Merge branch 'dev' into dev
This commit is contained in:
@@ -2,7 +2,7 @@ import asyncio
|
||||
import time
|
||||
import traceback
|
||||
import random
|
||||
from typing import List, Optional, Dict, Any
|
||||
from typing import List, Optional, Dict, Any, Tuple
|
||||
from rich.traceback import install
|
||||
|
||||
from src.config.config import global_config
|
||||
@@ -217,9 +217,11 @@ class HeartFChatting:
|
||||
filter_bot=True,
|
||||
)
|
||||
if global_config.chat.focus_value != 0:
|
||||
if len(new_messages_data) > 3 / pow(global_config.chat.focus_value,0.5):
|
||||
if len(new_messages_data) > 3 / pow(global_config.chat.focus_value, 0.5):
|
||||
self.loop_mode = ChatMode.FOCUS
|
||||
self.energy_value = 10 + (len(new_messages_data) / (3 / pow(global_config.chat.focus_value,0.5))) * 10
|
||||
self.energy_value = (
|
||||
10 + (len(new_messages_data) / (3 / pow(global_config.chat.focus_value, 0.5))) * 10
|
||||
)
|
||||
return True
|
||||
|
||||
if self.energy_value >= 30:
|
||||
@@ -254,20 +256,21 @@ class HeartFChatting:
|
||||
)
|
||||
person_name = await person_info_manager.get_value(person_id, "person_name")
|
||||
return f"{person_name}:{message_data.get('processed_plain_text')}"
|
||||
|
||||
|
||||
async def _send_and_store_reply(
|
||||
self,
|
||||
response_set,
|
||||
reply_to_str,
|
||||
loop_start_time,
|
||||
action_message,
|
||||
cycle_timers,
|
||||
response_set,
|
||||
reply_to_str,
|
||||
loop_start_time,
|
||||
action_message,
|
||||
cycle_timers: Dict[str, float],
|
||||
thinking_id,
|
||||
plan_result):
|
||||
plan_result,
|
||||
) -> Tuple[Dict[str, Any], str, Dict[str, float]]:
|
||||
with Timer("回复发送", cycle_timers):
|
||||
reply_text = await self._send_response(response_set, reply_to_str, loop_start_time, action_message)
|
||||
|
||||
# 存储reply action信息
|
||||
# 存储reply action信息
|
||||
person_info_manager = get_person_info_manager()
|
||||
person_id = person_info_manager.get_person_id(
|
||||
action_message.get("chat_info_platform", ""),
|
||||
@@ -275,7 +278,7 @@ class HeartFChatting:
|
||||
)
|
||||
person_name = await person_info_manager.get_value(person_id, "person_name")
|
||||
action_prompt_display = f"你对{person_name}进行了回复:{reply_text}"
|
||||
|
||||
|
||||
await database_api.store_action_info(
|
||||
chat_stream=self.chat_stream,
|
||||
action_build_into_prompt=False,
|
||||
@@ -285,10 +288,9 @@ class HeartFChatting:
|
||||
action_data={"reply_text": reply_text, "reply_to": reply_to_str},
|
||||
action_name="reply",
|
||||
)
|
||||
|
||||
|
||||
|
||||
# 构建循环信息
|
||||
loop_info = {
|
||||
loop_info: Dict[str, Any] = {
|
||||
"loop_plan_info": {
|
||||
"action_result": plan_result.get("action_result", {}),
|
||||
},
|
||||
@@ -299,8 +301,8 @@ class HeartFChatting:
|
||||
"taken_time": time.time(),
|
||||
},
|
||||
}
|
||||
|
||||
return loop_info, reply_text,cycle_timers
|
||||
|
||||
return loop_info, reply_text, cycle_timers
|
||||
|
||||
async def _observe(self, message_data: Optional[Dict[str, Any]] = None):
|
||||
# sourcery skip: hoist-statement-from-if, merge-comparisons, reintroduce-else
|
||||
@@ -310,12 +312,12 @@ class HeartFChatting:
|
||||
reply_text = "" # 初始化reply_text变量,避免UnboundLocalError
|
||||
gen_task = None # 初始化gen_task变量,避免UnboundLocalError
|
||||
reply_to_str = "" # 初始化reply_to_str变量
|
||||
|
||||
|
||||
# 创建新的循环信息
|
||||
cycle_timers, thinking_id = self.start_cycle()
|
||||
|
||||
logger.info(f"{self.log_prefix} 开始第{self._cycle_counter}次思考[模式:{self.loop_mode}]")
|
||||
|
||||
|
||||
if ENABLE_S4U:
|
||||
await send_typing()
|
||||
|
||||
@@ -337,19 +339,20 @@ class HeartFChatting:
|
||||
skip_planner = False
|
||||
if self.loop_mode == ChatMode.NORMAL:
|
||||
# 过滤掉reply相关的动作,检查是否还有其他动作
|
||||
non_reply_actions = {k: v for k, v in available_actions.items()
|
||||
if k not in ['reply', 'no_reply', 'no_action']}
|
||||
|
||||
non_reply_actions = {
|
||||
k: v for k, v in available_actions.items() if k not in ["reply", "no_reply", "no_action"]
|
||||
}
|
||||
|
||||
if not non_reply_actions:
|
||||
skip_planner = True
|
||||
logger.info(f"{self.log_prefix} Normal模式下没有可用动作,直接回复")
|
||||
|
||||
|
||||
# 直接设置为reply动作
|
||||
action_type = "reply"
|
||||
reasoning = ""
|
||||
action_data = {"loop_start_time": loop_start_time}
|
||||
is_parallel = False
|
||||
|
||||
|
||||
# 构建plan_result用于后续处理
|
||||
plan_result = {
|
||||
"action_result": {
|
||||
@@ -361,22 +364,25 @@ class HeartFChatting:
|
||||
},
|
||||
"action_prompt": "",
|
||||
}
|
||||
target_message = message_data
|
||||
|
||||
target_message = message_data
|
||||
|
||||
# 如果normal模式且不跳过规划器,开始一个回复生成进程,先准备好回复(其实是和planer同时进行的)
|
||||
if not skip_planner:
|
||||
reply_to_str = await self.build_reply_to_str(message_data)
|
||||
gen_task = asyncio.create_task(self._generate_response(
|
||||
message_data=message_data,
|
||||
available_actions=available_actions,
|
||||
reply_to=reply_to_str,
|
||||
request_type="chat.replyer.normal"))
|
||||
|
||||
gen_task = asyncio.create_task(
|
||||
self._generate_response(
|
||||
message_data=message_data,
|
||||
available_actions=available_actions,
|
||||
reply_to=reply_to_str,
|
||||
request_type="chat.replyer.normal",
|
||||
)
|
||||
)
|
||||
|
||||
if not skip_planner:
|
||||
with Timer("规划器", cycle_timers):
|
||||
plan_result, target_message = await self.action_planner.plan(mode=self.loop_mode)
|
||||
|
||||
action_result: dict = plan_result.get("action_result", {}) # type: ignore
|
||||
action_result: Dict[str, Any] = plan_result.get("action_result", {}) # type: ignore
|
||||
action_type, action_data, reasoning, is_parallel = (
|
||||
action_result.get("action_type", "error"),
|
||||
action_result.get("action_data", {}),
|
||||
@@ -386,29 +392,27 @@ class HeartFChatting:
|
||||
|
||||
action_data["loop_start_time"] = loop_start_time
|
||||
|
||||
|
||||
if action_type == "reply":
|
||||
logger.info(f"{self.log_prefix}{global_config.bot.nickname} 决定进行回复")
|
||||
elif is_parallel:
|
||||
logger.info(
|
||||
f"{self.log_prefix}{global_config.bot.nickname} 决定进行回复, 同时执行{action_type}动作"
|
||||
)
|
||||
logger.info(f"{self.log_prefix}{global_config.bot.nickname} 决定进行回复, 同时执行{action_type}动作")
|
||||
else:
|
||||
# 只有在gen_task存在时才进行相关操作
|
||||
if gen_task is not None:
|
||||
if gen_task:
|
||||
if not gen_task.done():
|
||||
gen_task.cancel()
|
||||
logger.debug(f"{self.log_prefix} 已取消预生成的回复任务")
|
||||
logger.info(
|
||||
f"{self.log_prefix}{global_config.bot.nickname} 原本想要回复,但选择执行{action_type},不发表回复"
|
||||
)
|
||||
else:
|
||||
content = " ".join([item[1] for item in gen_task.result() if item[0] == "text"])
|
||||
elif generation_result := gen_task.result():
|
||||
content = " ".join([item[1] for item in generation_result if item[0] == "text"])
|
||||
logger.debug(f"{self.log_prefix} 预生成的回复任务已完成")
|
||||
logger.info(
|
||||
f"{self.log_prefix}{global_config.bot.nickname} 原本想要回复:{content},但选择执行{action_type},不发表回复"
|
||||
)
|
||||
|
||||
else:
|
||||
logger.warning(f"{self.log_prefix} 预生成的回复任务未生成有效内容")
|
||||
|
||||
action_message: Dict[str, Any] = message_data or target_message # type: ignore
|
||||
if action_type == "reply":
|
||||
@@ -417,11 +421,14 @@ class HeartFChatting:
|
||||
# 只有在gen_task存在时才等待
|
||||
if not gen_task:
|
||||
reply_to_str = await self.build_reply_to_str(message_data)
|
||||
gen_task = asyncio.create_task(self._generate_response(
|
||||
message_data=message_data,
|
||||
available_actions=available_actions,
|
||||
reply_to=reply_to_str,
|
||||
request_type="chat.replyer.normal"))
|
||||
gen_task = asyncio.create_task(
|
||||
self._generate_response(
|
||||
message_data=message_data,
|
||||
available_actions=available_actions,
|
||||
reply_to=reply_to_str,
|
||||
request_type="chat.replyer.normal",
|
||||
)
|
||||
)
|
||||
|
||||
gather_timeout = global_config.chat.thinking_timeout
|
||||
try:
|
||||
@@ -436,56 +443,71 @@ class HeartFChatting:
|
||||
return False
|
||||
else:
|
||||
logger.info(f"{self.log_prefix}{global_config.bot.nickname} 决定进行回复 (focus模式)")
|
||||
|
||||
|
||||
# 构建reply_to字符串
|
||||
reply_to_str = await self.build_reply_to_str(action_message)
|
||||
|
||||
|
||||
# 生成回复
|
||||
with Timer("回复生成", cycle_timers):
|
||||
response_set = await self._generate_response(
|
||||
message_data=action_message,
|
||||
available_actions=available_actions,
|
||||
reply_to=reply_to_str,
|
||||
request_type="chat.replyer.focus")
|
||||
|
||||
message_data=action_message,
|
||||
available_actions=available_actions,
|
||||
reply_to=reply_to_str,
|
||||
request_type="chat.replyer.focus",
|
||||
)
|
||||
|
||||
if not response_set:
|
||||
logger.warning(f"{self.log_prefix}模型未生成回复内容")
|
||||
return False
|
||||
|
||||
loop_info, reply_text,cycle_timers = await self._send_and_store_reply(response_set, reply_to_str, loop_start_time, action_message, cycle_timers, thinking_id, plan_result)
|
||||
|
||||
|
||||
loop_info, reply_text, cycle_timers = await self._send_and_store_reply(
|
||||
response_set, reply_to_str, loop_start_time, action_message, cycle_timers, thinking_id, plan_result
|
||||
)
|
||||
|
||||
return True
|
||||
|
||||
else:
|
||||
# 并行执行:同时进行回复发送和动作执行
|
||||
tasks = []
|
||||
|
||||
# 先置空防止未定义错误
|
||||
background_reply_task = None
|
||||
background_action_task = None
|
||||
# 如果是并行执行且在normal模式下,需要等待预生成的回复任务完成并发送回复
|
||||
if self.loop_mode == ChatMode.NORMAL and is_parallel and gen_task:
|
||||
async def handle_reply_task():
|
||||
|
||||
async def handle_reply_task() -> Tuple[Optional[Dict[str, Any]], str, Dict[str, float]]:
|
||||
# 等待预生成的回复任务完成
|
||||
gather_timeout = global_config.chat.thinking_timeout
|
||||
try:
|
||||
response_set = await asyncio.wait_for(gen_task, timeout=gather_timeout)
|
||||
|
||||
|
||||
except asyncio.TimeoutError:
|
||||
logger.warning(f"{self.log_prefix} 并行执行:回复生成超时>{global_config.chat.thinking_timeout}s,已跳过")
|
||||
logger.warning(
|
||||
f"{self.log_prefix} 并行执行:回复生成超时>{global_config.chat.thinking_timeout}s,已跳过"
|
||||
)
|
||||
return None, "", {}
|
||||
except asyncio.CancelledError:
|
||||
logger.debug(f"{self.log_prefix} 并行执行:回复生成任务已被取消")
|
||||
return None, "", {}
|
||||
|
||||
|
||||
if not response_set:
|
||||
logger.warning(f"{self.log_prefix} 模型超时或生成回复内容为空")
|
||||
return None, "", {}
|
||||
|
||||
|
||||
reply_to_str = await self.build_reply_to_str(action_message)
|
||||
loop_info, reply_text, cycle_timers_reply = await self._send_and_store_reply(response_set, reply_to_str, loop_start_time, action_message, cycle_timers, thinking_id, plan_result)
|
||||
loop_info, reply_text, cycle_timers_reply = await self._send_and_store_reply(
|
||||
response_set,
|
||||
reply_to_str,
|
||||
loop_start_time,
|
||||
action_message,
|
||||
cycle_timers,
|
||||
thinking_id,
|
||||
plan_result,
|
||||
)
|
||||
return loop_info, reply_text, cycle_timers_reply
|
||||
|
||||
# 添加回复任务到并行任务列表
|
||||
tasks.append(asyncio.create_task(handle_reply_task()))
|
||||
|
||||
|
||||
# 执行回复任务并赋值到变量
|
||||
background_reply_task = asyncio.create_task(handle_reply_task())
|
||||
|
||||
# 动作执行任务
|
||||
async def handle_action_task():
|
||||
with Timer("动作执行", cycle_timers):
|
||||
@@ -493,52 +515,55 @@ class HeartFChatting:
|
||||
action_type, reasoning, action_data, cycle_timers, thinking_id, action_message
|
||||
)
|
||||
return success, reply_text, command
|
||||
|
||||
# 添加动作执行任务到并行任务列表
|
||||
tasks.append(asyncio.create_task(handle_action_task()))
|
||||
|
||||
# 并行执行所有任务
|
||||
results = await asyncio.gather(*tasks, return_exceptions=True)
|
||||
|
||||
# 处理结果
|
||||
|
||||
# 执行动作任务并赋值到变量
|
||||
background_action_task = asyncio.create_task(handle_action_task())
|
||||
|
||||
reply_loop_info = None
|
||||
reply_text_from_reply = ""
|
||||
action_success = False
|
||||
action_reply_text = ""
|
||||
action_command = ""
|
||||
|
||||
if len(tasks) == 2: # 有回复任务和动作任务
|
||||
|
||||
# 并行执行所有任务
|
||||
if background_reply_task:
|
||||
results = await asyncio.gather(
|
||||
background_reply_task, background_action_task, return_exceptions=True
|
||||
)
|
||||
# 处理回复任务结果
|
||||
reply_result = results[0]
|
||||
if isinstance(reply_result, Exception):
|
||||
if isinstance(reply_result, BaseException):
|
||||
logger.error(f"{self.log_prefix} 回复任务执行异常: {reply_result}")
|
||||
elif reply_result and reply_result[0] is not None:
|
||||
reply_loop_info, reply_text_from_reply, _ = reply_result
|
||||
|
||||
|
||||
# 处理动作任务结果
|
||||
action_result = results[1]
|
||||
if isinstance(action_result, Exception):
|
||||
logger.error(f"{self.log_prefix} 动作任务执行异常: {action_result}")
|
||||
action_task_result = results[1]
|
||||
if isinstance(action_task_result, BaseException):
|
||||
logger.error(f"{self.log_prefix} 动作任务执行异常: {action_task_result}")
|
||||
else:
|
||||
action_success, action_reply_text, action_command = action_result
|
||||
|
||||
else: # 只有动作任务
|
||||
action_result = results[0]
|
||||
if isinstance(action_result, Exception):
|
||||
logger.error(f"{self.log_prefix} 动作任务执行异常: {action_result}")
|
||||
action_success, action_reply_text, action_command = action_task_result
|
||||
else:
|
||||
results = await asyncio.gather(background_action_task, return_exceptions=True)
|
||||
# 只有动作任务
|
||||
action_task_result = results[0]
|
||||
if isinstance(action_task_result, BaseException):
|
||||
logger.error(f"{self.log_prefix} 动作任务执行异常: {action_task_result}")
|
||||
else:
|
||||
action_success, action_reply_text, action_command = action_result
|
||||
action_success, action_reply_text, action_command = action_task_result
|
||||
|
||||
# 构建最终的循环信息
|
||||
if reply_loop_info:
|
||||
# 如果有回复信息,使用回复的loop_info作为基础
|
||||
loop_info = reply_loop_info
|
||||
# 更新动作执行信息
|
||||
loop_info["loop_action_info"].update({
|
||||
"action_taken": action_success,
|
||||
"command": action_command,
|
||||
"taken_time": time.time(),
|
||||
})
|
||||
loop_info["loop_action_info"].update(
|
||||
{
|
||||
"action_taken": action_success,
|
||||
"command": action_command,
|
||||
"taken_time": time.time(),
|
||||
}
|
||||
)
|
||||
reply_text = reply_text_from_reply
|
||||
else:
|
||||
# 没有回复信息,构建纯动作的loop_info
|
||||
@@ -555,11 +580,10 @@ class HeartFChatting:
|
||||
}
|
||||
reply_text = action_reply_text
|
||||
|
||||
|
||||
if ENABLE_S4U:
|
||||
await stop_typing()
|
||||
await mai_thinking_manager.get_mai_think(self.stream_id).do_think_after_response(reply_text)
|
||||
|
||||
|
||||
self.end_cycle(loop_info, cycle_timers)
|
||||
self.print_cycle_info(cycle_timers)
|
||||
|
||||
@@ -603,7 +627,7 @@ class HeartFChatting:
|
||||
action: str,
|
||||
reasoning: str,
|
||||
action_data: dict,
|
||||
cycle_timers: dict,
|
||||
cycle_timers: Dict[str, float],
|
||||
thinking_id: str,
|
||||
action_message: dict,
|
||||
) -> tuple[bool, str, str]:
|
||||
@@ -712,7 +736,11 @@ class HeartFChatting:
|
||||
return False
|
||||
|
||||
async def _generate_response(
|
||||
self, message_data: dict, available_actions: Optional[Dict[str, ActionInfo]], reply_to: str, request_type: str = "chat.replyer.normal"
|
||||
self,
|
||||
message_data: dict,
|
||||
available_actions: Optional[Dict[str, ActionInfo]],
|
||||
reply_to: str,
|
||||
request_type: str = "chat.replyer.normal",
|
||||
) -> Optional[list]:
|
||||
"""生成普通回复"""
|
||||
try:
|
||||
@@ -734,7 +762,7 @@ class HeartFChatting:
|
||||
logger.error(f"{self.log_prefix}回复生成出现错误:{str(e)} {traceback.format_exc()}")
|
||||
return None
|
||||
|
||||
async def _send_response(self, reply_set, reply_to, thinking_start_time, message_data):
|
||||
async def _send_response(self, reply_set, reply_to, thinking_start_time, message_data) -> str:
|
||||
current_time = time.time()
|
||||
new_message_count = message_api.count_new_messages(
|
||||
chat_id=self.chat_stream.stream_id, start_time=thinking_start_time, end_time=current_time
|
||||
@@ -746,13 +774,9 @@ class HeartFChatting:
|
||||
need_reply = new_message_count >= random.randint(2, 4)
|
||||
|
||||
if need_reply:
|
||||
logger.info(
|
||||
f"{self.log_prefix} 从思考到回复,共有{new_message_count}条新消息,使用引用回复"
|
||||
)
|
||||
logger.info(f"{self.log_prefix} 从思考到回复,共有{new_message_count}条新消息,使用引用回复")
|
||||
else:
|
||||
logger.info(
|
||||
f"{self.log_prefix} 从思考到回复,共有{new_message_count}条新消息,不使用引用回复"
|
||||
)
|
||||
logger.info(f"{self.log_prefix} 从思考到回复,共有{new_message_count}条新消息,不使用引用回复")
|
||||
|
||||
reply_text = ""
|
||||
first_replied = False
|
||||
|
||||
@@ -444,7 +444,7 @@ class MessageSending(MessageProcessBase):
|
||||
is_emoji: bool = False,
|
||||
thinking_start_time: float = 0,
|
||||
apply_set_reply_logic: bool = False,
|
||||
reply_to: str = None, # type: ignore
|
||||
reply_to: Optional[str] = None,
|
||||
):
|
||||
# 调用父类初始化
|
||||
super().__init__(
|
||||
|
||||
@@ -211,9 +211,8 @@ class ActionPlanner:
|
||||
reasoning = f"Planner 内部处理错误: {outer_e}"
|
||||
|
||||
is_parallel = False
|
||||
if mode == ChatMode.NORMAL:
|
||||
if action in current_available_actions:
|
||||
is_parallel = current_available_actions[action].parallel_action
|
||||
if mode == ChatMode.NORMAL and action in current_available_actions:
|
||||
is_parallel = current_available_actions[action].parallel_action
|
||||
|
||||
action_result = {
|
||||
"action_type": action,
|
||||
@@ -256,7 +255,7 @@ class ActionPlanner:
|
||||
|
||||
actions_before_now = get_actions_by_timestamp_with_chat(
|
||||
chat_id=self.chat_id,
|
||||
timestamp_start=time.time()-3600,
|
||||
timestamp_start=time.time() - 3600,
|
||||
timestamp_end=time.time(),
|
||||
limit=5,
|
||||
)
|
||||
@@ -264,7 +263,7 @@ class ActionPlanner:
|
||||
actions_before_now_block = build_readable_actions(
|
||||
actions=actions_before_now,
|
||||
)
|
||||
|
||||
|
||||
actions_before_now_block = f"你刚刚选择并执行过的action是:\n{actions_before_now_block}"
|
||||
|
||||
self.last_obs_time_mark = time.time()
|
||||
@@ -276,7 +275,6 @@ class ActionPlanner:
|
||||
if global_config.chat.at_bot_inevitable_reply:
|
||||
mentioned_bonus = "\n- 有人提到你,或者at你"
|
||||
|
||||
|
||||
by_what = "聊天内容"
|
||||
target_prompt = '\n "target_message_id":"触发action的消息id"'
|
||||
no_action_block = f"""重要说明:
|
||||
|
||||
@@ -39,7 +39,7 @@ def init_prompt():
|
||||
Prompt("你正在和{sender_name}聊天,这是你们之前聊的内容:", "chat_target_private1")
|
||||
Prompt("在群里聊天", "chat_target_group2")
|
||||
Prompt("和{sender_name}聊天", "chat_target_private2")
|
||||
|
||||
|
||||
Prompt(
|
||||
"""
|
||||
{expression_habits_block}
|
||||
@@ -156,10 +156,18 @@ class DefaultReplyer:
|
||||
extra_info: str = "",
|
||||
available_actions: Optional[Dict[str, ActionInfo]] = None,
|
||||
enable_tool: bool = True,
|
||||
enable_timeout: bool = False,
|
||||
) -> Tuple[bool, Optional[str], Optional[str]]:
|
||||
"""
|
||||
回复器 (Replier): 核心逻辑,负责生成回复文本。
|
||||
回复器 (Replier): 负责生成回复文本的核心逻辑。
|
||||
|
||||
Args:
|
||||
reply_to: 回复对象,格式为 "发送者:消息内容"
|
||||
extra_info: 额外信息,用于补充上下文
|
||||
available_actions: 可用的动作信息字典
|
||||
enable_tool: 是否启用工具调用
|
||||
|
||||
Returns:
|
||||
Tuple[bool, Optional[str], Optional[str]]: (是否成功, 生成的回复内容, 使用的prompt)
|
||||
"""
|
||||
prompt = None
|
||||
if available_actions is None:
|
||||
@@ -168,43 +176,25 @@ class DefaultReplyer:
|
||||
# 3. 构建 Prompt
|
||||
with Timer("构建Prompt", {}): # 内部计时器,可选保留
|
||||
prompt = await self.build_prompt_reply_context(
|
||||
reply_to = reply_to,
|
||||
reply_to=reply_to,
|
||||
extra_info=extra_info,
|
||||
available_actions=available_actions,
|
||||
enable_timeout=enable_timeout,
|
||||
enable_tool=enable_tool,
|
||||
)
|
||||
|
||||
|
||||
if not prompt:
|
||||
logger.warning("构建prompt失败,跳过回复生成")
|
||||
return False, None, None
|
||||
|
||||
# 4. 调用 LLM 生成回复
|
||||
content = None
|
||||
reasoning_content = None
|
||||
model_name = "unknown_model"
|
||||
# TODO: 复活这里
|
||||
# reasoning_content = None
|
||||
# model_name = "unknown_model"
|
||||
|
||||
try:
|
||||
with Timer("LLM生成", {}): # 内部计时器,可选保留
|
||||
# 加权随机选择一个模型配置
|
||||
selected_model_config = self._select_weighted_model_config()
|
||||
logger.info(
|
||||
f"使用模型生成回复: {selected_model_config.get('name', 'N/A')} (选中概率: {selected_model_config.get('weight', 1.0)})"
|
||||
)
|
||||
|
||||
express_model = LLMRequest(
|
||||
model=selected_model_config,
|
||||
request_type=self.request_type,
|
||||
)
|
||||
|
||||
if global_config.debug.show_prompt:
|
||||
logger.info(f"\n{prompt}\n")
|
||||
else:
|
||||
logger.debug(f"\n{prompt}\n")
|
||||
|
||||
content, (reasoning_content, model_name) = await express_model.generate_response_async(prompt)
|
||||
|
||||
logger.debug(f"replyer生成内容: {content}")
|
||||
content = await self.llm_generate_content(prompt)
|
||||
logger.debug(f"replyer生成内容: {content}")
|
||||
|
||||
except Exception as llm_e:
|
||||
# 精简报错信息
|
||||
@@ -220,62 +210,54 @@ class DefaultReplyer:
|
||||
|
||||
async def rewrite_reply_with_context(
|
||||
self,
|
||||
reply_data: Dict[str, Any],
|
||||
raw_reply: str = "",
|
||||
reason: str = "",
|
||||
reply_to: str = "",
|
||||
relation_info: str = "",
|
||||
) -> Tuple[bool, Optional[str]]:
|
||||
return_prompt: bool = False,
|
||||
) -> Tuple[bool, Optional[str], Optional[str]]:
|
||||
"""
|
||||
表达器 (Expressor): 核心逻辑,负责生成回复文本。
|
||||
表达器 (Expressor): 负责重写和优化回复文本。
|
||||
|
||||
Args:
|
||||
raw_reply: 原始回复内容
|
||||
reason: 回复原因
|
||||
reply_to: 回复对象,格式为 "发送者:消息内容"
|
||||
relation_info: 关系信息
|
||||
|
||||
Returns:
|
||||
Tuple[bool, Optional[str]]: (是否成功, 重写后的回复内容)
|
||||
"""
|
||||
try:
|
||||
if not reply_data:
|
||||
reply_data = {
|
||||
"reply_to": reply_to,
|
||||
"relation_info": relation_info,
|
||||
}
|
||||
|
||||
with Timer("构建Prompt", {}): # 内部计时器,可选保留
|
||||
prompt = await self.build_prompt_rewrite_context(
|
||||
reply_data=reply_data,
|
||||
raw_reply=raw_reply,
|
||||
reason=reason,
|
||||
reply_to=reply_to,
|
||||
)
|
||||
|
||||
content = None
|
||||
reasoning_content = None
|
||||
model_name = "unknown_model"
|
||||
# TODO: 复活这里
|
||||
# reasoning_content = None
|
||||
# model_name = "unknown_model"
|
||||
if not prompt:
|
||||
logger.error("Prompt 构建失败,无法生成回复。")
|
||||
return False, None
|
||||
return False, None, None
|
||||
|
||||
try:
|
||||
with Timer("LLM生成", {}): # 内部计时器,可选保留
|
||||
# 加权随机选择一个模型配置
|
||||
selected_model_config = self._select_weighted_model_config()
|
||||
logger.info(
|
||||
f"使用模型重写回复: {selected_model_config.get('name', 'N/A')} (选中概率: {selected_model_config.get('weight', 1.0)})"
|
||||
)
|
||||
|
||||
express_model = LLMRequest(
|
||||
model=selected_model_config,
|
||||
request_type=self.request_type,
|
||||
)
|
||||
|
||||
content, (reasoning_content, model_name) = await express_model.generate_response_async(prompt)
|
||||
|
||||
logger.info(f"想要表达:{raw_reply}||理由:{reason}||生成回复: {content}\n")
|
||||
content = await self.llm_generate_content(prompt)
|
||||
logger.info(f"想要表达:{raw_reply}||理由:{reason}||生成回复: {content}\n")
|
||||
|
||||
except Exception as llm_e:
|
||||
# 精简报错信息
|
||||
logger.error(f"LLM 生成失败: {llm_e}")
|
||||
return False, None # LLM 调用失败则无法生成回复
|
||||
return False, None, prompt if return_prompt else None # LLM 调用失败则无法生成回复
|
||||
|
||||
return True, content
|
||||
return True, content, prompt if return_prompt else None
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"回复生成意外失败: {e}")
|
||||
traceback.print_exc()
|
||||
return False, None
|
||||
return False, None, prompt if return_prompt else None
|
||||
|
||||
async def build_relation_info(self, reply_to: str = ""):
|
||||
if not global_config.relationship.enable_relationship:
|
||||
@@ -297,7 +279,16 @@ class DefaultReplyer:
|
||||
|
||||
return await relationship_fetcher.build_relation_info(person_id, points_num=5)
|
||||
|
||||
async def build_expression_habits(self, chat_history, target):
|
||||
async def build_expression_habits(self, chat_history: str, target: str) -> str:
|
||||
"""构建表达习惯块
|
||||
|
||||
Args:
|
||||
chat_history: 聊天历史记录
|
||||
target: 目标消息内容
|
||||
|
||||
Returns:
|
||||
str: 表达习惯信息字符串
|
||||
"""
|
||||
if not global_config.expression.enable_expression:
|
||||
return ""
|
||||
|
||||
@@ -343,11 +334,18 @@ class DefaultReplyer:
|
||||
if style_habits_str.strip() and grammar_habits_str.strip():
|
||||
expression_habits_title = "你可以参考以下的语言习惯和句法,如果情景合适就使用,不要盲目使用,不要生硬使用,以合理的方式结合到你的回复中:"
|
||||
|
||||
expression_habits_block = f"{expression_habits_title}\n{expression_habits_block}"
|
||||
return f"{expression_habits_title}\n{expression_habits_block}"
|
||||
|
||||
return expression_habits_block
|
||||
async def build_memory_block(self, chat_history: str, target: str) -> str:
|
||||
"""构建记忆块
|
||||
|
||||
async def build_memory_block(self, chat_history, target):
|
||||
Args:
|
||||
chat_history: 聊天历史记录
|
||||
target: 目标消息内容
|
||||
|
||||
Returns:
|
||||
str: 记忆信息字符串
|
||||
"""
|
||||
if not global_config.memory.enable_memory:
|
||||
return ""
|
||||
|
||||
@@ -375,12 +373,13 @@ class DefaultReplyer:
|
||||
|
||||
return memory_str
|
||||
|
||||
async def build_tool_info(self, chat_history, reply_to: str = "", enable_tool: bool = True):
|
||||
async def build_tool_info(self, chat_history: str, reply_to: str = "", enable_tool: bool = True) -> str:
|
||||
"""构建工具信息块
|
||||
|
||||
Args:
|
||||
reply_data: 回复数据,包含要回复的消息内容
|
||||
chat_history: 聊天历史
|
||||
chat_history: 聊天历史记录
|
||||
reply_to: 回复对象,格式为 "发送者:消息内容"
|
||||
enable_tool: 是否启用工具调用
|
||||
|
||||
Returns:
|
||||
str: 工具信息字符串
|
||||
@@ -424,7 +423,15 @@ class DefaultReplyer:
|
||||
logger.error(f"工具信息获取失败: {e}")
|
||||
return ""
|
||||
|
||||
def _parse_reply_target(self, target_message: str) -> tuple:
|
||||
def _parse_reply_target(self, target_message: str) -> Tuple[str, str]:
|
||||
"""解析回复目标消息
|
||||
|
||||
Args:
|
||||
target_message: 目标消息,格式为 "发送者:消息内容" 或 "发送者:消息内容"
|
||||
|
||||
Returns:
|
||||
Tuple[str, str]: (发送者名称, 消息内容)
|
||||
"""
|
||||
sender = ""
|
||||
target = ""
|
||||
# 添加None检查,防止NoneType错误
|
||||
@@ -438,7 +445,15 @@ class DefaultReplyer:
|
||||
target = parts[1].strip()
|
||||
return sender, target
|
||||
|
||||
async def build_keywords_reaction_prompt(self, target):
|
||||
async def build_keywords_reaction_prompt(self, target: Optional[str]) -> str:
|
||||
"""构建关键词反应提示
|
||||
|
||||
Args:
|
||||
target: 目标消息内容
|
||||
|
||||
Returns:
|
||||
str: 关键词反应提示字符串
|
||||
"""
|
||||
# 关键词检测与反应
|
||||
keywords_reaction_prompt = ""
|
||||
try:
|
||||
@@ -472,15 +487,25 @@ class DefaultReplyer:
|
||||
|
||||
return keywords_reaction_prompt
|
||||
|
||||
async def _time_and_run_task(self, coroutine, name: str):
|
||||
"""一个简单的帮助函数,用于计时和运行异步任务,返回任务名、结果和耗时"""
|
||||
async def _time_and_run_task(self, coroutine, name: str) -> Tuple[str, Any, float]:
|
||||
"""计时并运行异步任务的辅助函数
|
||||
|
||||
Args:
|
||||
coroutine: 要执行的协程
|
||||
name: 任务名称
|
||||
|
||||
Returns:
|
||||
Tuple[str, Any, float]: (任务名称, 任务结果, 执行耗时)
|
||||
"""
|
||||
start_time = time.time()
|
||||
result = await coroutine
|
||||
end_time = time.time()
|
||||
duration = end_time - start_time
|
||||
return name, result, duration
|
||||
|
||||
def build_s4u_chat_history_prompts(self, message_list_before_now: list, target_user_id: str) -> tuple[str, str]:
|
||||
def build_s4u_chat_history_prompts(
|
||||
self, message_list_before_now: List[Dict[str, Any]], target_user_id: str
|
||||
) -> Tuple[str, str]:
|
||||
"""
|
||||
构建 s4u 风格的分离对话 prompt
|
||||
|
||||
@@ -489,7 +514,7 @@ class DefaultReplyer:
|
||||
target_user_id: 目标用户ID(当前对话对象)
|
||||
|
||||
Returns:
|
||||
tuple: (核心对话prompt, 背景对话prompt)
|
||||
Tuple[str, str]: (核心对话prompt, 背景对话prompt)
|
||||
"""
|
||||
core_dialogue_list = []
|
||||
background_dialogue_list = []
|
||||
@@ -508,7 +533,7 @@ class DefaultReplyer:
|
||||
# 其他用户的对话
|
||||
background_dialogue_list.append(msg_dict)
|
||||
except Exception as e:
|
||||
logger.error(f"记录: {msg_dict}, 错误: {e}")
|
||||
logger.error(f"处理消息记录时出错: {msg_dict}, 错误: {e}")
|
||||
|
||||
# 构建背景对话 prompt
|
||||
background_dialogue_prompt = ""
|
||||
@@ -553,8 +578,25 @@ class DefaultReplyer:
|
||||
sender: str,
|
||||
target: str,
|
||||
chat_info: str,
|
||||
):
|
||||
"""构建 mai_think 上下文信息"""
|
||||
) -> Any:
|
||||
"""构建 mai_think 上下文信息
|
||||
|
||||
Args:
|
||||
chat_id: 聊天ID
|
||||
memory_block: 记忆块内容
|
||||
relation_info: 关系信息
|
||||
time_block: 时间块内容
|
||||
chat_target_1: 聊天目标1
|
||||
chat_target_2: 聊天目标2
|
||||
mood_prompt: 情绪提示
|
||||
identity_block: 身份块内容
|
||||
sender: 发送者名称
|
||||
target: 目标消息内容
|
||||
chat_info: 聊天信息
|
||||
|
||||
Returns:
|
||||
Any: mai_think 实例
|
||||
"""
|
||||
mai_think = mai_thinking_manager.get_mai_think(chat_id)
|
||||
mai_think.memory_block = memory_block
|
||||
mai_think.relation_info_block = relation_info
|
||||
@@ -573,19 +615,17 @@ class DefaultReplyer:
|
||||
reply_to: str,
|
||||
extra_info: str = "",
|
||||
available_actions: Optional[Dict[str, ActionInfo]] = None,
|
||||
enable_timeout: bool = False,
|
||||
enable_tool: bool = True,
|
||||
) -> str: # sourcery skip: merge-else-if-into-elif, remove-redundant-if
|
||||
"""
|
||||
构建回复器上下文
|
||||
|
||||
Args:
|
||||
reply_data: 回复数据
|
||||
replay_data 包含以下字段:
|
||||
structured_info: 结构化信息,一般是工具调用获得的信息
|
||||
reply_to: 回复对象
|
||||
extra_info/extra_info_block: 额外信息
|
||||
reply_to: 回复对象,格式为 "发送者:消息内容"
|
||||
extra_info: 额外信息,用于补充上下文
|
||||
available_actions: 可用动作
|
||||
enable_timeout: 是否启用超时处理
|
||||
enable_tool: 是否启用工具调用
|
||||
|
||||
Returns:
|
||||
str: 构建好的上下文
|
||||
@@ -800,15 +840,14 @@ class DefaultReplyer:
|
||||
|
||||
async def build_prompt_rewrite_context(
|
||||
self,
|
||||
reply_data: Dict[str, Any],
|
||||
raw_reply: str,
|
||||
reason: str,
|
||||
reply_to: str,
|
||||
) -> str:
|
||||
chat_stream = self.chat_stream
|
||||
chat_id = chat_stream.stream_id
|
||||
is_group_chat = bool(chat_stream.group_info)
|
||||
|
||||
reply_to = reply_data.get("reply_to", "none")
|
||||
raw_reply = reply_data.get("raw_reply", "")
|
||||
reason = reply_data.get("reason", "")
|
||||
sender, target = self._parse_reply_target(reply_to)
|
||||
|
||||
# 添加情绪状态获取
|
||||
@@ -835,7 +874,7 @@ class DefaultReplyer:
|
||||
# 并行执行2个构建任务
|
||||
expression_habits_block, relation_info = await asyncio.gather(
|
||||
self.build_expression_habits(chat_talking_prompt_half, target),
|
||||
self.build_relation_info(reply_data),
|
||||
self.build_relation_info(reply_to),
|
||||
)
|
||||
|
||||
keywords_reaction_prompt = await self.build_keywords_reaction_prompt(target)
|
||||
@@ -938,6 +977,30 @@ class DefaultReplyer:
|
||||
display_message=display_message,
|
||||
)
|
||||
|
||||
async def llm_generate_content(self, prompt: str) -> str:
|
||||
with Timer("LLM生成", {}): # 内部计时器,可选保留
|
||||
# 加权随机选择一个模型配置
|
||||
selected_model_config = self._select_weighted_model_config()
|
||||
logger.info(
|
||||
f"使用模型生成回复: {selected_model_config.get('name', 'N/A')} (选中概率: {selected_model_config.get('weight', 1.0)})"
|
||||
)
|
||||
|
||||
express_model = LLMRequest(
|
||||
model=selected_model_config,
|
||||
request_type=self.request_type,
|
||||
)
|
||||
|
||||
if global_config.debug.show_prompt:
|
||||
logger.info(f"\n{prompt}\n")
|
||||
else:
|
||||
logger.debug(f"\n{prompt}\n")
|
||||
|
||||
# TODO: 这里的_应该做出替换
|
||||
content, _ = await express_model.generate_response_async(prompt)
|
||||
|
||||
logger.debug(f"replyer生成内容: {content}")
|
||||
return content
|
||||
|
||||
|
||||
def weighted_sample_no_replacement(items, weights, k) -> list:
|
||||
"""
|
||||
@@ -996,9 +1059,7 @@ async def get_prompt_info(message: str, threshold: float):
|
||||
logger.debug(f"获取知识库内容耗时: {(end_time - start_time):.3f}秒")
|
||||
logger.debug(f"获取知识库内容,相关信息:{related_info[:100]}...,信息长度: {len(related_info)}")
|
||||
|
||||
# 格式化知识信息
|
||||
formatted_prompt_info = f"你有以下这些**知识**:\n{related_info}\n请你**记住上面的知识**,之后可能会用到。\n"
|
||||
return formatted_prompt_info
|
||||
return f"你有以下这些**知识**:\n{related_info}\n请你**记住上面的知识**,之后可能会用到。\n"
|
||||
else:
|
||||
logger.debug("从LPMM知识库获取知识失败,可能是从未导入过知识,返回空知识...")
|
||||
return ""
|
||||
|
||||
Reference in New Issue
Block a user