current_goal,
|
||||
self.current_method,
|
||||
[self._convert_to_message(msg) for msg in messages],
|
||||
self.knowledge_cache,
|
||||
self.generated_reply # 将不合适的回复作为previous_reply传入
|
||||
)
|
||||
|
||||
while self.chat_observer.check():
|
||||
if not is_suitable:
|
||||
logger.warning(f"生成的回复不合适,原因: {reason}")
|
||||
if need_replan:
|
||||
# 尝试切换到其他备选目标
|
||||
alternative_goals = await self.goal_analyzer.get_alternative_goals()
|
||||
if alternative_goals:
|
||||
# 有备选目标,尝试使用下一个目标
|
||||
self.current_goal, self.current_method, self.goal_reasoning = alternative_goals[0]
|
||||
logger.info(f"切换到备选目标: {self.current_goal}")
|
||||
# 使用新目标生成回复
|
||||
self.generated_reply = await self.reply_generator.generate(
|
||||
self.current_goal,
|
||||
self.current_method,
|
||||
[self._convert_to_message(msg) for msg in messages],
|
||||
self.knowledge_cache
|
||||
)
|
||||
is_suitable = True # 假设使用新目标后回复是合适的
|
||||
else:
|
||||
# 没有备选目标,重新分析
|
||||
self.state = ConversationState.RETHINKING
|
||||
self.current_goal, self.current_method, self.goal_reasoning = await self.goal_analyzer.analyze_goal()
|
||||
return
|
||||
else:
|
||||
# 重新生成回复
|
||||
self.generated_reply = await self.reply_generator.generate(
|
||||
self.current_goal,
|
||||
self.current_method,
|
||||
[self._convert_to_message(msg) for msg in messages],
|
||||
self.knowledge_cache,
|
||||
self.generated_reply # 将不合适的回复作为previous_reply传入
|
||||
)
|
||||
|
||||
await self._send_reply()
|
||||
|
||||
elif action == "fetch_knowledge":
|
||||
self.state = ConversationState.GENERATING
|
||||
@@ -682,17 +837,58 @@ class Conversation:
|
||||
if knowledge != "未找到相关知识":
|
||||
self.knowledge_cache[sources] = knowledge
|
||||
|
||||
self.generated_reply, need_replan = await self.reply_generator.generate(
|
||||
self.generated_reply = await self.reply_generator.generate(
|
||||
self.current_goal,
|
||||
self.current_method,
|
||||
[self._convert_to_message(msg) for msg in messages],
|
||||
self.knowledge_cache
|
||||
)
|
||||
if need_replan:
|
||||
self.state = ConversationState.RETHINKING
|
||||
self.current_goal, self.current_method, self.goal_reasoning = await self.goal_analyzer.analyze_goal()
|
||||
else:
|
||||
await self._send_reply()
|
||||
|
||||
# 检查回复是否合适
|
||||
is_suitable, reason, need_replan = await self.reply_generator.check_reply(
|
||||
self.generated_reply,
|
||||
self.current_goal
|
||||
)
|
||||
|
||||
if not is_suitable:
|
||||
logger.warning(f"生成的回复不合适,原因: {reason}")
|
||||
if need_replan:
|
||||
# 尝试切换到其他备选目标
|
||||
alternative_goals = await self.goal_analyzer.get_alternative_goals()
|
||||
if alternative_goals:
|
||||
# 有备选目标,尝试使用
|
||||
self.current_goal, self.current_method, self.goal_reasoning = alternative_goals[0]
|
||||
logger.info(f"切换到备选目标: {self.current_goal}")
|
||||
# 使用新目标获取知识并生成回复
|
||||
knowledge, sources = await self.knowledge_fetcher.fetch(
|
||||
self.current_goal,
|
||||
[self._convert_to_message(msg) for msg in messages]
|
||||
)
|
||||
if knowledge != "未找到相关知识":
|
||||
self.knowledge_cache[sources] = knowledge
|
||||
|
||||
self.generated_reply = await self.reply_generator.generate(
|
||||
self.current_goal,
|
||||
self.current_method,
|
||||
[self._convert_to_message(msg) for msg in messages],
|
||||
self.knowledge_cache
|
||||
)
|
||||
else:
|
||||
# 没有备选目标,重新分析
|
||||
self.state = ConversationState.RETHINKING
|
||||
self.current_goal, self.current_method, self.goal_reasoning = await self.goal_analyzer.analyze_goal()
|
||||
return
|
||||
else:
|
||||
# 重新生成回复
|
||||
self.generated_reply = await self.reply_generator.generate(
|
||||
self.current_goal,
|
||||
self.current_method,
|
||||
[self._convert_to_message(msg) for msg in messages],
|
||||
self.knowledge_cache,
|
||||
self.generated_reply # 将不合适的回复作为previous_reply传入
|
||||
)
|
||||
|
||||
await self._send_reply()
|
||||
|
||||
elif action == "rethink_goal":
|
||||
self.state = ConversationState.RETHINKING
|
||||
@@ -701,6 +897,16 @@ class Conversation:
|
||||
elif action == "judge_conversation":
|
||||
self.state = ConversationState.JUDGING
|
||||
self.goal_achieved, self.stop_conversation, self.reason = await self.goal_analyzer.analyze_conversation(self.current_goal, self.goal_reasoning)
|
||||
|
||||
# 如果当前目标达成但还有其他目标
|
||||
if self.goal_achieved and not self.stop_conversation:
|
||||
alternative_goals = await self.goal_analyzer.get_alternative_goals()
|
||||
if alternative_goals:
|
||||
# 切换到下一个目标
|
||||
self.current_goal, self.current_method, self.goal_reasoning = alternative_goals[0]
|
||||
logger.info(f"当前目标已达成,切换到新目标: {self.current_goal}")
|
||||
return
|
||||
|
||||
if self.stop_conversation:
|
||||
await self._stop_conversation()
|
||||
|
||||
@@ -724,7 +930,7 @@ class Conversation:
|
||||
self.should_continue = False
|
||||
self.state = ConversationState.ENDED
|
||||
# 删除实例(这会同时停止chat_observer)
|
||||
self.remove_instance(self.stream_id)
|
||||
await self.remove_instance(self.stream_id)
|
||||
|
||||
async def _send_timeout_message(self):
|
||||
"""发送超时结束消息"""
|
||||
@@ -821,7 +1027,7 @@ class DirectMessageSender:
|
||||
if not end_point:
|
||||
raise ValueError(f"未找到平台:{chat_stream.platform} 的url配置")
|
||||
|
||||
await global_api.send_message(end_point, message_json)
|
||||
await global_api.send_message_REST(end_point, message_json)
|
||||
|
||||
# 存储消息
|
||||
await self.storage.store_message(message, message.chat_stream)
|
||||
|
||||
72
src/plugins/PFC/pfc_utils.py
Normal file
72
src/plugins/PFC/pfc_utils.py
Normal file
@@ -0,0 +1,72 @@
|
||||
import json
|
||||
import re
|
||||
from typing import Dict, Any, Optional, Tuple
|
||||
from src.common.logger import get_module_logger
|
||||
|
||||
logger = get_module_logger("pfc_utils")
|
||||
|
||||
def get_items_from_json(
|
||||
content: str,
|
||||
*items: str,
|
||||
default_values: Optional[Dict[str, Any]] = None,
|
||||
required_types: Optional[Dict[str, type]] = None
|
||||
) -> Tuple[bool, Dict[str, Any]]:
|
||||
"""从文本中提取JSON内容并获取指定字段
|
||||
|
||||
Args:
|
||||
content: 包含JSON的文本
|
||||
*items: 要提取的字段名
|
||||
default_values: 字段的默认值,格式为 {字段名: 默认值}
|
||||
required_types: 字段的必需类型,格式为 {字段名: 类型}
|
||||
|
||||
Returns:
|
||||
Tuple[bool, Dict[str, Any]]: (是否成功, 提取的字段字典)
|
||||
"""
|
||||
content = content.strip()
|
||||
result = {}
|
||||
|
||||
# 设置默认值
|
||||
if default_values:
|
||||
result.update(default_values)
|
||||
|
||||
# 尝试解析JSON
|
||||
try:
|
||||
json_data = json.loads(content)
|
||||
except json.JSONDecodeError:
|
||||
# 如果直接解析失败,尝试查找和提取JSON部分
|
||||
json_pattern = r'\{[^{}]*\}'
|
||||
json_match = re.search(json_pattern, content)
|
||||
if json_match:
|
||||
try:
|
||||
json_data = json.loads(json_match.group())
|
||||
except json.JSONDecodeError:
|
||||
logger.error("提取的JSON内容解析失败")
|
||||
return False, result
|
||||
else:
|
||||
logger.error("无法在返回内容中找到有效的JSON")
|
||||
return False, result
|
||||
|
||||
# 提取字段
|
||||
for item in items:
|
||||
if item in json_data:
|
||||
result[item] = json_data[item]
|
||||
|
||||
# 验证必需字段
|
||||
if not all(item in result for item in items):
|
||||
logger.error(f"JSON缺少必要字段,实际内容: {json_data}")
|
||||
return False, result
|
||||
|
||||
# 验证字段类型
|
||||
if required_types:
|
||||
for field, expected_type in required_types.items():
|
||||
if field in result and not isinstance(result[field], expected_type):
|
||||
logger.error(f"{field} 必须是 {expected_type.__name__} 类型")
|
||||
return False, result
|
||||
|
||||
# 验证字符串字段不为空
|
||||
for field in items:
|
||||
if isinstance(result[field], str) and not result[field].strip():
|
||||
logger.error(f"{field} 不能为空")
|
||||
return False, result
|
||||
|
||||
return True, result
|
||||
@@ -9,6 +9,7 @@ from src.common.logger import get_module_logger, CHAT_STYLE_CONFIG, LogConfig
|
||||
from ..chat_module.think_flow_chat.think_flow_chat import ThinkFlowChat
|
||||
from ..chat_module.reasoning_chat.reasoning_chat import ReasoningChat
|
||||
import asyncio
|
||||
import traceback
|
||||
|
||||
# 定义日志配置
|
||||
chat_config = LogConfig(
|
||||
@@ -42,11 +43,24 @@ class ChatBot:
|
||||
|
||||
if global_config.enable_pfc_chatting:
|
||||
# 获取或创建对话实例
|
||||
conversation = Conversation.get_instance(chat_id)
|
||||
conversation = await Conversation.get_instance(chat_id)
|
||||
if conversation is None:
|
||||
logger.error(f"创建或获取对话实例失败: {chat_id}")
|
||||
return
|
||||
|
||||
# 如果是新创建的实例,启动对话系统
|
||||
if conversation.state == ConversationState.INIT:
|
||||
asyncio.create_task(conversation.start())
|
||||
logger.info(f"为聊天 {chat_id} 创建新的对话实例")
|
||||
elif conversation.state == ConversationState.ENDED:
|
||||
# 如果实例已经结束,重新创建
|
||||
await Conversation.remove_instance(chat_id)
|
||||
conversation = await Conversation.get_instance(chat_id)
|
||||
if conversation is None:
|
||||
logger.error(f"重新创建对话实例失败: {chat_id}")
|
||||
return
|
||||
asyncio.create_task(conversation.start())
|
||||
logger.info(f"为聊天 {chat_id} 重新创建对话实例")
|
||||
except Exception as e:
|
||||
logger.error(f"创建PFC聊天流失败: {e}")
|
||||
|
||||
@@ -78,8 +92,13 @@ class ChatBot:
|
||||
try:
|
||||
message = MessageRecv(message_data)
|
||||
groupinfo = message.message_info.group_info
|
||||
logger.debug(f"处理消息:{str(message_data)[:50]}...")
|
||||
userinfo = message.message_info.user_info
|
||||
logger.debug(f"处理消息:{str(message_data)[:80]}...")
|
||||
|
||||
if userinfo.user_id in global_config.ban_user_id:
|
||||
logger.debug(f"用户{userinfo.user_id}被禁止回复")
|
||||
return
|
||||
|
||||
if global_config.enable_pfc_chatting:
|
||||
try:
|
||||
if groupinfo is None and global_config.enable_friend_chat:
|
||||
@@ -96,11 +115,11 @@ class ChatBot:
|
||||
await self._create_PFC_chat(message)
|
||||
else:
|
||||
if groupinfo.group_id in global_config.talk_allowed_groups:
|
||||
logger.debug(f"开始群聊模式{message_data}")
|
||||
logger.debug(f"开始群聊模式{str(message_data)[:50]}...")
|
||||
if global_config.response_mode == "heart_flow":
|
||||
await self.think_flow_chat.process_message(message_data)
|
||||
elif global_config.response_mode == "reasoning":
|
||||
logger.debug(f"开始推理模式{message_data}")
|
||||
logger.debug(f"开始推理模式{str(message_data)[:50]}...")
|
||||
await self.reasoning_chat.process_message(message_data)
|
||||
else:
|
||||
logger.error(f"未知的回复模式,请检查配置文件!!: {global_config.response_mode}")
|
||||
@@ -126,6 +145,7 @@ class ChatBot:
|
||||
logger.error(f"未知的回复模式,请检查配置文件!!: {global_config.response_mode}")
|
||||
except Exception as e:
|
||||
logger.error(f"预处理消息失败: {e}")
|
||||
traceback.print_exc()
|
||||
|
||||
|
||||
# 创建全局ChatBot实例
|
||||
|
||||
@@ -28,7 +28,7 @@ class ChatStream:
|
||||
self.platform = platform
|
||||
self.user_info = user_info
|
||||
self.group_info = group_info
|
||||
self.create_time = data.get("create_time", int(time.time())) if data else int(time.time())
|
||||
self.create_time = data.get("create_time", time.time()) if data else time.time()
|
||||
self.last_active_time = data.get("last_active_time", self.create_time) if data else self.create_time
|
||||
self.saved = False
|
||||
|
||||
@@ -60,7 +60,7 @@ class ChatStream:
|
||||
|
||||
def update_active_time(self):
|
||||
"""更新最后活跃时间"""
|
||||
self.last_active_time = int(time.time())
|
||||
self.last_active_time = time.time()
|
||||
self.saved = False
|
||||
|
||||
|
||||
|
||||
@@ -249,7 +249,22 @@ class EmojiManager:
|
||||
f for f in os.listdir(emoji_dir) if f.lower().endswith((".jpg", ".jpeg", ".png", ".gif"))
|
||||
]
|
||||
|
||||
# 检查当前表情包数量
|
||||
self._update_emoji_count()
|
||||
if self.emoji_num >= self.emoji_num_max:
|
||||
logger.warning(f"[警告] 表情包数量已达到上限({self.emoji_num}/{self.emoji_num_max}),跳过注册")
|
||||
return
|
||||
|
||||
# 计算还可以注册的数量
|
||||
remaining_slots = self.emoji_num_max - self.emoji_num
|
||||
logger.info(f"[注册] 还可以注册 {remaining_slots} 个表情包")
|
||||
|
||||
for filename in files_to_process:
|
||||
# 如果已经达到上限,停止注册
|
||||
if self.emoji_num >= self.emoji_num_max:
|
||||
logger.warning(f"[警告] 表情包数量已达到上限({self.emoji_num}/{self.emoji_num_max}),停止注册")
|
||||
break
|
||||
|
||||
image_path = os.path.join(emoji_dir, filename)
|
||||
|
||||
# 获取图片的base64编码和哈希值
|
||||
@@ -340,6 +355,10 @@ class EmojiManager:
|
||||
logger.success(f"[注册] 新表情包: {filename}")
|
||||
logger.info(f"[描述] {description}")
|
||||
|
||||
# 更新当前表情包数量
|
||||
self.emoji_num += 1
|
||||
logger.info(f"[统计] 当前表情包数量: {self.emoji_num}/{self.emoji_num_max}")
|
||||
|
||||
# 保存到images数据库
|
||||
image_doc = {
|
||||
"hash": image_hash,
|
||||
|
||||
@@ -168,7 +168,7 @@ class MessageProcessBase(Message):
|
||||
# 调用父类初始化
|
||||
super().__init__(
|
||||
message_id=message_id,
|
||||
time=int(time.time()),
|
||||
time=round(time.time(), 3), # 保留3位小数
|
||||
chat_stream=chat_stream,
|
||||
user_info=bot_user_info,
|
||||
message_segment=message_segment,
|
||||
|
||||
190
src/plugins/chat/message_buffer.py
Normal file
190
src/plugins/chat/message_buffer.py
Normal file
@@ -0,0 +1,190 @@
|
||||
from ..person_info.person_info import person_info_manager
|
||||
from src.common.logger import get_module_logger
|
||||
import asyncio
|
||||
from dataclasses import dataclass, field
|
||||
from .message import MessageRecv
|
||||
from ..message.message_base import BaseMessageInfo, GroupInfo
|
||||
import hashlib
|
||||
from typing import Dict
|
||||
from collections import OrderedDict
|
||||
import random
|
||||
import time
|
||||
from ..config.config import global_config
|
||||
|
||||
logger = get_module_logger("message_buffer")
|
||||
|
||||
@dataclass
|
||||
class CacheMessages:
|
||||
message: MessageRecv
|
||||
cache_determination: asyncio.Event = field(default_factory=asyncio.Event) # 判断缓冲是否产生结果
|
||||
result: str = "U"
|
||||
|
||||
|
||||
class MessageBuffer:
|
||||
def __init__(self):
|
||||
self.buffer_pool: Dict[str, OrderedDict[str, CacheMessages]] = {}
|
||||
self.lock = asyncio.Lock()
|
||||
|
||||
def get_person_id_(self, platform:str, user_id:str, group_info:GroupInfo):
|
||||
"""获取唯一id"""
|
||||
if group_info:
|
||||
group_id = group_info.group_id
|
||||
else:
|
||||
group_id = "私聊"
|
||||
key = f"{platform}_{user_id}_{group_id}"
|
||||
return hashlib.md5(key.encode()).hexdigest()
|
||||
|
||||
async def start_caching_messages(self, message:MessageRecv):
|
||||
"""添加消息,启动缓冲"""
|
||||
if not global_config.message_buffer:
|
||||
person_id = person_info_manager.get_person_id(message.message_info.user_info.platform,
|
||||
message.message_info.user_info.user_id)
|
||||
asyncio.create_task(self.save_message_interval(person_id, message.message_info))
|
||||
return
|
||||
person_id_ = self.get_person_id_(message.message_info.platform,
|
||||
message.message_info.user_info.user_id,
|
||||
message.message_info.group_info)
|
||||
|
||||
async with self.lock:
|
||||
if person_id_ not in self.buffer_pool:
|
||||
self.buffer_pool[person_id_] = OrderedDict()
|
||||
|
||||
# 标记该用户之前的未处理消息
|
||||
for cache_msg in self.buffer_pool[person_id_].values():
|
||||
if cache_msg.result == "U":
|
||||
cache_msg.result = "F"
|
||||
cache_msg.cache_determination.set()
|
||||
logger.debug(f"被新消息覆盖信息id: {cache_msg.message.message_info.message_id}")
|
||||
|
||||
# 查找最近的处理成功消息(T)
|
||||
recent_F_count = 0
|
||||
for msg_id in reversed(self.buffer_pool[person_id_]):
|
||||
msg = self.buffer_pool[person_id_][msg_id]
|
||||
if msg.result == "T":
|
||||
break
|
||||
elif msg.result == "F":
|
||||
recent_F_count += 1
|
||||
|
||||
# 判断条件:最近T之后有超过3-5条F
|
||||
if (recent_F_count >= random.randint(3, 5)):
|
||||
new_msg = CacheMessages(message=message, result="T")
|
||||
new_msg.cache_determination.set()
|
||||
self.buffer_pool[person_id_][message.message_info.message_id] = new_msg
|
||||
logger.debug(f"快速处理消息(已堆积{recent_F_count}条F): {message.message_info.message_id}")
|
||||
return
|
||||
|
||||
# 添加新消息
|
||||
self.buffer_pool[person_id_][message.message_info.message_id] = CacheMessages(message=message)
|
||||
|
||||
# 启动3秒缓冲计时器
|
||||
person_id = person_info_manager.get_person_id(message.message_info.user_info.platform,
|
||||
message.message_info.user_info.user_id)
|
||||
asyncio.create_task(self.save_message_interval(person_id, message.message_info))
|
||||
asyncio.create_task(self._debounce_processor(person_id_,
|
||||
message.message_info.message_id,
|
||||
person_id))
|
||||
|
||||
async def _debounce_processor(self, person_id_: str, message_id: str, person_id: str):
|
||||
"""等待3秒无新消息"""
|
||||
interval_time = await person_info_manager.get_value(person_id, "msg_interval")
|
||||
if not isinstance(interval_time, (int, str)) or not str(interval_time).isdigit():
|
||||
logger.debug("debounce_processor无效的时间")
|
||||
return
|
||||
interval_time = max(0.5, int(interval_time) / 1000)
|
||||
await asyncio.sleep(interval_time)
|
||||
|
||||
async with self.lock:
|
||||
if (person_id_ not in self.buffer_pool or
|
||||
message_id not in self.buffer_pool[person_id_]):
|
||||
logger.debug(f"消息已被清理,msgid: {message_id}")
|
||||
return
|
||||
|
||||
cache_msg = self.buffer_pool[person_id_][message_id]
|
||||
if cache_msg.result == "U":
|
||||
cache_msg.result = "T"
|
||||
cache_msg.cache_determination.set()
|
||||
|
||||
|
||||
async def query_buffer_result(self, message:MessageRecv) -> bool:
|
||||
"""查询缓冲结果,并清理"""
|
||||
if not global_config.message_buffer:
|
||||
return True
|
||||
person_id_ = self.get_person_id_(message.message_info.platform,
|
||||
message.message_info.user_info.user_id,
|
||||
message.message_info.group_info)
|
||||
|
||||
|
||||
async with self.lock:
|
||||
user_msgs = self.buffer_pool.get(person_id_, {})
|
||||
cache_msg = user_msgs.get(message.message_info.message_id)
|
||||
|
||||
if not cache_msg:
|
||||
logger.debug(f"查询异常,消息不存在,msgid: {message.message_info.message_id}")
|
||||
return False # 消息不存在或已清理
|
||||
|
||||
try:
|
||||
await asyncio.wait_for(cache_msg.cache_determination.wait(), timeout=10)
|
||||
result = cache_msg.result == "T"
|
||||
|
||||
if result:
|
||||
async with self.lock: # 再次加锁
|
||||
# 清理所有早于当前消息的已处理消息, 收集所有早于当前消息的F消息的processed_plain_text
|
||||
keep_msgs = OrderedDict()
|
||||
combined_text = []
|
||||
found = False
|
||||
type = "text"
|
||||
is_update = True
|
||||
for msg_id, msg in self.buffer_pool[person_id_].items():
|
||||
if msg_id == message.message_info.message_id:
|
||||
found = True
|
||||
type = msg.message.message_segment.type
|
||||
combined_text.append(msg.message.processed_plain_text)
|
||||
continue
|
||||
if found:
|
||||
keep_msgs[msg_id] = msg
|
||||
elif msg.result == "F":
|
||||
# 收集F消息的文本内容
|
||||
if (hasattr(msg.message, 'processed_plain_text')
|
||||
and msg.message.processed_plain_text):
|
||||
if msg.message.message_segment.type == "text":
|
||||
combined_text.append(msg.message.processed_plain_text)
|
||||
elif msg.message.message_segment.type != "text":
|
||||
is_update = False
|
||||
elif msg.result == "U":
|
||||
logger.debug(f"异常未处理信息id: {msg.message.message_info.message_id}")
|
||||
|
||||
# 更新当前消息的processed_plain_text
|
||||
if combined_text and combined_text[0] != message.processed_plain_text and is_update:
|
||||
if type == "text":
|
||||
message.processed_plain_text = "".join(combined_text)
|
||||
logger.debug(f"整合了{len(combined_text)-1}条F消息的内容到当前消息")
|
||||
elif type == "emoji":
|
||||
combined_text.pop()
|
||||
message.processed_plain_text = "".join(combined_text)
|
||||
message.is_emoji = False
|
||||
logger.debug(f"整合了{len(combined_text)-1}条F消息的内容,覆盖当前emoji消息")
|
||||
|
||||
self.buffer_pool[person_id_] = keep_msgs
|
||||
return result
|
||||
except asyncio.TimeoutError:
|
||||
logger.debug(f"查询超时消息id: {message.message_info.message_id}")
|
||||
return False
|
||||
|
||||
async def save_message_interval(self, person_id:str, message:BaseMessageInfo):
|
||||
message_interval_list = await person_info_manager.get_value(person_id, "msg_interval_list")
|
||||
now_time_ms = int(round(time.time() * 1000))
|
||||
if len(message_interval_list) < 1000:
|
||||
message_interval_list.append(now_time_ms)
|
||||
else:
|
||||
message_interval_list.pop(0)
|
||||
message_interval_list.append(now_time_ms)
|
||||
data = {
|
||||
"platform" : message.platform,
|
||||
"user_id" : message.user_info.user_id,
|
||||
"nickname" : message.user_info.user_nickname,
|
||||
"konw_time" : int(time.time())
|
||||
}
|
||||
await person_info_manager.update_one_field(person_id, "msg_interval_list", message_interval_list, data)
|
||||
|
||||
|
||||
message_buffer = MessageBuffer()
|
||||
@@ -43,6 +43,12 @@ class Message_Sender:
|
||||
# 按thinking_start_time排序,时间早的在前面
|
||||
return recalled_messages
|
||||
|
||||
async def send_via_ws(self, message: MessageSending) -> None:
|
||||
try:
|
||||
await global_api.send_message(message)
|
||||
except Exception as e:
|
||||
raise ValueError(f"未找到平台:{message.message_info.platform} 的url配置,请检查配置文件") from e
|
||||
|
||||
async def send_message(
|
||||
self,
|
||||
message: MessageSending,
|
||||
@@ -58,8 +64,14 @@ class Message_Sender:
|
||||
logger.warning(f"消息“{message.processed_plain_text}”已被撤回,不发送")
|
||||
break
|
||||
if not is_recalled:
|
||||
typing_time = calculate_typing_time(message.processed_plain_text)
|
||||
# print(message.processed_plain_text + str(message.is_emoji))
|
||||
typing_time = calculate_typing_time(
|
||||
input_string=message.processed_plain_text,
|
||||
thinking_start_time=message.thinking_start_time,
|
||||
is_emoji=message.is_emoji)
|
||||
logger.debug(f"{message.processed_plain_text},{typing_time},计算输入时间结束")
|
||||
await asyncio.sleep(typing_time)
|
||||
logger.debug(f"{message.processed_plain_text},{typing_time},等待输入时间结束")
|
||||
|
||||
message_json = message.to_dict()
|
||||
|
||||
@@ -69,14 +81,14 @@ class Message_Sender:
|
||||
if end_point:
|
||||
# logger.info(f"发送消息到{end_point}")
|
||||
# logger.info(message_json)
|
||||
await global_api.send_message_REST(end_point, message_json)
|
||||
else:
|
||||
try:
|
||||
await global_api.send_message(message)
|
||||
await global_api.send_message_REST(end_point, message_json)
|
||||
except Exception as e:
|
||||
raise ValueError(
|
||||
f"未找到平台:{message.message_info.platform} 的url配置,请检查配置文件"
|
||||
) from e
|
||||
logger.error(f"REST方式发送失败,出现错误: {str(e)}")
|
||||
logger.info("尝试使用ws发送")
|
||||
await self.send_via_ws(message)
|
||||
else:
|
||||
await self.send_via_ws(message)
|
||||
logger.success(f"发送消息“{message_preview}”成功")
|
||||
except Exception as e:
|
||||
logger.error(f"发送消息“{message_preview}”失败: {str(e)}")
|
||||
@@ -214,6 +226,8 @@ class MessageManager:
|
||||
|
||||
await message_earliest.process()
|
||||
|
||||
# print(f"message_earliest.thinking_start_tim22222e:{message_earliest.thinking_start_time}")
|
||||
|
||||
await message_sender.send_message(message_earliest)
|
||||
|
||||
await self.storage.store_message(message_earliest, message_earliest.chat_stream)
|
||||
|
||||
@@ -334,26 +334,19 @@ def process_llm_response(text: str) -> List[str]:
|
||||
return sentences
|
||||
|
||||
|
||||
def calculate_typing_time(input_string: str, chinese_time: float = 0.2, english_time: float = 0.1) -> float:
|
||||
def calculate_typing_time(input_string: str, thinking_start_time: float, chinese_time: float = 0.2, english_time: float = 0.1, is_emoji: bool = False) -> float:
|
||||
"""
|
||||
计算输入字符串所需的时间,中文和英文字符有不同的输入时间
|
||||
input_string (str): 输入的字符串
|
||||
chinese_time (float): 中文字符的输入时间,默认为0.2秒
|
||||
english_time (float): 英文字符的输入时间,默认为0.1秒
|
||||
is_emoji (bool): 是否为emoji,默认为False
|
||||
|
||||
特殊情况:
|
||||
- 如果只有一个中文字符,将使用3倍的中文输入时间
|
||||
- 在所有输入结束后,额外加上回车时间0.3秒
|
||||
- 如果is_emoji为True,将使用固定1秒的输入时间
|
||||
"""
|
||||
|
||||
# 如果输入是列表,将其连接成字符串
|
||||
if isinstance(input_string, list):
|
||||
input_string = ''.join(input_string)
|
||||
|
||||
# 确保现在是字符串类型
|
||||
if not isinstance(input_string, str):
|
||||
input_string = str(input_string)
|
||||
|
||||
mood_manager = MoodManager.get_instance()
|
||||
# 将0-1的唤醒度映射到-1到1
|
||||
mood_arousal = mood_manager.current_mood.arousal
|
||||
@@ -376,7 +369,19 @@ def calculate_typing_time(input_string: str, chinese_time: float = 0.2, english_
|
||||
else: # 其他字符(如英文)
|
||||
total_time += english_time
|
||||
|
||||
return total_time + 0.3 # 加上回车时间
|
||||
|
||||
if is_emoji:
|
||||
total_time = 1
|
||||
|
||||
if time.time() - thinking_start_time > 10:
|
||||
total_time = 1
|
||||
|
||||
# print(f"thinking_start_time:{thinking_start_time}")
|
||||
# print(f"nowtime:{time.time()}")
|
||||
# print(f"nowtime - thinking_start_time:{time.time() - thinking_start_time}")
|
||||
# print(f"{total_time}")
|
||||
|
||||
return total_time # 加上回车时间
|
||||
|
||||
|
||||
def cosine_similarity(v1, v2):
|
||||
|
||||
@@ -17,6 +17,7 @@ from ...message import UserInfo, Seg
|
||||
from src.common.logger import get_module_logger, CHAT_STYLE_CONFIG, LogConfig
|
||||
from ...chat.chat_stream import chat_manager
|
||||
from ...person_info.relationship_manager import relationship_manager
|
||||
from ...chat.message_buffer import message_buffer
|
||||
|
||||
# 定义日志配置
|
||||
chat_config = LogConfig(
|
||||
@@ -143,6 +144,8 @@ class ReasoningChat:
|
||||
userinfo = message.message_info.user_info
|
||||
messageinfo = message.message_info
|
||||
|
||||
# 消息加入缓冲池
|
||||
await message_buffer.start_caching_messages(message)
|
||||
|
||||
# logger.info("使用推理聊天模式")
|
||||
|
||||
@@ -172,6 +175,17 @@ class ReasoningChat:
|
||||
timer2 = time.time()
|
||||
timing_results["记忆激活"] = timer2 - timer1
|
||||
|
||||
# 查询缓冲器结果,会整合前面跳过的消息,改变processed_plain_text
|
||||
buffer_result = await message_buffer.query_buffer_result(message)
|
||||
if not buffer_result:
|
||||
if message.message_segment.type == "text":
|
||||
logger.info(f"触发缓冲,已炸飞消息:{message.processed_plain_text}")
|
||||
elif message.message_segment.type == "image":
|
||||
logger.info("触发缓冲,已炸飞表情包/图片")
|
||||
elif message.message_segment.type == "seglist":
|
||||
logger.info("触发缓冲,已炸飞消息列")
|
||||
return
|
||||
|
||||
is_mentioned = is_mentioned_bot_in_message(message)
|
||||
|
||||
# 计算回复意愿
|
||||
|
||||
@@ -1,16 +1,17 @@
|
||||
import random
|
||||
import time
|
||||
from typing import Optional
|
||||
from typing import Optional, Union
|
||||
|
||||
from ....common.database import db
|
||||
from ...memory_system.Hippocampus import HippocampusManager
|
||||
from ...moods.moods import MoodManager
|
||||
from ...schedule.schedule_generator import bot_schedule
|
||||
from ...config.config import global_config
|
||||
from ...chat.utils import get_embedding, get_recent_group_detailed_plain_text, get_recent_group_speaker
|
||||
from ...chat.chat_stream import chat_manager
|
||||
from src.common.logger import get_module_logger
|
||||
from ...moods.moods import MoodManager
|
||||
from ....individuality.individuality import Individuality
|
||||
from ...memory_system.Hippocampus import HippocampusManager
|
||||
from ...schedule.schedule_generator import bot_schedule
|
||||
from ...config.config import global_config
|
||||
from ...person_info.relationship_manager import relationship_manager
|
||||
from src.common.logger import get_module_logger
|
||||
|
||||
logger = get_module_logger("prompt")
|
||||
|
||||
@@ -25,7 +26,23 @@ class PromptBuilder:
|
||||
) -> tuple[str, str]:
|
||||
|
||||
# 开始构建prompt
|
||||
|
||||
prompt_personality = "你"
|
||||
#person
|
||||
individuality = Individuality.get_instance()
|
||||
|
||||
personality_core = individuality.personality.personality_core
|
||||
prompt_personality += personality_core
|
||||
|
||||
personality_sides = individuality.personality.personality_sides
|
||||
random.shuffle(personality_sides)
|
||||
prompt_personality += f",{personality_sides[0]}"
|
||||
|
||||
identity_detail = individuality.identity.identity_detail
|
||||
random.shuffle(identity_detail)
|
||||
prompt_personality += f",{identity_detail[0]}"
|
||||
|
||||
|
||||
|
||||
# 关系
|
||||
who_chat_in_group = [(chat_stream.user_info.platform,
|
||||
chat_stream.user_info.user_id,
|
||||
@@ -102,20 +119,6 @@ class PromptBuilder:
|
||||
)
|
||||
keywords_reaction_prompt += rule.get("reaction", "") + ","
|
||||
|
||||
# 人格选择
|
||||
personality = global_config.PROMPT_PERSONALITY
|
||||
probability_1 = global_config.PERSONALITY_1
|
||||
probability_2 = global_config.PERSONALITY_2
|
||||
|
||||
personality_choice = random.random()
|
||||
|
||||
if personality_choice < probability_1: # 第一种风格
|
||||
prompt_personality = personality[0]
|
||||
elif personality_choice < probability_1 + probability_2: # 第二种风格
|
||||
prompt_personality = personality[1]
|
||||
else: # 第三种人格
|
||||
prompt_personality = personality[2]
|
||||
|
||||
# 中文高手(新加的好玩功能)
|
||||
prompt_ger = ""
|
||||
if random.random() < 0.04:
|
||||
@@ -128,7 +131,7 @@ class PromptBuilder:
|
||||
# 知识构建
|
||||
start_time = time.time()
|
||||
prompt_info = ""
|
||||
prompt_info = await self.get_prompt_info(message_txt, threshold=0.5)
|
||||
prompt_info = await self.get_prompt_info(message_txt, threshold=0.38)
|
||||
if prompt_info:
|
||||
prompt_info = f"""\n你有以下这些**知识**:\n{prompt_info}\n请你**记住上面的知识**,之后可能会用到。\n"""
|
||||
|
||||
@@ -142,12 +145,13 @@ class PromptBuilder:
|
||||
logger.info("开始构建prompt")
|
||||
|
||||
prompt = f"""
|
||||
{relation_prompt_all}
|
||||
{memory_prompt}
|
||||
{prompt_info}
|
||||
{schedule_prompt}
|
||||
{chat_target}
|
||||
{chat_talking_prompt}
|
||||
现在"{sender_name}"说的:{message_txt}。引起了你的注意,你想要在群里发言发言或者回复这条消息。{relation_prompt_all}\n
|
||||
现在"{sender_name}"说的:{message_txt}。引起了你的注意,你想要在群里发言发言或者回复这条消息。\n
|
||||
你的网名叫{global_config.BOT_NICKNAME},有人也叫你{"/".join(global_config.BOT_ALIAS_NAMES)},{prompt_personality}。
|
||||
你正在{chat_target_2},现在请你读读之前的聊天记录,{mood_prompt},然后给出日常且口语化的回复,平淡一些,
|
||||
尽量简短一些。{keywords_reaction_prompt}请注意把握聊天内容,不要回复的太有条理,可以有个性。{prompt_ger}
|
||||
@@ -158,16 +162,156 @@ class PromptBuilder:
|
||||
return prompt
|
||||
|
||||
async def get_prompt_info(self, message: str, threshold: float):
|
||||
start_time = time.time()
|
||||
related_info = ""
|
||||
logger.debug(f"获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
|
||||
embedding = await get_embedding(message, request_type="prompt_build")
|
||||
related_info += self.get_info_from_db(embedding, limit=1, threshold=threshold)
|
||||
|
||||
|
||||
# 1. 先从LLM获取主题,类似于记忆系统的做法
|
||||
topics = []
|
||||
# try:
|
||||
# # 先尝试使用记忆系统的方法获取主题
|
||||
# hippocampus = HippocampusManager.get_instance()._hippocampus
|
||||
# topic_num = min(5, max(1, int(len(message) * 0.1)))
|
||||
# topics_response = await hippocampus.llm_topic_judge.generate_response(hippocampus.find_topic_llm(message, topic_num))
|
||||
|
||||
# # 提取关键词
|
||||
# topics = re.findall(r"<([^>]+)>", topics_response[0])
|
||||
# if not topics:
|
||||
# topics = []
|
||||
# else:
|
||||
# topics = [
|
||||
# topic.strip()
|
||||
# for topic in ",".join(topics).replace(",", ",").replace("、", ",").replace(" ", ",").split(",")
|
||||
# if topic.strip()
|
||||
# ]
|
||||
|
||||
# logger.info(f"从LLM提取的主题: {', '.join(topics)}")
|
||||
# except Exception as e:
|
||||
# logger.error(f"从LLM提取主题失败: {str(e)}")
|
||||
# # 如果LLM提取失败,使用jieba分词提取关键词作为备选
|
||||
# words = jieba.cut(message)
|
||||
# topics = [word for word in words if len(word) > 1][:5]
|
||||
# logger.info(f"使用jieba提取的主题: {', '.join(topics)}")
|
||||
|
||||
# 如果无法提取到主题,直接使用整个消息
|
||||
if not topics:
|
||||
logger.info("未能提取到任何主题,使用整个消息进行查询")
|
||||
embedding = await get_embedding(message, request_type="prompt_build")
|
||||
if not embedding:
|
||||
logger.error("获取消息嵌入向量失败")
|
||||
return ""
|
||||
|
||||
related_info = self.get_info_from_db(embedding, limit=3, threshold=threshold)
|
||||
logger.info(f"知识库检索完成,总耗时: {time.time() - start_time:.3f}秒")
|
||||
return related_info
|
||||
|
||||
# 2. 对每个主题进行知识库查询
|
||||
logger.info(f"开始处理{len(topics)}个主题的知识库查询")
|
||||
|
||||
# 优化:批量获取嵌入向量,减少API调用
|
||||
embeddings = {}
|
||||
topics_batch = [topic for topic in topics if len(topic) > 0]
|
||||
if message: # 确保消息非空
|
||||
topics_batch.append(message)
|
||||
|
||||
# 批量获取嵌入向量
|
||||
embed_start_time = time.time()
|
||||
for text in topics_batch:
|
||||
if not text or len(text.strip()) == 0:
|
||||
continue
|
||||
|
||||
try:
|
||||
embedding = await get_embedding(text, request_type="prompt_build")
|
||||
if embedding:
|
||||
embeddings[text] = embedding
|
||||
else:
|
||||
logger.warning(f"获取'{text}'的嵌入向量失败")
|
||||
except Exception as e:
|
||||
logger.error(f"获取'{text}'的嵌入向量时发生错误: {str(e)}")
|
||||
|
||||
logger.info(f"批量获取嵌入向量完成,耗时: {time.time() - embed_start_time:.3f}秒")
|
||||
|
||||
if not embeddings:
|
||||
logger.error("所有嵌入向量获取失败")
|
||||
return ""
|
||||
|
||||
# 3. 对每个主题进行知识库查询
|
||||
all_results = []
|
||||
query_start_time = time.time()
|
||||
|
||||
# 首先添加原始消息的查询结果
|
||||
if message in embeddings:
|
||||
original_results = self.get_info_from_db(embeddings[message], limit=3, threshold=threshold, return_raw=True)
|
||||
if original_results:
|
||||
for result in original_results:
|
||||
result["topic"] = "原始消息"
|
||||
all_results.extend(original_results)
|
||||
logger.info(f"原始消息查询到{len(original_results)}条结果")
|
||||
|
||||
# 然后添加每个主题的查询结果
|
||||
for topic in topics:
|
||||
if not topic or topic not in embeddings:
|
||||
continue
|
||||
|
||||
try:
|
||||
topic_results = self.get_info_from_db(embeddings[topic], limit=3, threshold=threshold, return_raw=True)
|
||||
if topic_results:
|
||||
# 添加主题标记
|
||||
for result in topic_results:
|
||||
result["topic"] = topic
|
||||
all_results.extend(topic_results)
|
||||
logger.info(f"主题'{topic}'查询到{len(topic_results)}条结果")
|
||||
except Exception as e:
|
||||
logger.error(f"查询主题'{topic}'时发生错误: {str(e)}")
|
||||
|
||||
logger.info(f"知识库查询完成,耗时: {time.time() - query_start_time:.3f}秒,共获取{len(all_results)}条结果")
|
||||
|
||||
# 4. 去重和过滤
|
||||
process_start_time = time.time()
|
||||
unique_contents = set()
|
||||
filtered_results = []
|
||||
for result in all_results:
|
||||
content = result["content"]
|
||||
if content not in unique_contents:
|
||||
unique_contents.add(content)
|
||||
filtered_results.append(result)
|
||||
|
||||
# 5. 按相似度排序
|
||||
filtered_results.sort(key=lambda x: x["similarity"], reverse=True)
|
||||
|
||||
# 6. 限制总数量(最多10条)
|
||||
filtered_results = filtered_results[:10]
|
||||
logger.info(f"结果处理完成,耗时: {time.time() - process_start_time:.3f}秒,过滤后剩余{len(filtered_results)}条结果")
|
||||
|
||||
# 7. 格式化输出
|
||||
if filtered_results:
|
||||
format_start_time = time.time()
|
||||
grouped_results = {}
|
||||
for result in filtered_results:
|
||||
topic = result["topic"]
|
||||
if topic not in grouped_results:
|
||||
grouped_results[topic] = []
|
||||
grouped_results[topic].append(result)
|
||||
|
||||
# 按主题组织输出
|
||||
for topic, results in grouped_results.items():
|
||||
related_info += f"【主题: {topic}】\n"
|
||||
for _i, result in enumerate(results, 1):
|
||||
_similarity = result["similarity"]
|
||||
content = result["content"].strip()
|
||||
# 调试:为内容添加序号和相似度信息
|
||||
# related_info += f"{i}. [{similarity:.2f}] {content}\n"
|
||||
related_info += f"{content}\n"
|
||||
related_info += "\n"
|
||||
|
||||
logger.info(f"格式化输出完成,耗时: {time.time() - format_start_time:.3f}秒")
|
||||
|
||||
logger.info(f"知识库检索总耗时: {time.time() - start_time:.3f}秒")
|
||||
return related_info
|
||||
|
||||
def get_info_from_db(self, query_embedding: list, limit: int = 1, threshold: float = 0.5) -> str:
|
||||
def get_info_from_db(self, query_embedding: list, limit: int = 1, threshold: float = 0.5, return_raw: bool = False) -> Union[str, list]:
|
||||
if not query_embedding:
|
||||
return ""
|
||||
return "" if not return_raw else []
|
||||
# 使用余弦相似度计算
|
||||
pipeline = [
|
||||
{
|
||||
@@ -221,13 +365,16 @@ class PromptBuilder:
|
||||
]
|
||||
|
||||
results = list(db.knowledges.aggregate(pipeline))
|
||||
# print(f"\033[1;34m[调试]\033[0m获取知识库内容结果: {results}")
|
||||
logger.debug(f"知识库查询结果数量: {len(results)}")
|
||||
|
||||
if not results:
|
||||
return ""
|
||||
return "" if not return_raw else []
|
||||
|
||||
# 返回所有找到的内容,用换行分隔
|
||||
return "\n".join(str(result["content"]) for result in results)
|
||||
if return_raw:
|
||||
return results
|
||||
else:
|
||||
# 返回所有找到的内容,用换行分隔
|
||||
return "\n".join(str(result["content"]) for result in results)
|
||||
|
||||
|
||||
prompt_builder = PromptBuilder()
|
||||
|
||||
@@ -18,6 +18,7 @@ from src.heart_flow.heartflow import heartflow
|
||||
from src.common.logger import get_module_logger, CHAT_STYLE_CONFIG, LogConfig
|
||||
from ...chat.chat_stream import chat_manager
|
||||
from ...person_info.relationship_manager import relationship_manager
|
||||
from ...chat.message_buffer import message_buffer
|
||||
|
||||
# 定义日志配置
|
||||
chat_config = LogConfig(
|
||||
@@ -95,6 +96,8 @@ class ThinkFlowChat:
|
||||
)
|
||||
if not mark_head:
|
||||
mark_head = True
|
||||
|
||||
# print(f"thinking_start_time:{bot_message.thinking_start_time}")
|
||||
message_set.add_message(bot_message)
|
||||
message_manager.add_message(message_set)
|
||||
|
||||
@@ -161,6 +164,8 @@ class ThinkFlowChat:
|
||||
userinfo = message.message_info.user_info
|
||||
messageinfo = message.message_info
|
||||
|
||||
# 消息加入缓冲池
|
||||
await message_buffer.start_caching_messages(message)
|
||||
|
||||
# 创建聊天流
|
||||
chat = await chat_manager.get_or_create_stream(
|
||||
@@ -195,8 +200,20 @@ class ThinkFlowChat:
|
||||
timing_results["记忆激活"] = timer2 - timer1
|
||||
logger.debug(f"记忆激活: {interested_rate}")
|
||||
|
||||
# 查询缓冲器结果,会整合前面跳过的消息,改变processed_plain_text
|
||||
buffer_result = await message_buffer.query_buffer_result(message)
|
||||
if not buffer_result:
|
||||
if message.message_segment.type == "text":
|
||||
logger.info(f"触发缓冲,已炸飞消息:{message.processed_plain_text}")
|
||||
elif message.message_segment.type == "image":
|
||||
logger.info("触发缓冲,已炸飞表情包/图片")
|
||||
elif message.message_segment.type == "seglist":
|
||||
logger.info("触发缓冲,已炸飞消息列")
|
||||
return
|
||||
|
||||
is_mentioned = is_mentioned_bot_in_message(message)
|
||||
|
||||
|
||||
# 计算回复意愿
|
||||
current_willing_old = willing_manager.get_willing(chat_stream=chat)
|
||||
# current_willing_new = (heartflow.get_subheartflow(chat.stream_id).current_state.willing - 5) / 4
|
||||
@@ -236,59 +253,84 @@ class ThinkFlowChat:
|
||||
|
||||
do_reply = False
|
||||
if random() < reply_probability:
|
||||
do_reply = True
|
||||
|
||||
# 创建思考消息
|
||||
timer1 = time.time()
|
||||
thinking_id = await self._create_thinking_message(message, chat, userinfo, messageinfo)
|
||||
timer2 = time.time()
|
||||
timing_results["创建思考消息"] = timer2 - timer1
|
||||
|
||||
# 观察
|
||||
timer1 = time.time()
|
||||
await heartflow.get_subheartflow(chat.stream_id).do_observe()
|
||||
timer2 = time.time()
|
||||
timing_results["观察"] = timer2 - timer1
|
||||
|
||||
# 思考前脑内状态
|
||||
timer1 = time.time()
|
||||
await heartflow.get_subheartflow(chat.stream_id).do_thinking_before_reply(message.processed_plain_text)
|
||||
timer2 = time.time()
|
||||
timing_results["思考前脑内状态"] = timer2 - timer1
|
||||
|
||||
# 生成回复
|
||||
timer1 = time.time()
|
||||
response_set = await self.gpt.generate_response(message)
|
||||
timer2 = time.time()
|
||||
timing_results["生成回复"] = timer2 - timer1
|
||||
try:
|
||||
do_reply = True
|
||||
|
||||
# 创建思考消息
|
||||
try:
|
||||
timer1 = time.time()
|
||||
thinking_id = await self._create_thinking_message(message, chat, userinfo, messageinfo)
|
||||
timer2 = time.time()
|
||||
timing_results["创建思考消息"] = timer2 - timer1
|
||||
except Exception as e:
|
||||
logger.error(f"心流创建思考消息失败: {e}")
|
||||
|
||||
try:
|
||||
# 观察
|
||||
timer1 = time.time()
|
||||
await heartflow.get_subheartflow(chat.stream_id).do_observe()
|
||||
timer2 = time.time()
|
||||
timing_results["观察"] = timer2 - timer1
|
||||
except Exception as e:
|
||||
logger.error(f"心流观察失败: {e}")
|
||||
|
||||
if not response_set:
|
||||
logger.info("为什么生成回复失败?")
|
||||
return
|
||||
# 思考前脑内状态
|
||||
try:
|
||||
timer1 = time.time()
|
||||
await heartflow.get_subheartflow(chat.stream_id).do_thinking_before_reply(message.processed_plain_text)
|
||||
timer2 = time.time()
|
||||
timing_results["思考前脑内状态"] = timer2 - timer1
|
||||
except Exception as e:
|
||||
logger.error(f"心流思考前脑内状态失败: {e}")
|
||||
|
||||
# 生成回复
|
||||
timer1 = time.time()
|
||||
response_set = await self.gpt.generate_response(message)
|
||||
timer2 = time.time()
|
||||
timing_results["生成回复"] = timer2 - timer1
|
||||
|
||||
# 发送消息
|
||||
timer1 = time.time()
|
||||
await self._send_response_messages(message, chat, response_set, thinking_id)
|
||||
timer2 = time.time()
|
||||
timing_results["发送消息"] = timer2 - timer1
|
||||
if not response_set:
|
||||
logger.info("为什么生成回复失败?")
|
||||
return
|
||||
|
||||
# 处理表情包
|
||||
timer1 = time.time()
|
||||
await self._handle_emoji(message, chat, response_set)
|
||||
timer2 = time.time()
|
||||
timing_results["处理表情包"] = timer2 - timer1
|
||||
# 发送消息
|
||||
try:
|
||||
timer1 = time.time()
|
||||
await self._send_response_messages(message, chat, response_set, thinking_id)
|
||||
timer2 = time.time()
|
||||
timing_results["发送消息"] = timer2 - timer1
|
||||
except Exception as e:
|
||||
logger.error(f"心流发送消息失败: {e}")
|
||||
|
||||
# 更新心流
|
||||
timer1 = time.time()
|
||||
await self._update_using_response(message, response_set)
|
||||
timer2 = time.time()
|
||||
timing_results["更新心流"] = timer2 - timer1
|
||||
# 处理表情包
|
||||
try:
|
||||
timer1 = time.time()
|
||||
await self._handle_emoji(message, chat, response_set)
|
||||
timer2 = time.time()
|
||||
timing_results["处理表情包"] = timer2 - timer1
|
||||
except Exception as e:
|
||||
logger.error(f"心流处理表情包失败: {e}")
|
||||
|
||||
# 更新关系情绪
|
||||
timer1 = time.time()
|
||||
await self._update_relationship(message, response_set)
|
||||
timer2 = time.time()
|
||||
timing_results["更新关系情绪"] = timer2 - timer1
|
||||
# 更新心流
|
||||
try:
|
||||
timer1 = time.time()
|
||||
await self._update_using_response(message, response_set)
|
||||
timer2 = time.time()
|
||||
timing_results["更新心流"] = timer2 - timer1
|
||||
except Exception as e:
|
||||
logger.error(f"心流更新失败: {e}")
|
||||
|
||||
# 更新关系情绪
|
||||
try:
|
||||
timer1 = time.time()
|
||||
await self._update_relationship(message, response_set)
|
||||
timer2 = time.time()
|
||||
timing_results["更新关系情绪"] = timer2 - timer1
|
||||
except Exception as e:
|
||||
logger.error(f"心流更新关系情绪失败: {e}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"心流处理消息失败: {e}")
|
||||
|
||||
# 输出性能计时结果
|
||||
if do_reply:
|
||||
|
||||
@@ -1,16 +1,13 @@
|
||||
import random
|
||||
import time
|
||||
from typing import Optional
|
||||
|
||||
from ...memory_system.Hippocampus import HippocampusManager
|
||||
from ...moods.moods import MoodManager
|
||||
from ...schedule.schedule_generator import bot_schedule
|
||||
from ...config.config import global_config
|
||||
from ...chat.utils import get_recent_group_detailed_plain_text, get_recent_group_speaker
|
||||
from ...chat.chat_stream import chat_manager
|
||||
from src.common.logger import get_module_logger
|
||||
from ...person_info.relationship_manager import relationship_manager
|
||||
|
||||
from ....individuality.individuality import Individuality
|
||||
from src.heart_flow.heartflow import heartflow
|
||||
|
||||
logger = get_module_logger("prompt")
|
||||
@@ -26,9 +23,10 @@ class PromptBuilder:
|
||||
) -> tuple[str, str]:
|
||||
|
||||
current_mind_info = heartflow.get_subheartflow(stream_id).current_mind
|
||||
|
||||
# 开始构建prompt
|
||||
|
||||
|
||||
individuality = Individuality.get_instance()
|
||||
prompt_personality = individuality.get_prompt(type = "personality",x_person = 2,level = 1)
|
||||
prompt_identity = individuality.get_prompt(type = "identity",x_person = 2,level = 1)
|
||||
# 关系
|
||||
who_chat_in_group = [(chat_stream.user_info.platform,
|
||||
chat_stream.user_info.user_id,
|
||||
@@ -90,20 +88,6 @@ class PromptBuilder:
|
||||
)
|
||||
keywords_reaction_prompt += rule.get("reaction", "") + ","
|
||||
|
||||
# 人格选择
|
||||
personality = global_config.PROMPT_PERSONALITY
|
||||
probability_1 = global_config.PERSONALITY_1
|
||||
probability_2 = global_config.PERSONALITY_2
|
||||
|
||||
personality_choice = random.random()
|
||||
|
||||
if personality_choice < probability_1: # 第一种风格
|
||||
prompt_personality = personality[0]
|
||||
elif personality_choice < probability_1 + probability_2: # 第二种风格
|
||||
prompt_personality = personality[1]
|
||||
else: # 第三种人格
|
||||
prompt_personality = personality[2]
|
||||
|
||||
# 中文高手(新加的好玩功能)
|
||||
prompt_ger = ""
|
||||
if random.random() < 0.04:
|
||||
@@ -123,8 +107,8 @@ class PromptBuilder:
|
||||
{chat_talking_prompt}
|
||||
你刚刚脑子里在想:
|
||||
{current_mind_info}
|
||||
现在"{sender_name}"说的:{message_txt}。引起了你的注意,你想要在群里发言发言或者回复这条消息。{relation_prompt_all}\n
|
||||
你的网名叫{global_config.BOT_NICKNAME},有人也叫你{"/".join(global_config.BOT_ALIAS_NAMES)},{prompt_personality}。
|
||||
现在"{sender_name}"说的:{message_txt}。引起了你的注意,你想要在群里发言发言或者回复这条消息。\n
|
||||
你的网名叫{global_config.BOT_NICKNAME},有人也叫你{"/".join(global_config.BOT_ALIAS_NAMES)},{prompt_personality} {prompt_identity}。
|
||||
你正在{chat_target_2},现在请你读读之前的聊天记录,然后给出日常且口语化的回复,平淡一些,
|
||||
尽量简短一些。{keywords_reaction_prompt}请注意把握聊天内容,不要回复的太有条理,可以有个性。{prompt_ger}
|
||||
请回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景,尽量不要说你说过的话
|
||||
@@ -133,73 +117,5 @@ class PromptBuilder:
|
||||
|
||||
return prompt
|
||||
|
||||
def _build_initiative_prompt_select(self, group_id, probability_1=0.8, probability_2=0.1):
|
||||
current_date = time.strftime("%Y-%m-%d", time.localtime())
|
||||
current_time = time.strftime("%H:%M:%S", time.localtime())
|
||||
bot_schedule_now_time, bot_schedule_now_activity = bot_schedule.get_current_task()
|
||||
prompt_date = f"""今天是{current_date},现在是{current_time},你今天的日程是:
|
||||
{bot_schedule.today_schedule}
|
||||
你现在正在{bot_schedule_now_activity}
|
||||
"""
|
||||
|
||||
chat_talking_prompt = ""
|
||||
if group_id:
|
||||
chat_talking_prompt = get_recent_group_detailed_plain_text(
|
||||
group_id, limit=global_config.MAX_CONTEXT_SIZE, combine=True
|
||||
)
|
||||
|
||||
chat_talking_prompt = f"以下是群里正在聊天的内容:\n{chat_talking_prompt}"
|
||||
# print(f"\033[1;34m[调试]\033[0m 已从数据库获取群 {group_id} 的消息记录:{chat_talking_prompt}")
|
||||
|
||||
# 获取主动发言的话题
|
||||
all_nodes = HippocampusManager.get_instance().memory_graph.dots
|
||||
all_nodes = filter(lambda dot: len(dot[1]["memory_items"]) > 3, all_nodes)
|
||||
nodes_for_select = random.sample(all_nodes, 5)
|
||||
topics = [info[0] for info in nodes_for_select]
|
||||
|
||||
# 激活prompt构建
|
||||
activate_prompt = ""
|
||||
activate_prompt = "以上是群里正在进行的聊天。"
|
||||
personality = global_config.PROMPT_PERSONALITY
|
||||
prompt_personality = ""
|
||||
personality_choice = random.random()
|
||||
if personality_choice < probability_1: # 第一种人格
|
||||
prompt_personality = f"""{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[0]}"""
|
||||
elif personality_choice < probability_1 + probability_2: # 第二种人格
|
||||
prompt_personality = f"""{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[1]}"""
|
||||
else: # 第三种人格
|
||||
prompt_personality = f"""{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[2]}"""
|
||||
|
||||
topics_str = ",".join(f'"{topics}"')
|
||||
prompt_for_select = (
|
||||
f"你现在想在群里发言,回忆了一下,想到几个话题,分别是{topics_str},综合当前状态以及群内气氛,"
|
||||
f"请你在其中选择一个合适的话题,注意只需要输出话题,除了话题什么也不要输出(双引号也不要输出)"
|
||||
)
|
||||
|
||||
prompt_initiative_select = f"{prompt_date}\n{prompt_personality}\n{prompt_for_select}"
|
||||
prompt_regular = f"{prompt_date}\n{prompt_personality}"
|
||||
|
||||
return prompt_initiative_select, nodes_for_select, prompt_regular
|
||||
|
||||
def _build_initiative_prompt_check(self, selected_node, prompt_regular):
|
||||
memory = random.sample(selected_node["memory_items"], 3)
|
||||
memory = "\n".join(memory)
|
||||
prompt_for_check = (
|
||||
f"{prompt_regular}你现在想在群里发言,回忆了一下,想到一个话题,是{selected_node['concept']},"
|
||||
f"关于这个话题的记忆有\n{memory}\n,以这个作为主题发言合适吗?请在把握群里的聊天内容的基础上,"
|
||||
f"综合群内的氛围,如果认为应该发言请输出yes,否则输出no,请注意是决定是否需要发言,而不是编写回复内容,"
|
||||
f"除了yes和no不要输出任何回复内容。"
|
||||
)
|
||||
return prompt_for_check, memory
|
||||
|
||||
def _build_initiative_prompt(self, selected_node, prompt_regular, memory):
|
||||
prompt_for_initiative = (
|
||||
f"{prompt_regular}你现在想在群里发言,回忆了一下,想到一个话题,是{selected_node['concept']},"
|
||||
f"关于这个话题的记忆有\n{memory}\n,请在把握群里的聊天内容的基础上,综合群内的氛围,"
|
||||
f"以日常且口语化的口吻,简短且随意一点进行发言,不要说的太有条理,可以有个性。"
|
||||
f"记住不要输出多余内容(包括前后缀,冒号和引号,括号,表情,@等)"
|
||||
)
|
||||
return prompt_for_initiative
|
||||
|
||||
|
||||
prompt_builder = PromptBuilder()
|
||||
|
||||
@@ -25,12 +25,19 @@ config_config = LogConfig(
|
||||
logger = get_module_logger("config", config=config_config)
|
||||
|
||||
#考虑到,实际上配置文件中的mai_version是不会自动更新的,所以采用硬编码
|
||||
mai_version_main = "0.6.0"
|
||||
is_test = False
|
||||
mai_version_main = "0.6.1"
|
||||
mai_version_fix = ""
|
||||
if mai_version_fix:
|
||||
mai_version = f"{mai_version_main}-{mai_version_fix}"
|
||||
if is_test:
|
||||
mai_version = f"test-{mai_version_main}-{mai_version_fix}"
|
||||
else:
|
||||
mai_version = f"{mai_version_main}-{mai_version_fix}"
|
||||
else:
|
||||
mai_version = mai_version_main
|
||||
if is_test:
|
||||
mai_version = f"test-{mai_version_main}"
|
||||
else:
|
||||
mai_version = mai_version_main
|
||||
|
||||
def update_config():
|
||||
# 获取根目录路径
|
||||
@@ -141,14 +148,22 @@ class BotConfig:
|
||||
ban_user_id = set()
|
||||
|
||||
# personality
|
||||
PROMPT_PERSONALITY = [
|
||||
"用一句话或几句话描述性格特点和其他特征",
|
||||
"例如,是一个热爱国家热爱党的新时代好青年",
|
||||
"例如,曾经是一个学习地质的女大学生,现在学习心理学和脑科学,你会刷贴吧",
|
||||
]
|
||||
PERSONALITY_1: float = 0.6 # 第一种人格概率
|
||||
PERSONALITY_2: float = 0.3 # 第二种人格概率
|
||||
PERSONALITY_3: float = 0.1 # 第三种人格概率
|
||||
personality_core = "用一句话或几句话描述人格的核心特点" # 建议20字以内,谁再写3000字小作文敲谁脑袋
|
||||
personality_sides: List[str] = field(default_factory=lambda: [
|
||||
"用一句话或几句话描述人格的一些侧面",
|
||||
"用一句话或几句话描述人格的一些侧面",
|
||||
"用一句话或几句话描述人格的一些侧面"
|
||||
])
|
||||
# identity
|
||||
identity_detail: List[str] = field(default_factory=lambda: [
|
||||
"身份特点",
|
||||
"身份特点",
|
||||
])
|
||||
height: int = 170 # 身高 单位厘米
|
||||
weight: int = 50 # 体重 单位千克
|
||||
age: int = 20 # 年龄 单位岁
|
||||
gender: str = "男" # 性别
|
||||
appearance: str = "用几句话描述外貌特征" # 外貌特征
|
||||
|
||||
# schedule
|
||||
ENABLE_SCHEDULE_GEN: bool = False # 是否启用日程生成
|
||||
@@ -162,6 +177,7 @@ class BotConfig:
|
||||
emoji_chance: float = 0.2 # 发送表情包的基础概率
|
||||
thinking_timeout: int = 120 # 思考时间
|
||||
max_response_length: int = 1024 # 最大回复长度
|
||||
message_buffer: bool = True # 消息缓冲器
|
||||
|
||||
ban_words = set()
|
||||
ban_msgs_regex = set()
|
||||
@@ -339,14 +355,19 @@ class BotConfig:
|
||||
|
||||
def personality(parent: dict):
|
||||
personality_config = parent["personality"]
|
||||
personality = personality_config.get("prompt_personality")
|
||||
if len(personality) >= 2:
|
||||
logger.info(f"载入自定义人格:{personality}")
|
||||
config.PROMPT_PERSONALITY = personality_config.get("prompt_personality", config.PROMPT_PERSONALITY)
|
||||
if config.INNER_VERSION in SpecifierSet(">=1.2.4"):
|
||||
config.personality_core = personality_config.get("personality_core", config.personality_core)
|
||||
config.personality_sides = personality_config.get("personality_sides", config.personality_sides)
|
||||
|
||||
config.PERSONALITY_1 = personality_config.get("personality_1_probability", config.PERSONALITY_1)
|
||||
config.PERSONALITY_2 = personality_config.get("personality_2_probability", config.PERSONALITY_2)
|
||||
config.PERSONALITY_3 = personality_config.get("personality_3_probability", config.PERSONALITY_3)
|
||||
def identity(parent: dict):
|
||||
identity_config = parent["identity"]
|
||||
if config.INNER_VERSION in SpecifierSet(">=1.2.4"):
|
||||
config.identity_detail = identity_config.get("identity_detail", config.identity_detail)
|
||||
config.height = identity_config.get("height", config.height)
|
||||
config.weight = identity_config.get("weight", config.weight)
|
||||
config.age = identity_config.get("age", config.age)
|
||||
config.gender = identity_config.get("gender", config.gender)
|
||||
config.appearance = identity_config.get("appearance", config.appearance)
|
||||
|
||||
def schedule(parent: dict):
|
||||
schedule_config = parent["schedule"]
|
||||
@@ -505,6 +526,8 @@ class BotConfig:
|
||||
|
||||
if config.INNER_VERSION in SpecifierSet(">=0.0.11"):
|
||||
config.max_response_length = msg_config.get("max_response_length", config.max_response_length)
|
||||
if config.INNER_VERSION in SpecifierSet(">=1.1.4"):
|
||||
config.message_buffer = msg_config.get("message_buffer", config.message_buffer)
|
||||
|
||||
def memory(parent: dict):
|
||||
memory_config = parent["memory"]
|
||||
@@ -601,6 +624,7 @@ class BotConfig:
|
||||
"bot": {"func": bot, "support": ">=0.0.0"},
|
||||
"groups": {"func": groups, "support": ">=0.0.0"},
|
||||
"personality": {"func": personality, "support": ">=0.0.0"},
|
||||
"identity": {"func": identity, "support": ">=1.2.4"},
|
||||
"schedule": {"func": schedule, "support": ">=0.0.11", "necessary": False},
|
||||
"message": {"func": message, "support": ">=0.0.0"},
|
||||
"willing": {"func": willing, "support": ">=0.0.9", "necessary": False},
|
||||
|
||||
@@ -29,7 +29,10 @@ class BaseMessageHandler:
|
||||
try:
|
||||
tasks.append(handler(message))
|
||||
except Exception as e:
|
||||
raise RuntimeError(str(e)) from e
|
||||
logger.error(f"消息处理出错: {str(e)}")
|
||||
logger.error(traceback.format_exc())
|
||||
# 不抛出异常,而是记录错误并继续处理其他消息
|
||||
continue
|
||||
if tasks:
|
||||
await asyncio.gather(*tasks, return_exceptions=True)
|
||||
|
||||
@@ -212,9 +215,8 @@ class MessageServer(BaseMessageHandler):
|
||||
try:
|
||||
async with session.post(url, json=data, headers={"Content-Type": "application/json"}) as response:
|
||||
return await response.json()
|
||||
except Exception:
|
||||
# logger.error(f"发送消息失败: {str(e)}")
|
||||
pass
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
|
||||
class BaseMessageAPI:
|
||||
|
||||
@@ -6,6 +6,7 @@ from dataclasses import dataclass
|
||||
from ..config.config import global_config
|
||||
from src.common.logger import get_module_logger, LogConfig, MOOD_STYLE_CONFIG
|
||||
from ..person_info.relationship_manager import relationship_manager
|
||||
from src.individuality.individuality import Individuality
|
||||
|
||||
mood_config = LogConfig(
|
||||
# 使用海马体专用样式
|
||||
@@ -17,8 +18,8 @@ logger = get_module_logger("mood_manager", config=mood_config)
|
||||
|
||||
@dataclass
|
||||
class MoodState:
|
||||
valence: float # 愉悦度 (-1 到 1)
|
||||
arousal: float # 唤醒度 (0 到 1)
|
||||
valence: float # 愉悦度 (-1.0 到 1.0),-1表示极度负面,1表示极度正面
|
||||
arousal: float # 唤醒度 (0.0 到 1.0),0表示完全平静,1表示极度兴奋
|
||||
text: str # 心情文本描述
|
||||
|
||||
|
||||
@@ -125,20 +126,48 @@ class MoodManager:
|
||||
time.sleep(update_interval)
|
||||
|
||||
def _apply_decay(self) -> None:
|
||||
"""应用情绪衰减"""
|
||||
"""应用情绪衰减,正向和负向情绪分开计算"""
|
||||
current_time = time.time()
|
||||
time_diff = current_time - self.last_update
|
||||
agreeableness_factor = 1
|
||||
agreeableness_bias = 0
|
||||
neuroticism_factor = 0.5
|
||||
|
||||
# Valence 向中性(0)回归
|
||||
valence_target = 0
|
||||
self.current_mood.valence = valence_target + (self.current_mood.valence - valence_target) * math.exp(
|
||||
-self.decay_rate_valence * time_diff
|
||||
)
|
||||
# 获取人格特质
|
||||
personality = Individuality.get_instance().personality
|
||||
if personality:
|
||||
# 神经质:影响情绪变化速度
|
||||
neuroticism_factor = 1 + (personality.neuroticism - 0.5) * 0.5
|
||||
agreeableness_factor = 1 + (personality.agreeableness - 0.5) * 0.5
|
||||
|
||||
# 宜人性:影响情绪基准线
|
||||
if personality.agreeableness < 0.2:
|
||||
agreeableness_bias = (personality.agreeableness - 0.2) * 2
|
||||
elif personality.agreeableness > 0.8:
|
||||
agreeableness_bias = (personality.agreeableness - 0.8) * 2
|
||||
else:
|
||||
agreeableness_bias = 0
|
||||
|
||||
# 分别计算正向和负向的衰减率
|
||||
if self.current_mood.valence >= 0:
|
||||
# 正向情绪衰减
|
||||
decay_rate_positive = self.decay_rate_valence * (1/agreeableness_factor)
|
||||
valence_target = 0 + agreeableness_bias
|
||||
self.current_mood.valence = valence_target + (self.current_mood.valence - valence_target) * math.exp(
|
||||
-decay_rate_positive * time_diff * neuroticism_factor
|
||||
)
|
||||
else:
|
||||
# 负向情绪衰减
|
||||
decay_rate_negative = self.decay_rate_valence * agreeableness_factor
|
||||
valence_target = 0 + agreeableness_bias
|
||||
self.current_mood.valence = valence_target + (self.current_mood.valence - valence_target) * math.exp(
|
||||
-decay_rate_negative * time_diff * neuroticism_factor
|
||||
)
|
||||
|
||||
# Arousal 向中性(0.5)回归
|
||||
arousal_target = 0.5
|
||||
self.current_mood.arousal = arousal_target + (self.current_mood.arousal - arousal_target) * math.exp(
|
||||
-self.decay_rate_arousal * time_diff
|
||||
-self.decay_rate_arousal * time_diff * neuroticism_factor
|
||||
)
|
||||
|
||||
# 确保值在合理范围内
|
||||
@@ -237,7 +266,7 @@ class MoodManager:
|
||||
old_arousal = self.current_mood.arousal
|
||||
old_mood = self.current_mood.text
|
||||
|
||||
valence_change *= relationship_manager.gain_coefficient[relationship_manager.positive_feedback_value]
|
||||
valence_change = relationship_manager.feedback_to_mood(valence_change)
|
||||
|
||||
# 应用情绪强度
|
||||
valence_change *= intensity
|
||||
|
||||
@@ -2,8 +2,14 @@ from src.common.logger import get_module_logger
|
||||
from ...common.database import db
|
||||
import copy
|
||||
import hashlib
|
||||
from typing import Any, Callable, Dict, TypeVar
|
||||
T = TypeVar('T') # 泛型类型
|
||||
from typing import Any, Callable, Dict
|
||||
import datetime
|
||||
import asyncio
|
||||
import numpy
|
||||
# import matplotlib.pyplot as plt
|
||||
# from pathlib import Path
|
||||
# import pandas as pd
|
||||
|
||||
|
||||
"""
|
||||
PersonInfoManager 类方法功能摘要:
|
||||
@@ -15,6 +21,7 @@ PersonInfoManager 类方法功能摘要:
|
||||
6. get_values - 批量获取字段值(任一字段无效则返回空字典)
|
||||
7. del_all_undefined_field - 清理全集合中未定义的字段
|
||||
8. get_specific_value_list - 根据指定条件,返回person_id,value字典
|
||||
9. personal_habit_deduction - 定时推断个人习惯
|
||||
"""
|
||||
|
||||
logger = get_module_logger("person_info")
|
||||
@@ -30,6 +37,8 @@ person_info_default = {
|
||||
# "impression" : None,
|
||||
# "gender" : Unkown,
|
||||
"konw_time" : 0,
|
||||
"msg_interval": 3000,
|
||||
"msg_interval_list": []
|
||||
} # 个人信息的各项与默认值在此定义,以下处理会自动创建/补全每一项
|
||||
|
||||
class PersonInfoManager:
|
||||
@@ -108,8 +117,9 @@ class PersonInfoManager:
|
||||
if document and field_name in document:
|
||||
return document[field_name]
|
||||
else:
|
||||
logger.debug(f"获取{person_id}的{field_name}失败,已返回默认值{person_info_default[field_name]}")
|
||||
return person_info_default[field_name]
|
||||
default_value = copy.deepcopy(person_info_default[field_name])
|
||||
logger.debug(f"获取{person_id}的{field_name}失败,已返回默认值{default_value}")
|
||||
return default_value
|
||||
|
||||
async def get_values(self, person_id: str, field_names: list) -> dict:
|
||||
"""获取指定person_id文档的多个字段值,若不存在该字段,则返回该字段的全局默认值"""
|
||||
@@ -133,7 +143,10 @@ class PersonInfoManager:
|
||||
|
||||
result = {}
|
||||
for field in field_names:
|
||||
result[field] = document.get(field, person_info_default[field]) if document else person_info_default[field]
|
||||
result[field] = copy.deepcopy(
|
||||
document.get(field, person_info_default[field])
|
||||
if document else person_info_default[field]
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
@@ -209,5 +222,47 @@ class PersonInfoManager:
|
||||
except Exception as e:
|
||||
logger.error(f"数据库查询失败: {str(e)}", exc_info=True)
|
||||
return {}
|
||||
|
||||
async def personal_habit_deduction(self):
|
||||
"""启动个人信息推断,每天根据一定条件推断一次"""
|
||||
try:
|
||||
while(1):
|
||||
await asyncio.sleep(60)
|
||||
current_time = datetime.datetime.now()
|
||||
logger.info(f"个人信息推断启动: {current_time.strftime('%Y-%m-%d %H:%M:%S')}")
|
||||
|
||||
person_info_manager = PersonInfoManager()
|
||||
# "msg_interval"推断
|
||||
msg_interval_lists = await self.get_specific_value_list(
|
||||
"msg_interval_list",
|
||||
lambda x: isinstance(x, list) and len(x) >= 100
|
||||
)
|
||||
for person_id, msg_interval_list_ in msg_interval_lists.items():
|
||||
try:
|
||||
time_interval = []
|
||||
for t1, t2 in zip(msg_interval_list_, msg_interval_list_[1:]):
|
||||
delta = t2 - t1
|
||||
if delta < 8000 and delta > 0: # 小于8秒
|
||||
time_interval.append(delta)
|
||||
|
||||
if len(time_interval) > 30:
|
||||
# 移除matplotlib相关的绘图功能
|
||||
|
||||
filtered_intervals = [t for t in time_interval if t >= 500]
|
||||
if len(filtered_intervals) > 25:
|
||||
msg_interval = int(round(numpy.percentile(filtered_intervals, 80)))
|
||||
await self.update_one_field(person_id, "msg_interval", msg_interval)
|
||||
logger.debug(f"用户{person_id}的msg_interval已经被更新为{msg_interval}")
|
||||
except Exception as e:
|
||||
logger.debug(f"处理用户{person_id}msg_interval推断时出错: {str(e)}")
|
||||
continue
|
||||
|
||||
# 其他...
|
||||
|
||||
logger.info(f"个人信息推断结束: {current_time.strftime('%Y-%m-%d %H:%M:%S')}")
|
||||
await asyncio.sleep(86400)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"个人信息推断运行时出错: {str(e)}")
|
||||
logger.exception("详细错误信息:")
|
||||
|
||||
person_info_manager = PersonInfoManager()
|
||||
|
||||
@@ -63,7 +63,15 @@ class RelationshipManager:
|
||||
value += value * mood_gain
|
||||
logger.info(f"当前relationship增益系数:{mood_gain:.3f}")
|
||||
return value
|
||||
|
||||
|
||||
def feedback_to_mood(self, mood_value):
|
||||
"""对情绪的反馈"""
|
||||
coefficient = self.gain_coefficient[abs(self.positive_feedback_value)]
|
||||
if (mood_value > 0 and self.positive_feedback_value > 0
|
||||
or mood_value < 0 and self.positive_feedback_value < 0):
|
||||
return mood_value*coefficient
|
||||
else:
|
||||
return mood_value/coefficient
|
||||
|
||||
async def calculate_update_relationship_value(self, chat_stream: ChatStream, label: str, stance: str) -> None:
|
||||
"""计算并变更关系值
|
||||
|
||||
@@ -1,195 +0,0 @@
|
||||
"""
|
||||
The definition of artificial personality in this paper follows the dispositional para-digm and adapts a definition of
|
||||
personality developed for humans [17]:
|
||||
Personality for a human is the "whole and organisation of relatively stable tendencies and patterns of experience and
|
||||
behaviour within one person (distinguishing it from other persons)". This definition is modified for artificial
|
||||
personality:
|
||||
Artificial personality describes the relatively stable tendencies and patterns of behav-iour of an AI-based machine that
|
||||
can be designed by developers and designers via different modalities, such as language, creating the impression
|
||||
of individuality of a humanized social agent when users interact with the machine."""
|
||||
|
||||
from typing import Dict, List
|
||||
import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
from dotenv import load_dotenv
|
||||
import sys
|
||||
|
||||
"""
|
||||
第一种方案:基于情景评估的人格测定
|
||||
"""
|
||||
current_dir = Path(__file__).resolve().parent
|
||||
project_root = current_dir.parent.parent.parent
|
||||
env_path = project_root / ".env"
|
||||
|
||||
root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../.."))
|
||||
sys.path.append(root_path)
|
||||
|
||||
from src.plugins.personality.scene import get_scene_by_factor, PERSONALITY_SCENES # noqa: E402
|
||||
from src.plugins.personality.questionnaire import FACTOR_DESCRIPTIONS # noqa: E402
|
||||
from src.plugins.personality.offline_llm import LLMModel # noqa: E402
|
||||
|
||||
# 加载环境变量
|
||||
if env_path.exists():
|
||||
print(f"从 {env_path} 加载环境变量")
|
||||
load_dotenv(env_path)
|
||||
else:
|
||||
print(f"未找到环境变量文件: {env_path}")
|
||||
print("将使用默认配置")
|
||||
|
||||
|
||||
class PersonalityEvaluator_direct:
|
||||
def __init__(self):
|
||||
self.personality_traits = {"开放性": 0, "严谨性": 0, "外向性": 0, "宜人性": 0, "神经质": 0}
|
||||
self.scenarios = []
|
||||
|
||||
# 为每个人格特质获取对应的场景
|
||||
for trait in PERSONALITY_SCENES:
|
||||
scenes = get_scene_by_factor(trait)
|
||||
if not scenes:
|
||||
continue
|
||||
|
||||
# 从每个维度选择3个场景
|
||||
import random
|
||||
|
||||
scene_keys = list(scenes.keys())
|
||||
selected_scenes = random.sample(scene_keys, min(3, len(scene_keys)))
|
||||
|
||||
for scene_key in selected_scenes:
|
||||
scene = scenes[scene_key]
|
||||
|
||||
# 为每个场景添加评估维度
|
||||
# 主维度是当前特质,次维度随机选择一个其他特质
|
||||
other_traits = [t for t in PERSONALITY_SCENES if t != trait]
|
||||
secondary_trait = random.choice(other_traits)
|
||||
|
||||
self.scenarios.append(
|
||||
{"场景": scene["scenario"], "评估维度": [trait, secondary_trait], "场景编号": scene_key}
|
||||
)
|
||||
|
||||
self.llm = LLMModel()
|
||||
|
||||
def evaluate_response(self, scenario: str, response: str, dimensions: List[str]) -> Dict[str, float]:
|
||||
"""
|
||||
使用 DeepSeek AI 评估用户对特定场景的反应
|
||||
"""
|
||||
# 构建维度描述
|
||||
dimension_descriptions = []
|
||||
for dim in dimensions:
|
||||
desc = FACTOR_DESCRIPTIONS.get(dim, "")
|
||||
if desc:
|
||||
dimension_descriptions.append(f"- {dim}:{desc}")
|
||||
|
||||
dimensions_text = "\n".join(dimension_descriptions)
|
||||
|
||||
prompt = f"""请根据以下场景和用户描述,评估用户在大五人格模型中的相关维度得分(1-6分)。
|
||||
|
||||
场景描述:
|
||||
{scenario}
|
||||
|
||||
用户回应:
|
||||
{response}
|
||||
|
||||
需要评估的维度说明:
|
||||
{dimensions_text}
|
||||
|
||||
请按照以下格式输出评估结果(仅输出JSON格式):
|
||||
{{
|
||||
"{dimensions[0]}": 分数,
|
||||
"{dimensions[1]}": 分数
|
||||
}}
|
||||
|
||||
评分标准:
|
||||
1 = 非常不符合该维度特征
|
||||
2 = 比较不符合该维度特征
|
||||
3 = 有点不符合该维度特征
|
||||
4 = 有点符合该维度特征
|
||||
5 = 比较符合该维度特征
|
||||
6 = 非常符合该维度特征
|
||||
|
||||
请根据用户的回应,结合场景和维度说明进行评分。确保分数在1-6之间,并给出合理的评估。"""
|
||||
|
||||
try:
|
||||
ai_response, _ = self.llm.generate_response(prompt)
|
||||
# 尝试从AI响应中提取JSON部分
|
||||
start_idx = ai_response.find("{")
|
||||
end_idx = ai_response.rfind("}") + 1
|
||||
if start_idx != -1 and end_idx != 0:
|
||||
json_str = ai_response[start_idx:end_idx]
|
||||
scores = json.loads(json_str)
|
||||
# 确保所有分数在1-6之间
|
||||
return {k: max(1, min(6, float(v))) for k, v in scores.items()}
|
||||
else:
|
||||
print("AI响应格式不正确,使用默认评分")
|
||||
return {dim: 3.5 for dim in dimensions}
|
||||
except Exception as e:
|
||||
print(f"评估过程出错:{str(e)}")
|
||||
return {dim: 3.5 for dim in dimensions}
|
||||
|
||||
|
||||
def main():
|
||||
print("欢迎使用人格形象创建程序!")
|
||||
print("接下来,您将面对一系列场景(共15个)。请根据您想要创建的角色形象,描述在该场景下可能的反应。")
|
||||
print("每个场景都会评估不同的人格维度,最终得出完整的人格特征评估。")
|
||||
print("评分标准:1=非常不符合,2=比较不符合,3=有点不符合,4=有点符合,5=比较符合,6=非常符合")
|
||||
print("\n准备好了吗?按回车键开始...")
|
||||
input()
|
||||
|
||||
evaluator = PersonalityEvaluator_direct()
|
||||
final_scores = {"开放性": 0, "严谨性": 0, "外向性": 0, "宜人性": 0, "神经质": 0}
|
||||
dimension_counts = {trait: 0 for trait in final_scores.keys()}
|
||||
|
||||
for i, scenario_data in enumerate(evaluator.scenarios, 1):
|
||||
print(f"\n场景 {i}/{len(evaluator.scenarios)} - {scenario_data['场景编号']}:")
|
||||
print("-" * 50)
|
||||
print(scenario_data["场景"])
|
||||
print("\n请描述您的角色在这种情况下会如何反应:")
|
||||
response = input().strip()
|
||||
|
||||
if not response:
|
||||
print("反应描述不能为空!")
|
||||
continue
|
||||
|
||||
print("\n正在评估您的描述...")
|
||||
scores = evaluator.evaluate_response(scenario_data["场景"], response, scenario_data["评估维度"])
|
||||
|
||||
# 更新最终分数
|
||||
for dimension, score in scores.items():
|
||||
final_scores[dimension] += score
|
||||
dimension_counts[dimension] += 1
|
||||
|
||||
print("\n当前评估结果:")
|
||||
print("-" * 30)
|
||||
for dimension, score in scores.items():
|
||||
print(f"{dimension}: {score}/6")
|
||||
|
||||
if i < len(evaluator.scenarios):
|
||||
print("\n按回车键继续下一个场景...")
|
||||
input()
|
||||
|
||||
# 计算平均分
|
||||
for dimension in final_scores:
|
||||
if dimension_counts[dimension] > 0:
|
||||
final_scores[dimension] = round(final_scores[dimension] / dimension_counts[dimension], 2)
|
||||
|
||||
print("\n最终人格特征评估结果:")
|
||||
print("-" * 30)
|
||||
for trait, score in final_scores.items():
|
||||
print(f"{trait}: {score}/6")
|
||||
print(f"测试场景数:{dimension_counts[trait]}")
|
||||
|
||||
# 保存结果
|
||||
result = {"final_scores": final_scores, "dimension_counts": dimension_counts, "scenarios": evaluator.scenarios}
|
||||
|
||||
# 确保目录存在
|
||||
os.makedirs("results", exist_ok=True)
|
||||
|
||||
# 保存到文件
|
||||
with open("results/personality_result.json", "w", encoding="utf-8") as f:
|
||||
json.dump(result, f, ensure_ascii=False, indent=2)
|
||||
|
||||
print("\n结果已保存到 results/personality_result.json")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,261 +0,0 @@
|
||||
from typing import Dict
|
||||
|
||||
PERSONALITY_SCENES = {
|
||||
"外向性": {
|
||||
"场景1": {
|
||||
"scenario": """你刚刚搬到一个新的城市工作。今天是你入职的第一天,在公司的电梯里,一位同事微笑着和你打招呼:
|
||||
|
||||
同事:「嗨!你是新来的同事吧?我是市场部的小林。」
|
||||
|
||||
同事看起来很友善,还主动介绍说:「待会午饭时间,我们部门有几个人准备一起去楼下新开的餐厅,你要一起来吗?可以认识一下其他同事。」""",
|
||||
"explanation": "这个场景通过职场社交情境,观察个体对于新环境、新社交圈的态度和反应倾向。",
|
||||
},
|
||||
"场景2": {
|
||||
"scenario": """在大学班级群里,班长发起了一个组织班级联谊活动的投票:
|
||||
|
||||
班长:「大家好!下周末我们准备举办一次班级联谊活动,地点在学校附近的KTV。想请大家报名参加,也欢迎大家邀请其他班级的同学!」
|
||||
|
||||
已经有几个同学在群里积极响应,有人@你问你要不要一起参加。""",
|
||||
"explanation": "通过班级活动场景,观察个体对群体社交活动的参与意愿。",
|
||||
},
|
||||
"场景3": {
|
||||
"scenario": """你在社交平台上发布了一条动态,收到了很多陌生网友的评论和私信:
|
||||
|
||||
网友A:「你说的这个观点很有意思!想和你多交流一下。」
|
||||
|
||||
网友B:「我也对这个话题很感兴趣,要不要建个群一起讨论?」""",
|
||||
"explanation": "通过网络社交场景,观察个体对线上社交的态度。",
|
||||
},
|
||||
"场景4": {
|
||||
"scenario": """你暗恋的对象今天主动来找你:
|
||||
|
||||
对方:「那个...我最近在准备一个演讲比赛,听说你口才很好。能不能请你帮我看看演讲稿,顺便给我一些建议?"""
|
||||
"""如果你有时间的话,可以一起吃个饭聊聊。」""",
|
||||
"explanation": "通过恋爱情境,观察个体在面对心仪对象时的社交表现。",
|
||||
},
|
||||
"场景5": {
|
||||
"scenario": """在一次线下读书会上,主持人突然点名让你分享读后感:
|
||||
|
||||
主持人:「听说你对这本书很有见解,能不能和大家分享一下你的想法?」
|
||||
|
||||
现场有二十多个陌生的读书爱好者,都期待地看着你。""",
|
||||
"explanation": "通过即兴发言场景,观察个体的社交表现欲和公众表达能力。",
|
||||
},
|
||||
},
|
||||
"神经质": {
|
||||
"场景1": {
|
||||
"scenario": """你正在准备一个重要的项目演示,这关系到你的晋升机会。"""
|
||||
"""就在演示前30分钟,你收到了主管发来的消息:
|
||||
|
||||
主管:「临时有个变动,CEO也会来听你的演示。他对这个项目特别感兴趣。」
|
||||
|
||||
正当你准备回复时,主管又发来一条:「对了,能不能把演示时间压缩到15分钟?CEO下午还有其他安排。你之前准备的是30分钟的版本对吧?」""",
|
||||
"explanation": "这个场景通过突发的压力情境,观察个体在面对计划外变化时的情绪反应和调节能力。",
|
||||
},
|
||||
"场景2": {
|
||||
"scenario": """期末考试前一天晚上,你收到了好朋友发来的消息:
|
||||
|
||||
好朋友:「不好意思这么晚打扰你...我看你平时成绩很好,能不能帮我解答几个问题?我真的很担心明天的考试。」
|
||||
|
||||
你看了看时间,已经是晚上11点,而你原本计划的复习还没完成。""",
|
||||
"explanation": "通过考试压力场景,观察个体在时间紧张时的情绪管理。",
|
||||
},
|
||||
"场景3": {
|
||||
"scenario": """你在社交媒体上发表的一个观点引发了争议,有不少人开始批评你:
|
||||
|
||||
网友A:「这种观点也好意思说出来,真是无知。」
|
||||
|
||||
网友B:「建议楼主先去补补课再来发言。」
|
||||
|
||||
评论区里的负面评论越来越多,还有人开始人身攻击。""",
|
||||
"explanation": "通过网络争议场景,观察个体面对批评时的心理承受能力。",
|
||||
},
|
||||
"场景4": {
|
||||
"scenario": """你和恋人约好今天一起看电影,但在约定时间前半小时,对方发来消息:
|
||||
|
||||
恋人:「对不起,我临时有点事,可能要迟到一会儿。」
|
||||
|
||||
二十分钟后,对方又发来消息:「可能要再等等,抱歉!」
|
||||
|
||||
电影快要开始了,但对方还是没有出现。""",
|
||||
"explanation": "通过恋爱情境,观察个体对不确定性的忍耐程度。",
|
||||
},
|
||||
"场景5": {
|
||||
"scenario": """在一次重要的小组展示中,你的组员在演示途中突然卡壳了:
|
||||
|
||||
组员小声对你说:「我忘词了,接下来的部分是什么来着...」
|
||||
|
||||
台下的老师和同学都在等待,气氛有些尴尬。""",
|
||||
"explanation": "通过公开场合的突发状况,观察个体的应急反应和压力处理能力。",
|
||||
},
|
||||
},
|
||||
"严谨性": {
|
||||
"场景1": {
|
||||
"scenario": """你是团队的项目负责人,刚刚接手了一个为期两个月的重要项目。在第一次团队会议上:
|
||||
|
||||
小王:「老大,我觉得两个月时间很充裕,我们先做着看吧,遇到问题再解决。」
|
||||
|
||||
小张:「要不要先列个时间表?不过感觉太详细的计划也没必要,点到为止就行。」
|
||||
|
||||
小李:「客户那边说如果能提前完成有奖励,我觉得我们可以先做快一点的部分。」""",
|
||||
"explanation": "这个场景通过项目管理情境,体现个体在工作方法、计划性和责任心方面的特征。",
|
||||
},
|
||||
"场景2": {
|
||||
"scenario": """期末小组作业,组长让大家分工完成一份研究报告。在截止日期前三天:
|
||||
|
||||
组员A:「我的部分大概写完了,感觉还行。」
|
||||
|
||||
组员B:「我这边可能还要一天才能完成,最近太忙了。」
|
||||
|
||||
组员C发来一份没有任何引用出处、可能存在抄袭的内容:「我写完了,你们看看怎么样?」""",
|
||||
"explanation": "通过学习场景,观察个体对学术规范和质量要求的重视程度。",
|
||||
},
|
||||
"场景3": {
|
||||
"scenario": """你在一个兴趣小组的群聊中,大家正在讨论举办一次线下活动:
|
||||
|
||||
成员A:「到时候见面就知道具体怎么玩了!」
|
||||
|
||||
成员B:「对啊,随意一点挺好的。」
|
||||
|
||||
成员C:「人来了自然就热闹了。」""",
|
||||
"explanation": "通过活动组织场景,观察个体对活动计划的态度。",
|
||||
},
|
||||
"场景4": {
|
||||
"scenario": """你和恋人计划一起去旅游,对方说:
|
||||
|
||||
恋人:「我们就随心而行吧!订个目的地,其他的到了再说,这样更有意思。」
|
||||
|
||||
距离出发还有一周时间,但机票、住宿和具体行程都还没有确定。""",
|
||||
"explanation": "通过旅行规划场景,观察个体的计划性和对不确定性的接受程度。",
|
||||
},
|
||||
"场景5": {
|
||||
"scenario": """在一个重要的团队项目中,你发现一个同事的工作存在明显错误:
|
||||
|
||||
同事:「差不多就行了,反正领导也看不出来。」
|
||||
|
||||
这个错误可能不会立即造成问题,但长期来看可能会影响项目质量。""",
|
||||
"explanation": "通过工作质量场景,观察个体对细节和标准的坚持程度。",
|
||||
},
|
||||
},
|
||||
"开放性": {
|
||||
"场景1": {
|
||||
"scenario": """周末下午,你的好友小美兴致勃勃地给你打电话:
|
||||
|
||||
小美:「我刚发现一个特别有意思的沉浸式艺术展!不是传统那种挂画的展览,而是把整个空间都变成了艺术品。"""
|
||||
"""观众要穿特制的服装,还要带上VR眼镜,好像还有AI实时互动!」
|
||||
|
||||
小美继续说:「虽然票价不便宜,但听说体验很独特。网上评价两极分化,有人说是前所未有的艺术革新,也有人说是哗众取宠。"""
|
||||
"""要不要周末一起去体验一下?」""",
|
||||
"explanation": "这个场景通过新型艺术体验,反映个体对创新事物的接受程度和尝试意愿。",
|
||||
},
|
||||
"场景2": {
|
||||
"scenario": """在一节创意写作课上,老师提出了一个特别的作业:
|
||||
|
||||
老师:「下周的作业是用AI写作工具协助创作一篇小说。你们可以自由探索如何与AI合作,打破传统写作方式。」
|
||||
|
||||
班上随即展开了激烈讨论,有人认为这是对创作的亵渎,也有人对这种新形式感到兴奋。""",
|
||||
"explanation": "通过新技术应用场景,观察个体对创新学习方式的态度。",
|
||||
},
|
||||
"场景3": {
|
||||
"scenario": """在社交媒体上,你看到一个朋友分享了一种新的生活方式:
|
||||
|
||||
「最近我在尝试'数字游牧'生活,就是一边远程工作一边环游世界。"""
|
||||
"""没有固定住所,住青旅或短租,认识来自世界各地的朋友。虽然有时会很不稳定,但这种自由的生活方式真的很棒!」
|
||||
|
||||
评论区里争论不断,有人向往这种生活,也有人觉得太冒险。""",
|
||||
"explanation": "通过另类生活方式,观察个体对非传统选择的态度。",
|
||||
},
|
||||
"场景4": {
|
||||
"scenario": """你的恋人突然提出了一个想法:
|
||||
|
||||
恋人:「我们要不要尝试一下开放式关系?就是在保持彼此关系的同时,也允许和其他人发展感情。现在国外很多年轻人都这样。」
|
||||
|
||||
这个提议让你感到意外,你之前从未考虑过这种可能性。""",
|
||||
"explanation": "通过感情观念场景,观察个体对非传统关系模式的接受度。",
|
||||
},
|
||||
"场景5": {
|
||||
"scenario": """在一次朋友聚会上,大家正在讨论未来职业规划:
|
||||
|
||||
朋友A:「我准备辞职去做自媒体,专门介绍一些小众的文化和艺术。」
|
||||
|
||||
朋友B:「我想去学习生物科技,准备转行做人造肉研发。」
|
||||
|
||||
朋友C:「我在考虑加入一个区块链创业项目,虽然风险很大。」""",
|
||||
"explanation": "通过职业选择场景,观察个体对新兴领域的探索意愿。",
|
||||
},
|
||||
},
|
||||
"宜人性": {
|
||||
"场景1": {
|
||||
"scenario": """在回家的公交车上,你遇到这样一幕:
|
||||
|
||||
一位老奶奶颤颤巍巍地上了车,车上座位已经坐满了。她站在你旁边,看起来很疲惫。这时你听到前排两个年轻人的对话:
|
||||
|
||||
年轻人A:「那个老太太好像站不稳,看起来挺累的。」
|
||||
|
||||
年轻人B:「现在的老年人真是...我看她包里还有菜,肯定是去菜市场买完菜回来的,这么多人都不知道叫子女开车接送。」
|
||||
|
||||
就在这时,老奶奶一个趔趄,差点摔倒。她扶住了扶手,但包里的东西洒了一些出来。""",
|
||||
"explanation": "这个场景通过公共场合的助人情境,体现个体的同理心和对他人需求的关注程度。",
|
||||
},
|
||||
"场景2": {
|
||||
"scenario": """在班级群里,有同学发起为生病住院的同学捐款:
|
||||
|
||||
同学A:「大家好,小林最近得了重病住院,医药费很贵,家里负担很重。我们要不要一起帮帮他?」
|
||||
|
||||
同学B:「我觉得这是他家里的事,我们不方便参与吧。」
|
||||
|
||||
同学C:「但是都是同学一场,帮帮忙也是应该的。」""",
|
||||
"explanation": "通过同学互助场景,观察个体的助人意愿和同理心。",
|
||||
},
|
||||
"场景3": {
|
||||
"scenario": """在一个网络讨论组里,有人发布了求助信息:
|
||||
|
||||
求助者:「最近心情很低落,感觉生活很压抑,不知道该怎么办...」
|
||||
|
||||
评论区里已经有一些回复:
|
||||
「生活本来就是这样,想开点!」
|
||||
「你这样子太消极了,要积极面对。」
|
||||
「谁还没点烦心事啊,过段时间就好了。」""",
|
||||
"explanation": "通过网络互助场景,观察个体的共情能力和安慰方式。",
|
||||
},
|
||||
"场景4": {
|
||||
"scenario": """你的恋人向你倾诉工作压力:
|
||||
|
||||
恋人:「最近工作真的好累,感觉快坚持不下去了...」
|
||||
|
||||
但今天你也遇到了很多烦心事,心情也不太好。""",
|
||||
"explanation": "通过感情关系场景,观察个体在自身状态不佳时的关怀能力。",
|
||||
},
|
||||
"场景5": {
|
||||
"scenario": """在一次团队项目中,新来的同事小王因为经验不足,造成了一个严重的错误。在部门会议上:
|
||||
|
||||
主管:「这个错误造成了很大的损失,是谁负责的这部分?」
|
||||
|
||||
小王看起来很紧张,欲言又止。你知道是他造成的错误,同时你也是这个项目的共同负责人。""",
|
||||
"explanation": "通过职场情境,观察个体在面对他人过错时的态度和处理方式。",
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def get_scene_by_factor(factor: str) -> Dict:
|
||||
"""
|
||||
根据人格因子获取对应的情景测试
|
||||
|
||||
Args:
|
||||
factor (str): 人格因子名称
|
||||
|
||||
Returns:
|
||||
Dict: 包含情景描述的字典
|
||||
"""
|
||||
return PERSONALITY_SCENES.get(factor, None)
|
||||
|
||||
|
||||
def get_all_scenes() -> Dict:
|
||||
"""
|
||||
获取所有情景测试
|
||||
|
||||
Returns:
|
||||
Dict: 所有情景测试的字典
|
||||
"""
|
||||
return PERSONALITY_SCENES
|
||||
@@ -62,9 +62,7 @@ class ScheduleGenerator:
|
||||
self.name = name
|
||||
self.behavior = behavior
|
||||
self.schedule_doing_update_interval = interval
|
||||
|
||||
for pers in personality:
|
||||
self.personality += pers + "\n"
|
||||
self.personality = personality
|
||||
|
||||
async def mai_schedule_start(self):
|
||||
"""启动日程系统,每5分钟执行一次move_doing,并在日期变化时重新检查日程"""
|
||||
|
||||
@@ -41,7 +41,7 @@ class KnowledgeLibrary:
|
||||
return f.read()
|
||||
|
||||
def split_content(self, content: str, max_length: int = 512) -> list:
|
||||
"""将内容分割成适当大小的块,保持段落完整性
|
||||
"""将内容分割成适当大小的块,按空行分割
|
||||
|
||||
Args:
|
||||
content: 要分割的文本内容
|
||||
@@ -50,67 +50,21 @@ class KnowledgeLibrary:
|
||||
Returns:
|
||||
list: 分割后的文本块列表
|
||||
"""
|
||||
# 首先按段落分割
|
||||
# 按空行分割内容
|
||||
paragraphs = [p.strip() for p in content.split("\n\n") if p.strip()]
|
||||
chunks = []
|
||||
current_chunk = []
|
||||
current_length = 0
|
||||
|
||||
|
||||
for para in paragraphs:
|
||||
para_length = len(para)
|
||||
|
||||
# 如果单个段落就超过最大长度
|
||||
if para_length > max_length:
|
||||
# 如果当前chunk不为空,先保存
|
||||
if current_chunk:
|
||||
chunks.append("\n".join(current_chunk))
|
||||
current_chunk = []
|
||||
current_length = 0
|
||||
|
||||
# 将长段落按句子分割
|
||||
sentences = [
|
||||
s.strip()
|
||||
for s in para.replace("。", "。\n").replace("!", "!\n").replace("?", "?\n").split("\n")
|
||||
if s.strip()
|
||||
]
|
||||
temp_chunk = []
|
||||
temp_length = 0
|
||||
|
||||
for sentence in sentences:
|
||||
sentence_length = len(sentence)
|
||||
if sentence_length > max_length:
|
||||
# 如果单个句子超长,强制按长度分割
|
||||
if temp_chunk:
|
||||
chunks.append("\n".join(temp_chunk))
|
||||
temp_chunk = []
|
||||
temp_length = 0
|
||||
for i in range(0, len(sentence), max_length):
|
||||
chunks.append(sentence[i : i + max_length])
|
||||
elif temp_length + sentence_length + 1 <= max_length:
|
||||
temp_chunk.append(sentence)
|
||||
temp_length += sentence_length + 1
|
||||
else:
|
||||
chunks.append("\n".join(temp_chunk))
|
||||
temp_chunk = [sentence]
|
||||
temp_length = sentence_length
|
||||
|
||||
if temp_chunk:
|
||||
chunks.append("\n".join(temp_chunk))
|
||||
|
||||
# 如果当前段落加上现有chunk不超过最大长度
|
||||
elif current_length + para_length + 1 <= max_length:
|
||||
current_chunk.append(para)
|
||||
current_length += para_length + 1
|
||||
|
||||
# 如果段落长度小于等于最大长度,直接添加
|
||||
if para_length <= max_length:
|
||||
chunks.append(para)
|
||||
else:
|
||||
# 保存当前chunk并开始新的chunk
|
||||
chunks.append("\n".join(current_chunk))
|
||||
current_chunk = [para]
|
||||
current_length = para_length
|
||||
|
||||
# 添加最后一个chunk
|
||||
if current_chunk:
|
||||
chunks.append("\n".join(current_chunk))
|
||||
|
||||
# 如果段落超过最大长度,则按最大长度切分
|
||||
for i in range(0, para_length, max_length):
|
||||
chunks.append(para[i:i + max_length])
|
||||
|
||||
return chunks
|
||||
|
||||
def get_embedding(self, text: str) -> list:
|
||||
|
||||
Reference in New Issue
Block a user