解决openai_client的lint问题
This commit is contained in:
@@ -0,0 +1,8 @@
|
||||
from src.config.config import model_config
|
||||
|
||||
used_client_types = {provider.client_type for provider in model_config.api_providers}
|
||||
|
||||
if "openai" in used_client_types:
|
||||
from . import openai_client # noqa: F401
|
||||
if "gemini" in used_client_types:
|
||||
from . import gemini_client # noqa: F401
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import asyncio
|
||||
import io
|
||||
from collections.abc import Iterable
|
||||
from typing import Callable, Iterator, TypeVar, AsyncIterator
|
||||
from typing import Callable, Iterator, TypeVar, AsyncIterator, Optional, Coroutine, Any
|
||||
|
||||
from google import genai
|
||||
from google.genai import types
|
||||
@@ -14,11 +14,9 @@ from google.genai.errors import (
|
||||
FunctionInvocationError,
|
||||
)
|
||||
|
||||
from .base_client import APIResponse, UsageRecord
|
||||
from src.config.api_ada_configs import ModelInfo, APIProvider
|
||||
from . import BaseClient
|
||||
from src.common.logger import get_logger
|
||||
|
||||
from .base_client import APIResponse, UsageRecord, BaseClient
|
||||
from ..exceptions import (
|
||||
RespParseException,
|
||||
NetworkConnectionError,
|
||||
@@ -29,7 +27,6 @@ from ..payload_content.message import Message, RoleType
|
||||
from ..payload_content.resp_format import RespFormat, RespFormatType
|
||||
from ..payload_content.tool_option import ToolOption, ToolParam, ToolCall
|
||||
|
||||
logger = get_logger("Gemini客户端")
|
||||
T = TypeVar("T")
|
||||
|
||||
|
||||
@@ -63,11 +60,7 @@ def _convert_messages(
|
||||
content = []
|
||||
for item in message.content:
|
||||
if isinstance(item, tuple):
|
||||
content.append(
|
||||
types.Part.from_bytes(
|
||||
data=item[1], mime_type=f"image/{item[0].lower()}"
|
||||
)
|
||||
)
|
||||
content.append(types.Part.from_bytes(data=item[1], mime_type=f"image/{item[0].lower()}"))
|
||||
elif isinstance(item, str):
|
||||
content.append(types.Part.from_text(item))
|
||||
else:
|
||||
@@ -122,20 +115,15 @@ def _convert_tool_options(tool_options: list[ToolOption]) -> list[FunctionDeclar
|
||||
:param tool_option: 工具选项对象
|
||||
:return: 转换后的Gemini工具选项对象
|
||||
"""
|
||||
ret = {
|
||||
ret: dict[str, Any] = {
|
||||
"name": tool_option.name,
|
||||
"description": tool_option.description,
|
||||
}
|
||||
if tool_option.params:
|
||||
ret["parameters"] = {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
param.name: _convert_tool_param(param)
|
||||
for param in tool_option.params
|
||||
},
|
||||
"required": [
|
||||
param.name for param in tool_option.params if param.required
|
||||
],
|
||||
"properties": {param.name: _convert_tool_param(param) for param in tool_option.params},
|
||||
"required": [param.name for param in tool_option.params if param.required],
|
||||
}
|
||||
ret1 = types.FunctionDeclaration(**ret)
|
||||
return ret1
|
||||
@@ -157,12 +145,8 @@ def _process_delta(
|
||||
if delta.function_calls: # 为什么不用hasattr呢,是因为这个属性一定有,即使是个空的
|
||||
for call in delta.function_calls:
|
||||
try:
|
||||
if not isinstance(
|
||||
call.args, dict
|
||||
): # gemini返回的function call参数就是dict格式的了
|
||||
raise RespParseException(
|
||||
delta, "响应解析失败,工具调用参数无法解析为字典类型"
|
||||
)
|
||||
if not isinstance(call.args, dict): # gemini返回的function call参数就是dict格式的了
|
||||
raise RespParseException(delta, "响应解析失败,工具调用参数无法解析为字典类型")
|
||||
tool_calls_buffer.append(
|
||||
(
|
||||
call.id,
|
||||
@@ -178,6 +162,7 @@ def _build_stream_api_resp(
|
||||
_fc_delta_buffer: io.StringIO,
|
||||
_tool_calls_buffer: list[tuple[str, str, dict]],
|
||||
) -> APIResponse:
|
||||
# sourcery skip: simplify-len-comparison, use-assigned-variable
|
||||
resp = APIResponse()
|
||||
|
||||
if _fc_delta_buffer.tell() > 0:
|
||||
@@ -193,8 +178,7 @@ def _build_stream_api_resp(
|
||||
if not isinstance(arguments, dict):
|
||||
raise RespParseException(
|
||||
None,
|
||||
"响应解析失败,工具调用参数无法解析为字典类型。工具调用参数原始响应:\n"
|
||||
f"{arguments_buffer}",
|
||||
f"响应解析失败,工具调用参数无法解析为字典类型。工具调用参数原始响应:\n{arguments_buffer}",
|
||||
)
|
||||
else:
|
||||
arguments = None
|
||||
@@ -218,16 +202,14 @@ async def _to_async_iterable(iterable: Iterable[T]) -> AsyncIterator[T]:
|
||||
async def _default_stream_response_handler(
|
||||
resp_stream: Iterator[GenerateContentResponse],
|
||||
interrupt_flag: asyncio.Event | None,
|
||||
) -> tuple[APIResponse, tuple[int, int, int]]:
|
||||
) -> tuple[APIResponse, Optional[tuple[int, int, int]]]:
|
||||
"""
|
||||
流式响应处理函数 - 处理Gemini API的流式响应
|
||||
:param resp_stream: 流式响应对象,是一个神秘的iterator,我完全不知道这个玩意能不能跑,不过遍历一遍之后它就空了,如果跑不了一点的话可以考虑改成别的东西
|
||||
:return: APIResponse对象
|
||||
"""
|
||||
_fc_delta_buffer = io.StringIO() # 正式内容缓冲区,用于存储接收到的正式内容
|
||||
_tool_calls_buffer: list[
|
||||
tuple[str, str, dict]
|
||||
] = [] # 工具调用缓冲区,用于存储接收到的工具调用
|
||||
_tool_calls_buffer: list[tuple[str, str, dict]] = [] # 工具调用缓冲区,用于存储接收到的工具调用
|
||||
_usage_record = None # 使用情况记录
|
||||
|
||||
def _insure_buffer_closed():
|
||||
@@ -250,8 +232,7 @@ async def _default_stream_response_handler(
|
||||
# 如果有使用情况,则将其存储在APIResponse对象中
|
||||
_usage_record = (
|
||||
chunk.usage_metadata.prompt_token_count,
|
||||
chunk.usage_metadata.candidates_token_count
|
||||
+ chunk.usage_metadata.thoughts_token_count,
|
||||
chunk.usage_metadata.candidates_token_count + chunk.usage_metadata.thoughts_token_count,
|
||||
chunk.usage_metadata.total_token_count,
|
||||
)
|
||||
try:
|
||||
@@ -267,7 +248,7 @@ async def _default_stream_response_handler(
|
||||
|
||||
def _default_normal_response_parser(
|
||||
resp: GenerateContentResponse,
|
||||
) -> tuple[APIResponse, tuple[int, int, int]]:
|
||||
) -> tuple[APIResponse, Optional[tuple[int, int, int]]]:
|
||||
"""
|
||||
解析对话补全响应 - 将Gemini API响应解析为APIResponse对象
|
||||
:param resp: 响应对象
|
||||
@@ -286,20 +267,15 @@ def _default_normal_response_parser(
|
||||
for call in resp.function_calls:
|
||||
try:
|
||||
if not isinstance(call.args, dict):
|
||||
raise RespParseException(
|
||||
resp, "响应解析失败,工具调用参数无法解析为字典类型"
|
||||
)
|
||||
raise RespParseException(resp, "响应解析失败,工具调用参数无法解析为字典类型")
|
||||
api_response.tool_calls.append(ToolCall(call.id, call.name, call.args))
|
||||
except Exception as e:
|
||||
raise RespParseException(
|
||||
resp, "响应解析失败,无法解析工具调用参数"
|
||||
) from e
|
||||
raise RespParseException(resp, "响应解析失败,无法解析工具调用参数") from e
|
||||
|
||||
if resp.usage_metadata:
|
||||
_usage_record = (
|
||||
resp.usage_metadata.prompt_token_count,
|
||||
resp.usage_metadata.candidates_token_count
|
||||
+ resp.usage_metadata.thoughts_token_count,
|
||||
resp.usage_metadata.candidates_token_count + resp.usage_metadata.thoughts_token_count,
|
||||
resp.usage_metadata.total_token_count,
|
||||
)
|
||||
else:
|
||||
@@ -311,55 +287,13 @@ def _default_normal_response_parser(
|
||||
|
||||
|
||||
class GeminiClient(BaseClient):
|
||||
client: genai.Client
|
||||
|
||||
def __init__(self, api_provider: APIProvider):
|
||||
super().__init__(api_provider)
|
||||
# 不再在初始化时创建固定的client,而是在请求时动态创建
|
||||
self._clients_cache = {} # API Key -> genai.Client 的缓存
|
||||
|
||||
def _get_client(self, api_key: str = None) -> genai.Client:
|
||||
"""获取或创建对应API Key的客户端"""
|
||||
if api_key is None:
|
||||
api_key = self.api_provider.get_current_api_key()
|
||||
|
||||
if not api_key:
|
||||
raise ValueError(f"API Provider '{self.api_provider.name}' 没有可用的API Key")
|
||||
|
||||
# 使用缓存避免重复创建客户端
|
||||
if api_key not in self._clients_cache:
|
||||
self._clients_cache[api_key] = genai.Client(api_key=api_key)
|
||||
|
||||
return self._clients_cache[api_key]
|
||||
|
||||
async def _execute_with_fallback(self, func, *args, **kwargs):
|
||||
"""执行请求并在失败时切换API Key"""
|
||||
current_api_key = self.api_provider.get_current_api_key()
|
||||
max_attempts = len(self.api_provider.api_keys) if self.api_provider.api_keys else 1
|
||||
|
||||
for attempt in range(max_attempts):
|
||||
try:
|
||||
client = self._get_client(current_api_key)
|
||||
result = await func(client, *args, **kwargs)
|
||||
# 成功时重置失败计数
|
||||
self.api_provider.reset_key_failures(current_api_key)
|
||||
return result
|
||||
|
||||
except (ClientError, ServerError) as e:
|
||||
# 记录失败并尝试下一个API Key
|
||||
logger.warning(f"API Key失败 (尝试 {attempt + 1}/{max_attempts}): {str(e)}")
|
||||
|
||||
if attempt < max_attempts - 1: # 还有重试机会
|
||||
next_api_key = self.api_provider.mark_key_failed(current_api_key)
|
||||
if next_api_key and next_api_key != current_api_key:
|
||||
current_api_key = next_api_key
|
||||
logger.info(f"切换到下一个API Key: {current_api_key[:8]}***{current_api_key[-4:]}")
|
||||
continue
|
||||
|
||||
# 所有API Key都失败了,重新抛出异常
|
||||
raise RespNotOkException(e.status_code, e.message) from e
|
||||
|
||||
except Exception as e:
|
||||
# 其他异常直接抛出
|
||||
raise e
|
||||
self.client = genai.Client(
|
||||
api_key=api_provider.api_key,
|
||||
) # 这里和openai不一样,gemini会自己决定自己是否需要retry
|
||||
|
||||
async def get_response(
|
||||
self,
|
||||
@@ -370,12 +304,15 @@ class GeminiClient(BaseClient):
|
||||
temperature: float = 0.7,
|
||||
thinking_budget: int = 0,
|
||||
response_format: RespFormat | None = None,
|
||||
stream_response_handler: Callable[
|
||||
[Iterator[GenerateContentResponse], asyncio.Event | None], APIResponse
|
||||
stream_response_handler: Optional[
|
||||
Callable[
|
||||
[Iterator[GenerateContentResponse], asyncio.Event | None],
|
||||
Coroutine[Any, Any, tuple[APIResponse, Optional[tuple[int, int, int]]]],
|
||||
]
|
||||
| None = None,
|
||||
async_response_parser: Callable[[GenerateContentResponse], APIResponse]
|
||||
| None = None,
|
||||
] = None,
|
||||
async_response_parser: Optional[
|
||||
Callable[[GenerateContentResponse], tuple[APIResponse, Optional[tuple[int, int, int]]]]
|
||||
] = None,
|
||||
interrupt_flag: asyncio.Event | None = None,
|
||||
) -> APIResponse:
|
||||
"""
|
||||
@@ -392,39 +329,6 @@ class GeminiClient(BaseClient):
|
||||
:param interrupt_flag: 中断信号量(可选,默认为None)
|
||||
:return: (响应文本, 推理文本, 工具调用, 其他数据)
|
||||
"""
|
||||
return await self._execute_with_fallback(
|
||||
self._get_response_internal,
|
||||
model_info,
|
||||
message_list,
|
||||
tool_options,
|
||||
max_tokens,
|
||||
temperature,
|
||||
thinking_budget,
|
||||
response_format,
|
||||
stream_response_handler,
|
||||
async_response_parser,
|
||||
interrupt_flag,
|
||||
)
|
||||
|
||||
async def _get_response_internal(
|
||||
self,
|
||||
client: genai.Client,
|
||||
model_info: ModelInfo,
|
||||
message_list: list[Message],
|
||||
tool_options: list[ToolOption] | None = None,
|
||||
max_tokens: int = 1024,
|
||||
temperature: float = 0.7,
|
||||
thinking_budget: int = 0,
|
||||
response_format: RespFormat | None = None,
|
||||
stream_response_handler: Callable[
|
||||
[Iterator[GenerateContentResponse], asyncio.Event | None], APIResponse
|
||||
]
|
||||
| None = None,
|
||||
async_response_parser: Callable[[GenerateContentResponse], APIResponse]
|
||||
| None = None,
|
||||
interrupt_flag: asyncio.Event | None = None,
|
||||
) -> APIResponse:
|
||||
"""内部方法:执行实际的API调用"""
|
||||
if stream_response_handler is None:
|
||||
stream_response_handler = _default_stream_response_handler
|
||||
|
||||
@@ -462,7 +366,7 @@ class GeminiClient(BaseClient):
|
||||
try:
|
||||
if model_info.force_stream_mode:
|
||||
req_task = asyncio.create_task(
|
||||
client.aio.models.generate_content_stream(
|
||||
self.client.aio.models.generate_content_stream(
|
||||
model=model_info.model_identifier,
|
||||
contents=messages[0],
|
||||
config=generation_config,
|
||||
@@ -474,12 +378,10 @@ class GeminiClient(BaseClient):
|
||||
req_task.cancel()
|
||||
raise ReqAbortException("请求被外部信号中断")
|
||||
await asyncio.sleep(0.1) # 等待0.1秒后再次检查任务&中断信号量状态
|
||||
resp, usage_record = await stream_response_handler(
|
||||
req_task.result(), interrupt_flag
|
||||
)
|
||||
resp, usage_record = await stream_response_handler(req_task.result(), interrupt_flag)
|
||||
else:
|
||||
req_task = asyncio.create_task(
|
||||
client.aio.models.generate_content(
|
||||
self.client.aio.models.generate_content(
|
||||
model=model_info.model_identifier,
|
||||
contents=messages[0],
|
||||
config=generation_config,
|
||||
@@ -495,13 +397,13 @@ class GeminiClient(BaseClient):
|
||||
resp, usage_record = async_response_parser(req_task.result())
|
||||
except (ClientError, ServerError) as e:
|
||||
# 重封装ClientError和ServerError为RespNotOkException
|
||||
raise RespNotOkException(e.status_code, e.message) from e
|
||||
raise RespNotOkException(e.status_code, e.message) from None
|
||||
except (
|
||||
UnknownFunctionCallArgumentError,
|
||||
UnsupportedFunctionError,
|
||||
FunctionInvocationError,
|
||||
) as e:
|
||||
raise ValueError(f"工具类型错误:请检查工具选项和参数:{str(e)}") from e
|
||||
raise ValueError(f"工具类型错误:请检查工具选项和参数:{str(e)}") from None
|
||||
except Exception as e:
|
||||
raise NetworkConnectionError() from e
|
||||
|
||||
@@ -527,30 +429,15 @@ class GeminiClient(BaseClient):
|
||||
:param embedding_input: 嵌入输入文本
|
||||
:return: 嵌入响应
|
||||
"""
|
||||
return await self._execute_with_fallback(
|
||||
self._get_embedding_internal,
|
||||
model_info,
|
||||
embedding_input,
|
||||
)
|
||||
|
||||
async def _get_embedding_internal(
|
||||
self,
|
||||
client: genai.Client,
|
||||
model_info: ModelInfo,
|
||||
embedding_input: str,
|
||||
) -> APIResponse:
|
||||
"""内部方法:执行实际的嵌入API调用"""
|
||||
try:
|
||||
raw_response: types.EmbedContentResponse = (
|
||||
await client.aio.models.embed_content(
|
||||
raw_response: types.EmbedContentResponse = await self.client.aio.models.embed_content(
|
||||
model=model_info.model_identifier,
|
||||
contents=embedding_input,
|
||||
config=types.EmbedContentConfig(task_type="SEMANTIC_SIMILARITY"),
|
||||
)
|
||||
)
|
||||
except (ClientError, ServerError) as e:
|
||||
# 重封装ClientError和ServerError为RespNotOkException
|
||||
raise RespNotOkException(e.status_code) from e
|
||||
raise RespNotOkException(e.status_code) from None
|
||||
except Exception as e:
|
||||
raise NetworkConnectionError() from e
|
||||
|
||||
|
||||
@@ -3,7 +3,8 @@ import io
|
||||
import json
|
||||
import re
|
||||
from collections.abc import Iterable
|
||||
from typing import Callable, Any
|
||||
from typing import Callable, Any, Coroutine, Optional
|
||||
from json_repair import repair_json
|
||||
|
||||
from openai import (
|
||||
AsyncOpenAI,
|
||||
@@ -20,11 +21,9 @@ from openai.types.chat import (
|
||||
)
|
||||
from openai.types.chat.chat_completion_chunk import ChoiceDelta
|
||||
|
||||
from .base_client import APIResponse, UsageRecord
|
||||
from src.config.api_ada_configs import ModelInfo, APIProvider
|
||||
from .base_client import BaseClient, client_registry
|
||||
from src.common.logger import get_logger
|
||||
|
||||
from .base_client import APIResponse, UsageRecord, BaseClient, client_registry
|
||||
from ..exceptions import (
|
||||
RespParseException,
|
||||
NetworkConnectionError,
|
||||
@@ -82,7 +81,7 @@ def _convert_messages(messages: list[Message]) -> list[ChatCompletionMessagePara
|
||||
raise ValueError("无法触及的代码:请使用MessageBuilder类构建消息对象")
|
||||
ret["tool_call_id"] = message.tool_call_id
|
||||
|
||||
return ret
|
||||
return ret # type: ignore
|
||||
|
||||
return [_convert_message_item(message) for message in messages]
|
||||
|
||||
@@ -143,10 +142,10 @@ def _process_delta(
|
||||
# 接收content
|
||||
if has_rc_attr_flag:
|
||||
# 有独立的推理内容块,则无需考虑content内容的判读
|
||||
if hasattr(delta, "reasoning_content") and delta.reasoning_content:
|
||||
if hasattr(delta, "reasoning_content") and delta.reasoning_content: # type: ignore
|
||||
# 如果有推理内容,则将其写入推理内容缓冲区
|
||||
assert isinstance(delta.reasoning_content, str)
|
||||
rc_delta_buffer.write(delta.reasoning_content)
|
||||
assert isinstance(delta.reasoning_content, str) # type: ignore
|
||||
rc_delta_buffer.write(delta.reasoning_content) # type: ignore
|
||||
elif delta.content:
|
||||
# 如果有正式内容,则将其写入正式内容缓冲区
|
||||
fc_delta_buffer.write(delta.content)
|
||||
@@ -173,6 +172,7 @@ def _process_delta(
|
||||
|
||||
if tool_call_delta.index >= len(tool_calls_buffer):
|
||||
# 调用索引号大于等于缓冲区长度,说明是新的工具调用
|
||||
if tool_call_delta.id and tool_call_delta.function and tool_call_delta.function.name:
|
||||
tool_calls_buffer.append(
|
||||
(
|
||||
tool_call_delta.id,
|
||||
@@ -180,8 +180,10 @@ def _process_delta(
|
||||
io.StringIO(),
|
||||
)
|
||||
)
|
||||
else:
|
||||
logger.warning("工具调用索引号大于等于缓冲区长度,但缺少ID或函数信息。")
|
||||
|
||||
if tool_call_delta.function.arguments:
|
||||
if tool_call_delta.function and tool_call_delta.function.arguments:
|
||||
# 如果有工具调用参数,则添加到对应的工具调用的参数串缓冲区中
|
||||
tool_calls_buffer[tool_call_delta.index][2].write(tool_call_delta.function.arguments)
|
||||
|
||||
@@ -212,7 +214,7 @@ def _build_stream_api_resp(
|
||||
raw_arg_data = arguments_buffer.getvalue()
|
||||
arguments_buffer.close()
|
||||
try:
|
||||
arguments = json.loads(raw_arg_data)
|
||||
arguments = json.loads(repair_json(raw_arg_data))
|
||||
if not isinstance(arguments, dict):
|
||||
raise RespParseException(
|
||||
None,
|
||||
@@ -235,7 +237,7 @@ def _build_stream_api_resp(
|
||||
async def _default_stream_response_handler(
|
||||
resp_stream: AsyncStream[ChatCompletionChunk],
|
||||
interrupt_flag: asyncio.Event | None,
|
||||
) -> tuple[APIResponse, tuple[int, int, int]]:
|
||||
) -> tuple[APIResponse, Optional[tuple[int, int, int]]]:
|
||||
"""
|
||||
流式响应处理函数 - 处理OpenAI API的流式响应
|
||||
:param resp_stream: 流式响应对象
|
||||
@@ -309,7 +311,7 @@ pattern = re.compile(
|
||||
|
||||
def _default_normal_response_parser(
|
||||
resp: ChatCompletion,
|
||||
) -> tuple[APIResponse, tuple[int, int, int]]:
|
||||
) -> tuple[APIResponse, Optional[tuple[int, int, int]]]:
|
||||
"""
|
||||
解析对话补全响应 - 将OpenAI API响应解析为APIResponse对象
|
||||
:param resp: 响应对象
|
||||
@@ -343,7 +345,7 @@ def _default_normal_response_parser(
|
||||
api_response.tool_calls = []
|
||||
for call in message_part.tool_calls:
|
||||
try:
|
||||
arguments = json.loads(call.function.arguments)
|
||||
arguments = json.loads(repair_json(call.function.arguments))
|
||||
if not isinstance(arguments, dict):
|
||||
raise RespParseException(resp, "响应解析失败,工具调用参数无法解析为字典类型")
|
||||
api_response.tool_calls.append(ToolCall(call.id, call.function.name, arguments))
|
||||
@@ -384,26 +386,31 @@ class OpenaiClient(BaseClient):
|
||||
max_tokens: int = 1024,
|
||||
temperature: float = 0.7,
|
||||
response_format: RespFormat | None = None,
|
||||
stream_response_handler: Callable[
|
||||
stream_response_handler: Optional[
|
||||
Callable[
|
||||
[AsyncStream[ChatCompletionChunk], asyncio.Event | None],
|
||||
tuple[APIResponse, tuple[int, int, int]],
|
||||
Coroutine[Any, Any, tuple[APIResponse, Optional[tuple[int, int, int]]]],
|
||||
]
|
||||
| None = None,
|
||||
async_response_parser: Callable[[ChatCompletion], tuple[APIResponse, tuple[int, int, int]]] | None = None,
|
||||
] = None,
|
||||
async_response_parser: Optional[
|
||||
Callable[[ChatCompletion], tuple[APIResponse, Optional[tuple[int, int, int]]]]
|
||||
] = None,
|
||||
interrupt_flag: asyncio.Event | None = None,
|
||||
) -> APIResponse:
|
||||
"""
|
||||
获取对话响应
|
||||
:param model_info: 模型信息
|
||||
:param message_list: 对话体
|
||||
:param tool_options: 工具选项(可选,默认为None)
|
||||
:param max_tokens: 最大token数(可选,默认为1024)
|
||||
:param temperature: 温度(可选,默认为0.7)
|
||||
:param response_format: 响应格式(可选,默认为 NotGiven )
|
||||
:param stream_response_handler: 流式响应处理函数(可选,默认为default_stream_response_handler)
|
||||
:param async_response_parser: 响应解析函数(可选,默认为default_response_parser)
|
||||
:param interrupt_flag: 中断信号量(可选,默认为None)
|
||||
:return: (响应文本, 推理文本, 工具调用, 其他数据)
|
||||
Args:
|
||||
model_info: 模型信息
|
||||
message_list: 对话体
|
||||
tool_options: 工具选项(可选,默认为None)
|
||||
max_tokens: 最大token数(可选,默认为1024)
|
||||
temperature: 温度(可选,默认为0.7)
|
||||
response_format: 响应格式(可选,默认为 NotGiven )
|
||||
stream_response_handler: 流式响应处理函数(可选,默认为default_stream_response_handler)
|
||||
async_response_parser: 响应解析函数(可选,默认为default_response_parser)
|
||||
interrupt_flag: 中断信号量(可选,默认为None)
|
||||
Returns:
|
||||
(响应文本, 推理文本, 工具调用, 其他数据)
|
||||
"""
|
||||
if stream_response_handler is None:
|
||||
stream_response_handler = _default_stream_response_handler
|
||||
@@ -414,7 +421,7 @@ class OpenaiClient(BaseClient):
|
||||
# 将messages构造为OpenAI API所需的格式
|
||||
messages: Iterable[ChatCompletionMessageParam] = _convert_messages(message_list)
|
||||
# 将tool_options转换为OpenAI API所需的格式
|
||||
tools: Iterable[ChatCompletionToolParam] = _convert_tool_options(tool_options) if tool_options else NOT_GIVEN
|
||||
tools: Iterable[ChatCompletionToolParam] = _convert_tool_options(tool_options) if tool_options else NOT_GIVEN # type: ignore
|
||||
|
||||
try:
|
||||
if model_info.force_stream_mode:
|
||||
@@ -426,7 +433,7 @@ class OpenaiClient(BaseClient):
|
||||
temperature=temperature,
|
||||
max_tokens=max_tokens,
|
||||
stream=True,
|
||||
response_format=response_format.to_dict() if response_format else NOT_GIVEN,
|
||||
response_format=NOT_GIVEN,
|
||||
)
|
||||
)
|
||||
while not req_task.done():
|
||||
@@ -447,7 +454,7 @@ class OpenaiClient(BaseClient):
|
||||
temperature=temperature,
|
||||
max_tokens=max_tokens,
|
||||
stream=False,
|
||||
response_format=response_format.to_dict() if response_format else NOT_GIVEN,
|
||||
response_format=NOT_GIVEN,
|
||||
)
|
||||
)
|
||||
while not req_task.done():
|
||||
@@ -514,9 +521,9 @@ class OpenaiClient(BaseClient):
|
||||
response.usage = UsageRecord(
|
||||
model_name=model_info.name,
|
||||
provider_name=model_info.api_provider,
|
||||
prompt_tokens=raw_response.usage.prompt_tokens,
|
||||
completion_tokens=raw_response.usage.completion_tokens,
|
||||
total_tokens=raw_response.usage.total_tokens,
|
||||
prompt_tokens=raw_response.usage.prompt_tokens or 0,
|
||||
completion_tokens=raw_response.usage.completion_tokens or 0, # type: ignore
|
||||
total_tokens=raw_response.usage.total_tokens or 0,
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
Reference in New Issue
Block a user