This commit is contained in:
SengokuCola
2025-07-15 17:05:53 +08:00
29 changed files with 480 additions and 376 deletions

View File

@@ -20,3 +20,4 @@
- `chat_api.py`中获取流的参数中可以使用一个特殊的枚举类型来获得所有平台的 ChatStream 了。 - `chat_api.py`中获取流的参数中可以使用一个特殊的枚举类型来获得所有平台的 ChatStream 了。
- `config_api.py`中的`get_global_config``get_plugin_config`方法现在支持嵌套访问的配置键名。 - `config_api.py`中的`get_global_config``get_plugin_config`方法现在支持嵌套访问的配置键名。
- `database_api.py`中的`db_query`方法调整了参数顺序以增强参数限制的同时保证了typing正确`db_get`方法增加了`single_result`参数,与`db_query`保持一致。 - `database_api.py`中的`db_query`方法调整了参数顺序以增强参数限制的同时保证了typing正确`db_get`方法增加了`single_result`参数,与`db_query`保持一致。
4. 现在增加了参数类型检查,完善了对应注释

View File

@@ -9,19 +9,17 @@ import os
from time import sleep from time import sleep
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from src.chat.knowledge.lpmmconfig import PG_NAMESPACE, global_config
from src.chat.knowledge.embedding_store import EmbeddingManager from src.chat.knowledge.embedding_store import EmbeddingManager
from src.chat.knowledge.llm_client import LLMClient
from src.chat.knowledge.open_ie import OpenIE from src.chat.knowledge.open_ie import OpenIE
from src.chat.knowledge.kg_manager import KGManager from src.chat.knowledge.kg_manager import KGManager
from src.common.logger import get_logger from src.common.logger import get_logger
from src.chat.knowledge.utils.hash import get_sha256 from src.chat.knowledge.utils.hash import get_sha256
from src.manager.local_store_manager import local_storage
# 添加项目根目录到 sys.path # 添加项目根目录到 sys.path
ROOT_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) ROOT_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
OPENIE_DIR = global_config["persistence"]["openie_data_path"] or os.path.join(ROOT_PATH, "data", "openie") OPENIE_DIR = os.path.join(ROOT_PATH, "data", "openie")
logger = get_logger("OpenIE导入") logger = get_logger("OpenIE导入")
@@ -63,7 +61,7 @@ def hash_deduplicate(
): ):
# 段落hash # 段落hash
paragraph_hash = get_sha256(raw_paragraph) paragraph_hash = get_sha256(raw_paragraph)
if f"{PG_NAMESPACE}-{paragraph_hash}" in stored_pg_hashes and paragraph_hash in stored_paragraph_hashes: if f"{local_storage['pg_namespace']}-{paragraph_hash}" in stored_pg_hashes and paragraph_hash in stored_paragraph_hashes:
continue continue
new_raw_paragraphs[paragraph_hash] = raw_paragraph new_raw_paragraphs[paragraph_hash] = raw_paragraph
new_triple_list_data[paragraph_hash] = triple_list new_triple_list_data[paragraph_hash] = triple_list
@@ -193,15 +191,9 @@ def main(): # sourcery skip: dict-comprehension
logger.info("----开始导入openie数据----\n") logger.info("----开始导入openie数据----\n")
logger.info("创建LLM客户端") logger.info("创建LLM客户端")
llm_client_list = {}
for key in global_config["llm_providers"]:
llm_client_list[key] = LLMClient(
global_config["llm_providers"][key]["base_url"],
global_config["llm_providers"][key]["api_key"],
)
# 初始化Embedding库 # 初始化Embedding库
embed_manager = EmbeddingManager(llm_client_list[global_config["embedding"]["provider"]]) embed_manager = EmbeddingManager()
logger.info("正在从文件加载Embedding库") logger.info("正在从文件加载Embedding库")
try: try:
embed_manager.load_from_file() embed_manager.load_from_file()
@@ -230,7 +222,7 @@ def main(): # sourcery skip: dict-comprehension
# 数据比对Embedding库与KG的段落hash集合 # 数据比对Embedding库与KG的段落hash集合
for pg_hash in kg_manager.stored_paragraph_hashes: for pg_hash in kg_manager.stored_paragraph_hashes:
key = f"{PG_NAMESPACE}-{pg_hash}" key = f"{local_storage['pg_namespace']}-{pg_hash}"
if key not in embed_manager.stored_pg_hashes: if key not in embed_manager.stored_pg_hashes:
logger.warning(f"KG中存在Embedding库中不存在的段落{key}") logger.warning(f"KG中存在Embedding库中不存在的段落{key}")

View File

@@ -4,7 +4,6 @@ import signal
from concurrent.futures import ThreadPoolExecutor, as_completed from concurrent.futures import ThreadPoolExecutor, as_completed
from threading import Lock, Event from threading import Lock, Event
import sys import sys
import glob
import datetime import datetime
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
@@ -13,11 +12,9 @@ sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from rich.progress import Progress # 替换为 rich 进度条 from rich.progress import Progress # 替换为 rich 进度条
from src.common.logger import get_logger from src.common.logger import get_logger
from src.chat.knowledge.lpmmconfig import global_config # from src.chat.knowledge.lpmmconfig import global_config
from src.chat.knowledge.ie_process import info_extract_from_str from src.chat.knowledge.ie_process import info_extract_from_str
from src.chat.knowledge.llm_client import LLMClient
from src.chat.knowledge.open_ie import OpenIE from src.chat.knowledge.open_ie import OpenIE
from src.chat.knowledge.raw_processing import load_raw_data
from rich.progress import ( from rich.progress import (
BarColumn, BarColumn,
TimeElapsedColumn, TimeElapsedColumn,
@@ -27,24 +24,17 @@ from rich.progress import (
SpinnerColumn, SpinnerColumn,
TextColumn, TextColumn,
) )
from raw_data_preprocessor import RAW_DATA_PATH, process_multi_files, load_raw_data
from src.config.config import global_config
from src.llm_models.utils_model import LLMRequest
logger = get_logger("LPMM知识库-信息提取") logger = get_logger("LPMM知识库-信息提取")
ROOT_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) ROOT_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
TEMP_DIR = os.path.join(ROOT_PATH, "temp") TEMP_DIR = os.path.join(ROOT_PATH, "temp")
IMPORTED_DATA_PATH = global_config["persistence"]["imported_data_path"] or os.path.join( # IMPORTED_DATA_PATH = os.path.join(ROOT_PATH, "data", "imported_lpmm_data")
ROOT_PATH, "data", "imported_lpmm_data" OPENIE_OUTPUT_DIR = os.path.join(ROOT_PATH, "data", "openie")
)
OPENIE_OUTPUT_DIR = global_config["persistence"]["openie_data_path"] or os.path.join(ROOT_PATH, "data", "openie")
# 创建一个线程安全的锁,用于保护文件操作和共享数据
file_lock = Lock()
open_ie_doc_lock = Lock()
# 创建一个事件标志,用于控制程序终止
shutdown_event = Event()
def ensure_dirs(): def ensure_dirs():
"""确保临时目录和输出目录存在""" """确保临时目录和输出目录存在"""
@@ -54,12 +44,26 @@ def ensure_dirs():
if not os.path.exists(OPENIE_OUTPUT_DIR): if not os.path.exists(OPENIE_OUTPUT_DIR):
os.makedirs(OPENIE_OUTPUT_DIR) os.makedirs(OPENIE_OUTPUT_DIR)
logger.info(f"已创建输出目录: {OPENIE_OUTPUT_DIR}") logger.info(f"已创建输出目录: {OPENIE_OUTPUT_DIR}")
if not os.path.exists(IMPORTED_DATA_PATH): if not os.path.exists(RAW_DATA_PATH):
os.makedirs(IMPORTED_DATA_PATH) os.makedirs(RAW_DATA_PATH)
logger.info(f"已创建导入数据目录: {IMPORTED_DATA_PATH}") logger.info(f"已创建原始数据目录: {RAW_DATA_PATH}")
# 创建一个线程安全的锁,用于保护文件操作和共享数据
file_lock = Lock()
open_ie_doc_lock = Lock()
def process_single_text(pg_hash, raw_data, llm_client_list): # 创建一个事件标志,用于控制程序终止
shutdown_event = Event()
lpmm_entity_extract_llm = LLMRequest(
model=global_config.model.lpmm_entity_extract,
request_type="lpmm.entity_extract"
)
lpmm_rdf_build_llm = LLMRequest(
model=global_config.model.lpmm_rdf_build,
request_type="lpmm.rdf_build"
)
def process_single_text(pg_hash, raw_data):
"""处理单个文本的函数,用于线程池""" """处理单个文本的函数,用于线程池"""
temp_file_path = f"{TEMP_DIR}/{pg_hash}.json" temp_file_path = f"{TEMP_DIR}/{pg_hash}.json"
@@ -77,8 +81,8 @@ def process_single_text(pg_hash, raw_data, llm_client_list):
os.remove(temp_file_path) os.remove(temp_file_path)
entity_list, rdf_triple_list = info_extract_from_str( entity_list, rdf_triple_list = info_extract_from_str(
llm_client_list[global_config["entity_extract"]["llm"]["provider"]], lpmm_entity_extract_llm,
llm_client_list[global_config["rdf_build"]["llm"]["provider"]], lpmm_rdf_build_llm,
raw_data, raw_data,
) )
if entity_list is None or rdf_triple_list is None: if entity_list is None or rdf_triple_list is None:
@@ -113,7 +117,7 @@ def signal_handler(_signum, _frame):
def main(): # sourcery skip: comprehension-to-generator, extract-method def main(): # sourcery skip: comprehension-to-generator, extract-method
# 设置信号处理器 # 设置信号处理器
signal.signal(signal.SIGINT, signal_handler) signal.signal(signal.SIGINT, signal_handler)
ensure_dirs() # 确保目录存在
# 新增用户确认提示 # 新增用户确认提示
print("=== 重要操作确认,请认真阅读以下内容哦 ===") print("=== 重要操作确认,请认真阅读以下内容哦 ===")
print("实体提取操作将会花费较多api余额和时间建议在空闲时段执行。") print("实体提取操作将会花费较多api余额和时间建议在空闲时段执行。")
@@ -130,50 +134,17 @@ def main(): # sourcery skip: comprehension-to-generator, extract-method
ensure_dirs() # 确保目录存在 ensure_dirs() # 确保目录存在
logger.info("--------进行信息提取--------\n") logger.info("--------进行信息提取--------\n")
logger.info("创建LLM客户端") # 加载原始数据
llm_client_list = { logger.info("正在加载原始数据")
key: LLMClient( all_sha256_list, all_raw_datas = load_raw_data()
global_config["llm_providers"][key]["base_url"],
global_config["llm_providers"][key]["api_key"],
)
for key in global_config["llm_providers"]
}
# 检查 openie 输出目录
if not os.path.exists(OPENIE_OUTPUT_DIR):
os.makedirs(OPENIE_OUTPUT_DIR)
logger.info(f"已创建输出目录: {OPENIE_OUTPUT_DIR}")
# 确保 TEMP_DIR 目录存在
if not os.path.exists(TEMP_DIR):
os.makedirs(TEMP_DIR)
logger.info(f"已创建缓存目录: {TEMP_DIR}")
# 遍历IMPORTED_DATA_PATH下所有json文件
imported_files = sorted(glob.glob(os.path.join(IMPORTED_DATA_PATH, "*.json")))
if not imported_files:
logger.error(f"未在 {IMPORTED_DATA_PATH} 下找到任何json文件")
sys.exit(1)
all_sha256_list = []
all_raw_datas = []
for imported_file in imported_files:
logger.info(f"正在处理文件: {imported_file}")
try:
sha256_list, raw_datas = load_raw_data(imported_file)
except Exception as e:
logger.error(f"读取文件失败: {imported_file}, 错误: {e}")
continue
all_sha256_list.extend(sha256_list)
all_raw_datas.extend(raw_datas)
failed_sha256 = [] failed_sha256 = []
open_ie_doc = [] open_ie_doc = []
workers = global_config["info_extraction"]["workers"] workers = global_config.lpmm_knowledge.info_extraction_workers
with ThreadPoolExecutor(max_workers=workers) as executor: with ThreadPoolExecutor(max_workers=workers) as executor:
future_to_hash = { future_to_hash = {
executor.submit(process_single_text, pg_hash, raw_data, llm_client_list): pg_hash executor.submit(process_single_text, pg_hash, raw_data): pg_hash
for pg_hash, raw_data in zip(all_sha256_list, all_raw_datas, strict=False) for pg_hash, raw_data in zip(all_sha256_list, all_raw_datas, strict=False)
} }

View File

@@ -1,40 +1,16 @@
import json
import os import os
from pathlib import Path from pathlib import Path
import sys # 新增系统模块导入 import sys # 新增系统模块导入
import datetime # 新增导入 from src.chat.knowledge.utils.hash import get_sha256
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from src.common.logger import get_logger from src.common.logger import get_logger
from src.chat.knowledge.lpmmconfig import global_config
logger = get_logger("lpmm") logger = get_logger("lpmm")
ROOT_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) ROOT_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
RAW_DATA_PATH = os.path.join(ROOT_PATH, "data/lpmm_raw_data") RAW_DATA_PATH = os.path.join(ROOT_PATH, "data/lpmm_raw_data")
# 新增:确保 RAW_DATA_PATH 存在 # IMPORTED_DATA_PATH = os.path.join(ROOT_PATH, "data/imported_lpmm_data")
if not os.path.exists(RAW_DATA_PATH):
os.makedirs(RAW_DATA_PATH, exist_ok=True)
logger.info(f"已创建目录: {RAW_DATA_PATH}")
if global_config.get("persistence", {}).get("raw_data_path") is not None: def _process_text_file(file_path):
IMPORTED_DATA_PATH = os.path.join(ROOT_PATH, global_config["persistence"]["raw_data_path"])
else:
IMPORTED_DATA_PATH = os.path.join(ROOT_PATH, "data/imported_lpmm_data")
# 添加项目根目录到 sys.path
def check_and_create_dirs():
"""检查并创建必要的目录"""
required_dirs = [RAW_DATA_PATH, IMPORTED_DATA_PATH]
for dir_path in required_dirs:
if not os.path.exists(dir_path):
os.makedirs(dir_path)
logger.info(f"已创建目录: {dir_path}")
def process_text_file(file_path):
"""处理单个文本文件,返回段落列表""" """处理单个文本文件,返回段落列表"""
with open(file_path, "r", encoding="utf-8") as f: with open(file_path, "r", encoding="utf-8") as f:
raw = f.read() raw = f.read()
@@ -55,54 +31,45 @@ def process_text_file(file_path):
return paragraphs return paragraphs
def main(): def _process_multi_files() -> list:
# 新增用户确认提示
print("=== 数据预处理脚本 ===")
print(f"本脚本将处理 '{RAW_DATA_PATH}' 目录下的所有 .txt 文件。")
print(f"处理后的段落数据将合并,并以 MM-DD-HH-SS-imported-data.json 的格式保存在 '{IMPORTED_DATA_PATH}' 目录中。")
print("请确保原始数据已放置在正确的目录中。")
confirm = input("确认继续执行?(y/n): ").strip().lower()
if confirm != "y":
logger.info("操作已取消")
sys.exit(1)
print("\n" + "=" * 40 + "\n")
# 检查并创建必要的目录
check_and_create_dirs()
# # 检查输出文件是否存在
# if os.path.exists(RAW_DATA_PATH):
# logger.error("错误: data/import.json 已存在,请先处理或删除该文件")
# sys.exit(1)
# if os.path.exists(RAW_DATA_PATH):
# logger.error("错误: data/openie.json 已存在,请先处理或删除该文件")
# sys.exit(1)
# 获取所有原始文本文件
raw_files = list(Path(RAW_DATA_PATH).glob("*.txt")) raw_files = list(Path(RAW_DATA_PATH).glob("*.txt"))
if not raw_files: if not raw_files:
logger.warning("警告: data/lpmm_raw_data 中没有找到任何 .txt 文件") logger.warning("警告: data/lpmm_raw_data 中没有找到任何 .txt 文件")
sys.exit(1) sys.exit(1)
# 处理所有文件 # 处理所有文件
all_paragraphs = [] all_paragraphs = []
for file in raw_files: for file in raw_files:
logger.info(f"正在处理文件: {file.name}") logger.info(f"正在处理文件: {file.name}")
paragraphs = process_text_file(file) paragraphs = _process_text_file(file)
all_paragraphs.extend(paragraphs) all_paragraphs.extend(paragraphs)
return all_paragraphs
# 保存合并后的结果到 IMPORTED_DATA_PATH文件名格式为 MM-DD-HH-ss-imported-data.json def load_raw_data() -> tuple[list[str], list[str]]:
now = datetime.datetime.now() """加载原始数据文件
filename = now.strftime("%m-%d-%H-%S-imported-data.json")
output_path = os.path.join(IMPORTED_DATA_PATH, filename)
with open(output_path, "w", encoding="utf-8") as f:
json.dump(all_paragraphs, f, ensure_ascii=False, indent=4)
logger.info(f"处理完成,结果已保存到: {output_path}") 读取原始数据文件,将原始数据加载到内存中
Args:
path: 可选指定要读取的json文件绝对路径
if __name__ == "__main__": Returns:
logger.info(f"原始数据路径: {RAW_DATA_PATH}") - raw_data: 原始数据列表
logger.info(f"处理后的数据路径: {IMPORTED_DATA_PATH}") - sha256_list: 原始数据的SHA256集合
main() """
raw_data = _process_multi_files()
sha256_list = []
sha256_set = set()
for item in raw_data:
if not isinstance(item, str):
logger.warning(f"数据类型错误:{item}")
continue
pg_hash = get_sha256(item)
if pg_hash in sha256_set:
logger.warning(f"重复数据:{item}")
continue
sha256_set.add(pg_hash)
sha256_list.append(pg_hash)
raw_data.append(item)
logger.info(f"共读取到{len(raw_data)}条数据")
return sha256_list, raw_data

View File

@@ -47,7 +47,7 @@ class MaiEmoji:
self.embedding = [] self.embedding = []
self.hash = "" # 初始为空,在创建实例时会计算 self.hash = "" # 初始为空,在创建实例时会计算
self.description = "" self.description = ""
self.emotion = [] self.emotion: List[str] = []
self.usage_count = 0 self.usage_count = 0
self.last_used_time = time.time() self.last_used_time = time.time()
self.register_time = time.time() self.register_time = time.time()

View File

@@ -243,6 +243,8 @@ class HeartFChatting:
loop_start_time = time.time() loop_start_time = time.time()
await self.relationship_builder.build_relation() await self.relationship_builder.build_relation()
available_actions = {}
# 第一步:动作修改 # 第一步:动作修改
with Timer("动作修改", cycle_timers): with Timer("动作修改", cycle_timers):
try: try:

View File

@@ -10,8 +10,8 @@ import pandas as pd
# import tqdm # import tqdm
import faiss import faiss
from .llm_client import LLMClient # from .llm_client import LLMClient
from .lpmmconfig import ENT_NAMESPACE, PG_NAMESPACE, REL_NAMESPACE, global_config from .lpmmconfig import global_config
from .utils.hash import get_sha256 from .utils.hash import get_sha256
from .global_logger import logger from .global_logger import logger
from rich.traceback import install from rich.traceback import install
@@ -25,6 +25,9 @@ from rich.progress import (
SpinnerColumn, SpinnerColumn,
TextColumn, TextColumn,
) )
from src.manager.local_store_manager import local_storage
from src.chat.utils.utils import get_embedding
install(extra_lines=3) install(extra_lines=3)
ROOT_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", "..")) ROOT_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", ".."))
@@ -86,21 +89,20 @@ class EmbeddingStoreItem:
class EmbeddingStore: class EmbeddingStore:
def __init__(self, llm_client: LLMClient, namespace: str, dir_path: str): def __init__(self, namespace: str, dir_path: str):
self.namespace = namespace self.namespace = namespace
self.llm_client = llm_client
self.dir = dir_path self.dir = dir_path
self.embedding_file_path = dir_path + "/" + namespace + ".parquet" self.embedding_file_path = f"{dir_path}/{namespace}.parquet"
self.index_file_path = dir_path + "/" + namespace + ".index" self.index_file_path = f"{dir_path}/{namespace}.index"
self.idx2hash_file_path = dir_path + "/" + namespace + "_i2h.json" self.idx2hash_file_path = dir_path + "/" + namespace + "_i2h.json"
self.store = dict() self.store = {}
self.faiss_index = None self.faiss_index = None
self.idx2hash = None self.idx2hash = None
def _get_embedding(self, s: str) -> List[float]: def _get_embedding(self, s: str) -> List[float]:
return self.llm_client.send_embedding_request(global_config["embedding"]["model"], s) return get_embedding(s)
def get_test_file_path(self): def get_test_file_path(self):
return EMBEDDING_TEST_FILE return EMBEDDING_TEST_FILE
@@ -293,20 +295,17 @@ class EmbeddingStore:
class EmbeddingManager: class EmbeddingManager:
def __init__(self, llm_client: LLMClient): def __init__(self):
self.paragraphs_embedding_store = EmbeddingStore( self.paragraphs_embedding_store = EmbeddingStore(
llm_client, local_storage['pg_namespace'],
PG_NAMESPACE,
EMBEDDING_DATA_DIR_STR, EMBEDDING_DATA_DIR_STR,
) )
self.entities_embedding_store = EmbeddingStore( self.entities_embedding_store = EmbeddingStore(
llm_client, local_storage['pg_namespace'],
ENT_NAMESPACE,
EMBEDDING_DATA_DIR_STR, EMBEDDING_DATA_DIR_STR,
) )
self.relation_embedding_store = EmbeddingStore( self.relation_embedding_store = EmbeddingStore(
llm_client, local_storage['pg_namespace'],
REL_NAMESPACE,
EMBEDDING_DATA_DIR_STR, EMBEDDING_DATA_DIR_STR,
) )
self.stored_pg_hashes = set() self.stored_pg_hashes = set()

View File

@@ -4,28 +4,35 @@ from typing import List, Union
from .global_logger import logger from .global_logger import logger
from . import prompt_template from . import prompt_template
from .lpmmconfig import global_config, INVALID_ENTITY from .knowledge_lib import INVALID_ENTITY
from .llm_client import LLMClient from src.llm_models.utils_model import LLMRequest
from src.chat.knowledge.utils.json_fix import new_fix_broken_generated_json from json_repair import repair_json
def _extract_json_from_text(text: str) -> dict:
"""从文本中提取JSON数据的高容错方法"""
try:
fixed_json = repair_json(text)
if isinstance(fixed_json, str):
parsed_json = json.loads(fixed_json)
else:
parsed_json = fixed_json
if isinstance(parsed_json, list) and parsed_json:
parsed_json = parsed_json[0]
def _entity_extract(llm_client: LLMClient, paragraph: str) -> List[str]: if isinstance(parsed_json, dict):
return parsed_json
except Exception as e:
logger.error(f"JSON提取失败: {e}, 原始文本: {text[:100]}...")
def _entity_extract(llm_req: LLMRequest, paragraph: str) -> List[str]:
"""对段落进行实体提取返回提取出的实体列表JSON格式""" """对段落进行实体提取返回提取出的实体列表JSON格式"""
entity_extract_context = prompt_template.build_entity_extract_context(paragraph) entity_extract_context = prompt_template.build_entity_extract_context(paragraph)
_, request_result = llm_client.send_chat_request( response, (reasoning_content, model_name) = llm_req.generate_response_async(entity_extract_context)
global_config["entity_extract"]["llm"]["model"], entity_extract_context
)
# 去除‘{’前的内容(结果中可能有多个‘{
if "[" in request_result:
request_result = request_result[request_result.index("[") :]
# 去除最后一个‘}’后的内容(结果中可能有多个‘}
if "]" in request_result:
request_result = request_result[: request_result.rindex("]") + 1]
entity_extract_result = json.loads(new_fix_broken_generated_json(request_result))
entity_extract_result = _extract_json_from_text(response)
# 尝试load JSON数据
json.loads(entity_extract_result)
entity_extract_result = [ entity_extract_result = [
entity entity
for entity in entity_extract_result for entity in entity_extract_result
@@ -38,23 +45,16 @@ def _entity_extract(llm_client: LLMClient, paragraph: str) -> List[str]:
return entity_extract_result return entity_extract_result
def _rdf_triple_extract(llm_client: LLMClient, paragraph: str, entities: list) -> List[List[str]]: def _rdf_triple_extract(llm_req: LLMRequest, paragraph: str, entities: list) -> List[List[str]]:
"""对段落进行实体提取返回提取出的实体列表JSON格式""" """对段落进行实体提取返回提取出的实体列表JSON格式"""
entity_extract_context = prompt_template.build_rdf_triple_extract_context( rdf_extract_context = prompt_template.build_rdf_triple_extract_context(
paragraph, entities=json.dumps(entities, ensure_ascii=False) paragraph, entities=json.dumps(entities, ensure_ascii=False)
) )
_, request_result = llm_client.send_chat_request(global_config["rdf_build"]["llm"]["model"], entity_extract_context) response, (reasoning_content, model_name) = llm_req.generate_response_async(rdf_extract_context)
# 去除‘{’前的内容(结果中可能有多个‘{
if "[" in request_result:
request_result = request_result[request_result.index("[") :]
# 去除最后一个‘}’后的内容(结果中可能有多个‘}
if "]" in request_result:
request_result = request_result[: request_result.rindex("]") + 1]
entity_extract_result = json.loads(new_fix_broken_generated_json(request_result))
entity_extract_result = _extract_json_from_text(response)
# 尝试load JSON数据
json.loads(entity_extract_result)
for triple in entity_extract_result: for triple in entity_extract_result:
if len(triple) != 3 or (triple[0] is None or triple[1] is None or triple[2] is None) or "" in triple: if len(triple) != 3 or (triple[0] is None or triple[1] is None or triple[2] is None) or "" in triple:
raise Exception("RDF提取结果格式错误") raise Exception("RDF提取结果格式错误")
@@ -63,7 +63,7 @@ def _rdf_triple_extract(llm_client: LLMClient, paragraph: str, entities: list) -
def info_extract_from_str( def info_extract_from_str(
llm_client_for_ner: LLMClient, llm_client_for_rdf: LLMClient, paragraph: str llm_client_for_ner: LLMRequest, llm_client_for_rdf: LLMRequest, paragraph: str
) -> Union[tuple[None, None], tuple[list[str], list[list[str]]]]: ) -> Union[tuple[None, None], tuple[list[str], list[list[str]]]]:
try_count = 0 try_count = 0
while True: while True:

View File

@@ -20,24 +20,37 @@ from quick_algo import di_graph, pagerank
from .utils.hash import get_sha256 from .utils.hash import get_sha256
from .embedding_store import EmbeddingManager, EmbeddingStoreItem from .embedding_store import EmbeddingManager, EmbeddingStoreItem
from .lpmmconfig import ( from .lpmmconfig import global_config
ENT_NAMESPACE, from src.manager.local_store_manager import local_storage
PG_NAMESPACE,
RAG_ENT_CNT_NAMESPACE,
RAG_GRAPH_NAMESPACE,
RAG_PG_HASH_NAMESPACE,
global_config,
)
from .global_logger import logger from .global_logger import logger
ROOT_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", ".."))
KG_DIR = ( def _get_kg_dir():
os.path.join(ROOT_PATH, "data/rag") """
if global_config["persistence"]["rag_data_dir"] is None 安全地获取KG数据目录路径
else os.path.join(ROOT_PATH, global_config["persistence"]["rag_data_dir"]) """
) root_path = local_storage['root_path']
KG_DIR_STR = str(KG_DIR).replace("\\", "/") if root_path is None:
# 如果 local_storage 中没有 root_path使用当前文件的相对路径作为备用
current_dir = os.path.dirname(os.path.abspath(__file__))
root_path = os.path.abspath(os.path.join(current_dir, "..", "..", ".."))
logger.warning(f"local_storage 中未找到 root_path使用备用路径: {root_path}")
# 获取RAG数据目录
rag_data_dir = global_config["persistence"]["rag_data_dir"]
if rag_data_dir is None:
kg_dir = os.path.join(root_path, "data/rag")
else:
kg_dir = os.path.join(root_path, rag_data_dir)
return str(kg_dir).replace("\\", "/")
# 延迟初始化,避免在模块加载时就访问可能未初始化的 local_storage
def get_kg_dir_str():
"""获取KG目录字符串"""
return _get_kg_dir()
class KGManager: class KGManager:
@@ -46,15 +59,15 @@ class KGManager:
# 存储段落的hash值用于去重 # 存储段落的hash值用于去重
self.stored_paragraph_hashes = set() self.stored_paragraph_hashes = set()
# 实体出现次数 # 实体出现次数
self.ent_appear_cnt = dict() self.ent_appear_cnt = {}
# KG # KG
self.graph = di_graph.DiGraph() self.graph = di_graph.DiGraph()
# 持久化相关 # 持久化相关 - 使用延迟初始化的路径
self.dir_path = KG_DIR_STR self.dir_path = get_kg_dir_str()
self.graph_data_path = self.dir_path + "/" + RAG_GRAPH_NAMESPACE + ".graphml" self.graph_data_path = self.dir_path + "/" + local_storage['rag_graph_namespace'] + ".graphml"
self.ent_cnt_data_path = self.dir_path + "/" + RAG_ENT_CNT_NAMESPACE + ".parquet" self.ent_cnt_data_path = self.dir_path + "/" + local_storage['rag_ent_cnt_namespace'] + ".parquet"
self.pg_hash_file_path = self.dir_path + "/" + RAG_PG_HASH_NAMESPACE + ".json" self.pg_hash_file_path = self.dir_path + "/" + local_storage['rag_pg_hash_namespace'] + ".json"
def save_to_file(self): def save_to_file(self):
"""将KG数据保存到文件""" """将KG数据保存到文件"""
@@ -109,8 +122,8 @@ class KGManager:
# 避免自连接 # 避免自连接
continue continue
# 一个triple就是一条边同时构建双向联系 # 一个triple就是一条边同时构建双向联系
hash_key1 = ENT_NAMESPACE + "-" + get_sha256(triple[0]) hash_key1 = local_storage['ent_namespace'] + "-" + get_sha256(triple[0])
hash_key2 = ENT_NAMESPACE + "-" + get_sha256(triple[2]) hash_key2 = local_storage['ent_namespace'] + "-" + get_sha256(triple[2])
node_to_node[(hash_key1, hash_key2)] = node_to_node.get((hash_key1, hash_key2), 0) + 1.0 node_to_node[(hash_key1, hash_key2)] = node_to_node.get((hash_key1, hash_key2), 0) + 1.0
node_to_node[(hash_key2, hash_key1)] = node_to_node.get((hash_key2, hash_key1), 0) + 1.0 node_to_node[(hash_key2, hash_key1)] = node_to_node.get((hash_key2, hash_key1), 0) + 1.0
entity_set.add(hash_key1) entity_set.add(hash_key1)
@@ -128,8 +141,8 @@ class KGManager:
"""构建实体节点与文段节点之间的关系""" """构建实体节点与文段节点之间的关系"""
for idx in triple_list_data: for idx in triple_list_data:
for triple in triple_list_data[idx]: for triple in triple_list_data[idx]:
ent_hash_key = ENT_NAMESPACE + "-" + get_sha256(triple[0]) ent_hash_key = local_storage['ent_namespace'] + "-" + get_sha256(triple[0])
pg_hash_key = PG_NAMESPACE + "-" + str(idx) pg_hash_key = local_storage['pg_namespace'] + "-" + str(idx)
node_to_node[(ent_hash_key, pg_hash_key)] = node_to_node.get((ent_hash_key, pg_hash_key), 0) + 1.0 node_to_node[(ent_hash_key, pg_hash_key)] = node_to_node.get((ent_hash_key, pg_hash_key), 0) + 1.0
@staticmethod @staticmethod
@@ -144,8 +157,8 @@ class KGManager:
ent_hash_list = set() ent_hash_list = set()
for triple_list in triple_list_data.values(): for triple_list in triple_list_data.values():
for triple in triple_list: for triple in triple_list:
ent_hash_list.add(ENT_NAMESPACE + "-" + get_sha256(triple[0])) ent_hash_list.add(local_storage['ent_namespace'] + "-" + get_sha256(triple[0]))
ent_hash_list.add(ENT_NAMESPACE + "-" + get_sha256(triple[2])) ent_hash_list.add(local_storage['ent_namespace'] + "-" + get_sha256(triple[2]))
ent_hash_list = list(ent_hash_list) ent_hash_list = list(ent_hash_list)
synonym_hash_set = set() synonym_hash_set = set()
@@ -250,7 +263,7 @@ class KGManager:
for src_tgt in node_to_node.keys(): for src_tgt in node_to_node.keys():
for node_hash in src_tgt: for node_hash in src_tgt:
if node_hash not in existed_nodes: if node_hash not in existed_nodes:
if node_hash.startswith(ENT_NAMESPACE): if node_hash.startswith(local_storage['ent_namespace']):
# 新增实体节点 # 新增实体节点
node = embedding_manager.entities_embedding_store.store[node_hash] node = embedding_manager.entities_embedding_store.store[node_hash]
assert isinstance(node, EmbeddingStoreItem) assert isinstance(node, EmbeddingStoreItem)
@@ -259,7 +272,7 @@ class KGManager:
node_item["type"] = "ent" node_item["type"] = "ent"
node_item["create_time"] = now_time node_item["create_time"] = now_time
self.graph.update_node(node_item) self.graph.update_node(node_item)
elif node_hash.startswith(PG_NAMESPACE): elif node_hash.startswith(local_storage['pg_namespace']):
# 新增文段节点 # 新增文段节点
node = embedding_manager.paragraphs_embedding_store.store[node_hash] node = embedding_manager.paragraphs_embedding_store.store[node_hash]
assert isinstance(node, EmbeddingStoreItem) assert isinstance(node, EmbeddingStoreItem)
@@ -340,7 +353,7 @@ class KGManager:
# 关系三元组 # 关系三元组
triple = relation[2:-2].split("', '") triple = relation[2:-2].split("', '")
for ent in [(triple[0]), (triple[2])]: for ent in [(triple[0]), (triple[2])]:
ent_hash = ENT_NAMESPACE + "-" + get_sha256(ent) ent_hash = local_storage['ent_namespace'] + "-" + get_sha256(ent)
if ent_hash in existed_nodes: # 该实体需在KG中存在 if ent_hash in existed_nodes: # 该实体需在KG中存在
if ent_hash not in ent_sim_scores: # 尚未记录的实体 if ent_hash not in ent_sim_scores: # 尚未记录的实体
ent_sim_scores[ent_hash] = [] ent_sim_scores[ent_hash] = []
@@ -418,7 +431,7 @@ class KGManager:
# 获取最终结果 # 获取最终结果
# 从搜索结果中提取文段节点的结果 # 从搜索结果中提取文段节点的结果
passage_node_res = [ passage_node_res = [
(node_key, score) for node_key, score in ppr_res.items() if node_key.startswith(PG_NAMESPACE) (node_key, score) for node_key, score in ppr_res.items() if node_key.startswith(local_storage['pg_namespace'])
] ]
del ppr_res del ppr_res

View File

@@ -1,4 +1,4 @@
from src.chat.knowledge.lpmmconfig import PG_NAMESPACE, global_config from src.chat.knowledge.lpmmconfig import global_config
from src.chat.knowledge.embedding_store import EmbeddingManager from src.chat.knowledge.embedding_store import EmbeddingManager
from src.chat.knowledge.llm_client import LLMClient from src.chat.knowledge.llm_client import LLMClient
from src.chat.knowledge.mem_active_manager import MemoryActiveManager from src.chat.knowledge.mem_active_manager import MemoryActiveManager
@@ -6,10 +6,80 @@ from src.chat.knowledge.qa_manager import QAManager
from src.chat.knowledge.kg_manager import KGManager from src.chat.knowledge.kg_manager import KGManager
from src.chat.knowledge.global_logger import logger from src.chat.knowledge.global_logger import logger
from src.config.config import global_config as bot_global_config from src.config.config import global_config as bot_global_config
# try: from src.manager.local_store_manager import local_storage
# import quick_algo import os
# except ImportError:
# print("quick_algo not found, please install it first") INVALID_ENTITY = [
"",
"",
"",
"",
"",
"我们",
"你们",
"他们",
"她们",
"它们",
]
PG_NAMESPACE = "paragraph"
ENT_NAMESPACE = "entity"
REL_NAMESPACE = "relation"
RAG_GRAPH_NAMESPACE = "rag-graph"
RAG_ENT_CNT_NAMESPACE = "rag-ent-cnt"
RAG_PG_HASH_NAMESPACE = "rag-pg-hash"
ROOT_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", ".."))
DATA_PATH = os.path.join(ROOT_PATH, "data")
def _initialize_knowledge_local_storage():
"""
初始化知识库相关的本地存储配置
使用字典批量设置避免重复的if判断
"""
# 定义所有需要初始化的配置项
default_configs = {
# 路径配置
'root_path': ROOT_PATH,
'data_path': f"{ROOT_PATH}/data",
# 实体和命名空间配置
'lpmm_invalid_entity': INVALID_ENTITY,
'pg_namespace': PG_NAMESPACE,
'ent_namespace': ENT_NAMESPACE,
'rel_namespace': REL_NAMESPACE,
# RAG相关命名空间配置
'rag_graph_namespace': RAG_GRAPH_NAMESPACE,
'rag_ent_cnt_namespace': RAG_ENT_CNT_NAMESPACE,
'rag_pg_hash_namespace': RAG_PG_HASH_NAMESPACE
}
# 日志级别映射重要配置用info其他用debug
important_configs = {'root_path', 'data_path'}
# 批量设置配置项
initialized_count = 0
for key, default_value in default_configs.items():
if local_storage[key] is None:
local_storage[key] = default_value
# 根据重要性选择日志级别
if key in important_configs:
logger.info(f"设置{key}: {default_value}")
else:
logger.debug(f"设置{key}: {default_value}")
initialized_count += 1
if initialized_count > 0:
logger.info(f"知识库本地存储初始化完成,共设置 {initialized_count} 项配置")
else:
logger.debug("知识库本地存储配置已存在,跳过初始化")
# 初始化本地存储路径
_initialize_knowledge_local_storage()
# 检查LPMM知识库是否启用 # 检查LPMM知识库是否启用
if bot_global_config.lpmm_knowledge.enable: if bot_global_config.lpmm_knowledge.enable:
@@ -23,7 +93,7 @@ if bot_global_config.lpmm_knowledge.enable:
) )
# 初始化Embedding库 # 初始化Embedding库
embed_manager = EmbeddingManager(llm_client_list[global_config["embedding"]["provider"]]) embed_manager = EmbeddingManager()
logger.info("正在从文件加载Embedding库") logger.info("正在从文件加载Embedding库")
try: try:
embed_manager.load_from_file() embed_manager.load_from_file()
@@ -54,9 +124,6 @@ if bot_global_config.lpmm_knowledge.enable:
qa_manager = QAManager( qa_manager = QAManager(
embed_manager, embed_manager,
kg_manager, kg_manager,
llm_client_list[global_config["embedding"]["provider"]],
llm_client_list[global_config["qa"]["llm"]["provider"]],
llm_client_list[global_config["qa"]["llm"]["provider"]],
) )
# 记忆激活(用于记忆库) # 记忆激活(用于记忆库)

View File

@@ -4,9 +4,8 @@ import glob
from typing import Any, Dict, List from typing import Any, Dict, List
from .lpmmconfig import INVALID_ENTITY, global_config from .knowledge_lib import INVALID_ENTITY, ROOT_PATH, DATA_PATH
# from src.manager.local_store_manager import local_storage
ROOT_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", ".."))
def _filter_invalid_entities(entities: List[str]) -> List[str]: def _filter_invalid_entities(entities: List[str]) -> List[str]:
@@ -107,7 +106,7 @@ class OpenIE:
@staticmethod @staticmethod
def load() -> "OpenIE": def load() -> "OpenIE":
"""从OPENIE_DIR下所有json文件合并加载OpenIE数据""" """从OPENIE_DIR下所有json文件合并加载OpenIE数据"""
openie_dir = os.path.join(ROOT_PATH, global_config["persistence"]["openie_data_path"]) openie_dir = os.path.join(DATA_PATH, "openie")
if not os.path.exists(openie_dir): if not os.path.exists(openie_dir):
raise Exception(f"OpenIE数据目录不存在: {openie_dir}") raise Exception(f"OpenIE数据目录不存在: {openie_dir}")
json_files = sorted(glob.glob(os.path.join(openie_dir, "*.json"))) json_files = sorted(glob.glob(os.path.join(openie_dir, "*.json")))
@@ -122,12 +121,6 @@ class OpenIE:
openie_data = OpenIE._from_dict(data_list) openie_data = OpenIE._from_dict(data_list)
return openie_data return openie_data
@staticmethod
def save(openie_data: "OpenIE"):
"""保存OpenIE数据到文件"""
with open(global_config["persistence"]["openie_data_path"], "w", encoding="utf-8") as f:
f.write(json.dumps(openie_data._to_dict(), ensure_ascii=False, indent=4))
def extract_entity_dict(self): def extract_entity_dict(self):
"""提取实体列表""" """提取实体列表"""
ner_output_dict = dict( ner_output_dict = dict(

View File

@@ -5,11 +5,13 @@ from .global_logger import logger
# from . import prompt_template # from . import prompt_template
from .embedding_store import EmbeddingManager from .embedding_store import EmbeddingManager
from .llm_client import LLMClient # from .llm_client import LLMClient
from .kg_manager import KGManager from .kg_manager import KGManager
from .lpmmconfig import global_config # from .lpmmconfig import global_config
from .utils.dyn_topk import dyn_select_top_k from .utils.dyn_topk import dyn_select_top_k
from src.llm_models.utils_model import LLMRequest
from src.chat.utils.utils import get_embedding
from src.config.config import global_config
MAX_KNOWLEDGE_LENGTH = 10000 # 最大知识长度 MAX_KNOWLEDGE_LENGTH = 10000 # 最大知识长度
@@ -19,26 +21,25 @@ class QAManager:
self, self,
embed_manager: EmbeddingManager, embed_manager: EmbeddingManager,
kg_manager: KGManager, kg_manager: KGManager,
llm_client_embedding: LLMClient,
llm_client_filter: LLMClient,
llm_client_qa: LLMClient,
): ):
self.embed_manager = embed_manager self.embed_manager = embed_manager
self.kg_manager = kg_manager self.kg_manager = kg_manager
self.llm_client_list = { # TODO: API-Adapter修改标记
"embedding": llm_client_embedding, self.qa_model = LLMRequest(
"message_filter": llm_client_filter, model=global_config.model.lpmm_qa,
"qa": llm_client_qa, request_type="lpmm.qa"
} )
def process_query(self, question: str) -> Tuple[List[Tuple[str, float, float]], Optional[Dict[str, float]]]: def process_query(self, question: str) -> Tuple[List[Tuple[str, float, float]], Optional[Dict[str, float]]]:
"""处理查询""" """处理查询"""
# 生成问题的Embedding # 生成问题的Embedding
part_start_time = time.perf_counter() part_start_time = time.perf_counter()
question_embedding = self.llm_client_list["embedding"].send_embedding_request( question_embedding = get_embedding(question)
global_config["embedding"]["model"], question if question_embedding is None:
) logger.error("生成问题Embedding失败")
return None
part_end_time = time.perf_counter() part_end_time = time.perf_counter()
logger.debug(f"Embedding用时{part_end_time - part_start_time:.5f}s") logger.debug(f"Embedding用时{part_end_time - part_start_time:.5f}s")
@@ -46,14 +47,15 @@ class QAManager:
part_start_time = time.perf_counter() part_start_time = time.perf_counter()
relation_search_res = self.embed_manager.relation_embedding_store.search_top_k( relation_search_res = self.embed_manager.relation_embedding_store.search_top_k(
question_embedding, question_embedding,
global_config["qa"]["params"]["relation_search_top_k"], global_config.lpmm_knowledge.qa_relation_search_top_k,
) )
if relation_search_res is not None: if relation_search_res is not None:
# 过滤阈值 # 过滤阈值
# 考虑动态阈值:当存在显著数值差异的结果时,保留显著结果;否则,保留所有结果 # 考虑动态阈值:当存在显著数值差异的结果时,保留显著结果;否则,保留所有结果
relation_search_res = dyn_select_top_k(relation_search_res, 0.5, 1.0) relation_search_res = dyn_select_top_k(relation_search_res, 0.5, 1.0)
if relation_search_res[0][1] < global_config["qa"]["params"]["relation_threshold"]: if relation_search_res[0][1] < global_config.lpmm_knowledge.qa_relation_threshold:
# 未找到相关关系 # 未找到相关关系
logger.debug("未找到相关关系,跳过关系检索")
relation_search_res = [] relation_search_res = []
part_end_time = time.perf_counter() part_end_time = time.perf_counter()
@@ -71,7 +73,7 @@ class QAManager:
part_start_time = time.perf_counter() part_start_time = time.perf_counter()
paragraph_search_res = self.embed_manager.paragraphs_embedding_store.search_top_k( paragraph_search_res = self.embed_manager.paragraphs_embedding_store.search_top_k(
question_embedding, question_embedding,
global_config["qa"]["params"]["paragraph_search_top_k"], global_config.lpmm_knowledge.qa_paragraph_search_top_k,
) )
part_end_time = time.perf_counter() part_end_time = time.perf_counter()
logger.debug(f"文段检索用时:{part_end_time - part_start_time:.5f}s") logger.debug(f"文段检索用时:{part_end_time - part_start_time:.5f}s")

View File

@@ -38,7 +38,9 @@ class HeartFCSender:
def __init__(self): def __init__(self):
self.storage = MessageStorage() self.storage = MessageStorage()
async def send_message(self, message: MessageSending, typing=False, set_reply=False, storage_message=True, show_log=True): async def send_message(
self, message: MessageSending, typing=False, set_reply=False, storage_message=True, show_log=True
):
""" """
处理、发送并存储一条消息。 处理、发送并存储一条消息。

View File

@@ -79,7 +79,9 @@ class ActionPlanner:
self.last_obs_time_mark = 0.0 self.last_obs_time_mark = 0.0
async def plan(self, mode: ChatMode = ChatMode.FOCUS) -> Dict[str, Dict[str, Any] | str]: # sourcery skip: dict-comprehension async def plan(
self, mode: ChatMode = ChatMode.FOCUS
) -> Dict[str, Dict[str, Any] | str]: # sourcery skip: dict-comprehension
""" """
规划器 (Planner): 使用LLM根据上下文决定做出什么动作。 规划器 (Planner): 使用LLM根据上下文决定做出什么动作。
""" """

View File

@@ -507,7 +507,7 @@ class DefaultReplyer:
# 构建背景对话 prompt # 构建背景对话 prompt
background_dialogue_prompt = "" background_dialogue_prompt = ""
if background_dialogue_list: if background_dialogue_list:
latest_25_msgs = background_dialogue_list[-int(global_config.chat.max_context_size*0.6):] latest_25_msgs = background_dialogue_list[-int(global_config.chat.max_context_size * 0.6) :]
background_dialogue_prompt_str = build_readable_messages( background_dialogue_prompt_str = build_readable_messages(
latest_25_msgs, latest_25_msgs,
replace_bot_name=True, replace_bot_name=True,
@@ -520,7 +520,7 @@ class DefaultReplyer:
# 构建核心对话 prompt # 构建核心对话 prompt
core_dialogue_prompt = "" core_dialogue_prompt = ""
if core_dialogue_list: if core_dialogue_list:
core_dialogue_list = core_dialogue_list[-int(global_config.chat.max_context_size*2):] # 限制消息数量 core_dialogue_list = core_dialogue_list[-int(global_config.chat.max_context_size * 2) :] # 限制消息数量
core_dialogue_prompt_str = build_readable_messages( core_dialogue_prompt_str = build_readable_messages(
core_dialogue_list, core_dialogue_list,
@@ -585,7 +585,6 @@ class DefaultReplyer:
limit=global_config.chat.max_context_size * 2, limit=global_config.chat.max_context_size * 2,
) )
message_list_before_now = get_raw_msg_before_timestamp_with_chat( message_list_before_now = get_raw_msg_before_timestamp_with_chat(
chat_id=chat_id, chat_id=chat_id,
timestamp=time.time(), timestamp=time.time(),
@@ -712,8 +711,6 @@ class DefaultReplyer:
# 根据sender通过person_info_manager反向查找person_id再获取user_id # 根据sender通过person_info_manager反向查找person_id再获取user_id
person_id = person_info_manager.get_person_id_by_person_name(sender) person_id = person_info_manager.get_person_id_by_person_name(sender)
# 根据配置选择使用哪种 prompt 构建模式 # 根据配置选择使用哪种 prompt 构建模式
if global_config.chat.use_s4u_prompt_mode and person_id: if global_config.chat.use_s4u_prompt_mode and person_id:
# 使用 s4u 对话构建模式:分离当前对话对象和其他对话 # 使用 s4u 对话构建模式:分离当前对话对象和其他对话
@@ -725,7 +722,6 @@ class DefaultReplyer:
logger.warning(f"无法从person_id {person_id} 获取user_id: {e}") logger.warning(f"无法从person_id {person_id} 获取user_id: {e}")
target_user_id = "" target_user_id = ""
# 构建分离的对话 prompt # 构建分离的对话 prompt
core_dialogue_prompt, background_dialogue_prompt = self.build_s4u_chat_history_prompts( core_dialogue_prompt, background_dialogue_prompt = self.build_s4u_chat_history_prompts(
message_list_before_now_long, target_user_id message_list_before_now_long, target_user_id

View File

@@ -106,7 +106,6 @@ class ChatConfig(ConfigBase):
focus_value: float = 1.0 focus_value: float = 1.0
"""麦麦的专注思考能力越低越容易专注消耗token也越多""" """麦麦的专注思考能力越低越容易专注消耗token也越多"""
def get_current_talk_frequency(self, chat_stream_id: Optional[str] = None) -> float: def get_current_talk_frequency(self, chat_stream_id: Optional[str] = None) -> float:
""" """
根据当前时间和聊天流获取对应的 talk_frequency 根据当前时间和聊天流获取对应的 talk_frequency
@@ -246,6 +245,7 @@ class ChatConfig(ConfigBase):
except (ValueError, IndexError): except (ValueError, IndexError):
return None return None
@dataclass @dataclass
class MessageReceiveConfig(ConfigBase): class MessageReceiveConfig(ConfigBase):
"""消息接收配置类""" """消息接收配置类"""
@@ -274,8 +274,6 @@ class NormalChatConfig(ConfigBase):
"""@bot 必然回复""" """@bot 必然回复"""
@dataclass @dataclass
class ExpressionConfig(ConfigBase): class ExpressionConfig(ConfigBase):
"""表达配置类""" """表达配置类"""
@@ -627,3 +625,12 @@ class ModelConfig(ConfigBase):
embedding: dict[str, Any] = field(default_factory=lambda: {}) embedding: dict[str, Any] = field(default_factory=lambda: {})
"""嵌入模型配置""" """嵌入模型配置"""
lpmm_entity_extract: dict[str, Any] = field(default_factory=lambda: {})
"""LPMM实体提取模型配置"""
lpmm_rdf_build: dict[str, Any] = field(default_factory=lambda: {})
"""LPMM RDF构建模型配置"""
lpmm_qa: dict[str, Any] = field(default_factory=lambda: {})
"""LPMM问答模型配置"""

View File

@@ -41,10 +41,10 @@ class Individuality:
personality_side: 人格侧面描述 personality_side: 人格侧面描述
identity: 身份细节描述 identity: 身份细节描述
""" """
bot_nickname=global_config.bot.nickname bot_nickname = global_config.bot.nickname
personality_core=global_config.personality.personality_core personality_core = global_config.personality.personality_core
personality_side=global_config.personality.personality_side personality_side = global_config.personality.personality_side
identity=global_config.personality.identity identity = global_config.personality.identity
logger.info("正在初始化个体特征") logger.info("正在初始化个体特征")
person_info_manager = get_person_info_manager() person_info_manager = get_person_info_manager()
@@ -146,7 +146,6 @@ class Individuality:
else: else:
logger.error("人设构建失败") logger.error("人设构建失败")
async def get_personality_block(self) -> str: async def get_personality_block(self) -> str:
person_info_manager = get_person_info_manager() person_info_manager = get_person_info_manager()
bot_person_id = person_info_manager.get_person_id("system", "bot_id") bot_person_id = person_info_manager.get_person_id("system", "bot_id")
@@ -178,7 +177,6 @@ class Individuality:
return identity_block return identity_block
def _get_config_hash( def _get_config_hash(
self, bot_nickname: str, personality_core: str, personality_side: str, identity: list self, bot_nickname: str, personality_core: str, personality_side: str, identity: list
) -> tuple[str, str]: ) -> tuple[str, str]:
@@ -273,7 +271,6 @@ class Individuality:
except IOError as e: except IOError as e:
logger.error(f"保存meta_info文件失败: {e}") logger.error(f"保存meta_info文件失败: {e}")
async def _create_personality(self, personality_core: str, personality_side: str) -> str: async def _create_personality(self, personality_core: str, personality_side: str) -> str:
# sourcery skip: merge-list-append, move-assign # sourcery skip: merge-list-append, move-assign
"""使用LLM创建压缩版本的impression """使用LLM创建压缩版本的impression

View File

@@ -40,7 +40,15 @@ class Personality:
return cls._instance return cls._instance
@classmethod @classmethod
def initialize(cls, bot_nickname: str, personality_core: str, personality_side: str, identity: List[str] = None, compress_personality: bool = True, compress_identity: bool = True) -> "Personality": def initialize(
cls,
bot_nickname: str,
personality_core: str,
personality_side: str,
identity: List[str] = None,
compress_personality: bool = True,
compress_identity: bool = True,
) -> "Personality":
"""初始化人格特质 """初始化人格特质
Args: Args:

View File

@@ -1,6 +1,7 @@
from src.plugin_system.apis import send_api from src.plugin_system.apis import send_api
async def send_loading(chat_id: str, content: str): async def send_loading(chat_id: str, content: str):
await send_api.custom_to_stream( await send_api.custom_to_stream(
message_type="loading", message_type="loading",
@@ -10,6 +11,7 @@ async def send_loading(chat_id: str, content: str):
show_log=True, show_log=True,
) )
async def send_unloading(chat_id: str): async def send_unloading(chat_id: str):
await send_api.custom_to_stream( await send_api.custom_to_stream(
message_type="loading", message_type="loading",
@@ -18,4 +20,3 @@ async def send_unloading(chat_id: str):
storage_message=False, storage_message=False,
show_log=True, show_log=True,
) )

View File

@@ -322,7 +322,7 @@ class ChatMood:
"joy": mood_values.get("joy", 5), "joy": mood_values.get("joy", 5),
"anger": mood_values.get("anger", 1), "anger": mood_values.get("anger", 1),
"sorrow": mood_values.get("sorrow", 1), "sorrow": mood_values.get("sorrow", 1),
"fear": mood_values.get("fear", 1) "fear": mood_values.get("fear", 1),
} }
await send_api.custom_to_stream( await send_api.custom_to_stream(
@@ -379,14 +379,18 @@ class MoodRegressionTask(AsyncTask):
logger.debug(f"[回归任务] {chat_info} 已达到最大回归次数(3次),停止回归") logger.debug(f"[回归任务] {chat_info} 已达到最大回归次数(3次),停止回归")
continue continue
logger.info(f"[回归任务] {chat_info} 开始情绪回归 ({regress_reason},第{mood.regression_count + 1}次回归)") logger.info(
f"[回归任务] {chat_info} 开始情绪回归 ({regress_reason},第{mood.regression_count + 1}次回归)"
)
await mood.regress_mood() await mood.regress_mood()
regression_executed += 1 regression_executed += 1
else: else:
if has_extreme_emotion: if has_extreme_emotion:
remaining_time = 5 - time_since_last_change remaining_time = 5 - time_since_last_change
high_emotion_str = ", ".join([f"{k}={v}" for k, v in high_emotions.items()]) high_emotion_str = ", ".join([f"{k}={v}" for k, v in high_emotions.items()])
logger.debug(f"[回归任务] {chat_info} 存在极端情绪({high_emotion_str}),距离快速回归还需等待{int(remaining_time)}") logger.debug(
f"[回归任务] {chat_info} 存在极端情绪({high_emotion_str}),距离快速回归还需等待{int(remaining_time)}"
)
else: else:
remaining_time = 120 - time_since_last_change remaining_time = 120 - time_since_last_change
logger.debug(f"[回归任务] {chat_info} 距离回归还需等待{int(remaining_time)}") logger.debug(f"[回归任务] {chat_info} 距离回归还需等待{int(remaining_time)}")

View File

@@ -107,7 +107,6 @@ class S4UStreamGenerator:
model_name: str, model_name: str,
**kwargs, **kwargs,
) -> AsyncGenerator[str, None]: ) -> AsyncGenerator[str, None]:
buffer = "" buffer = ""
delimiters = ",。!?,.!?\n\r" # For final trimming delimiters = ",。!?,.!?\n\r" # For final trimming
punctuation_buffer = "" punctuation_buffer = ""

View File

@@ -43,6 +43,7 @@ logger = get_logger("watching")
class WatchingState(Enum): class WatchingState(Enum):
"""视线状态枚举""" """视线状态枚举"""
WANDERING = "wandering" # 随意看 WANDERING = "wandering" # 随意看
DANMU = "danmu" # 看弹幕 DANMU = "danmu" # 看弹幕
LENS = "lens" # 看镜头 LENS = "lens" # 看镜头
@@ -109,20 +110,14 @@ class ChatWatching:
await asyncio.sleep(self.danmu_viewing_duration) await asyncio.sleep(self.danmu_viewing_duration)
# 检查是否仍需要切换(可能状态已经被其他事件改变) # 检查是否仍需要切换(可能状态已经被其他事件改变)
if (self.reply_finished_time is not None and if self.reply_finished_time is not None and self.current_state == WatchingState.DANMU and not self.is_replying:
self.current_state == WatchingState.DANMU and
not self.is_replying):
await self._change_state(WatchingState.LENS, "看弹幕时间结束") await self._change_state(WatchingState.LENS, "看弹幕时间结束")
self.reply_finished_time = None # 重置完成时间 self.reply_finished_time = None # 重置完成时间
async def _send_watching_update(self): async def _send_watching_update(self):
"""立即发送视线状态更新""" """立即发送视线状态更新"""
await send_api.custom_to_stream( await send_api.custom_to_stream(
message_type="watching", message_type="watching", content=self.current_state.value, stream_id=self.chat_id, storage_message=False
content=self.current_state.value,
stream_id=self.chat_id,
storage_message=False
) )
logger.info(f"[{self.chat_id}] 发送视线状态更新: {self.current_state.value}") logger.info(f"[{self.chat_id}] 发送视线状态更新: {self.current_state.value}")
@@ -139,11 +134,10 @@ class ChatWatching:
"current_state": self.current_state.value, "current_state": self.current_state.value,
"is_replying": self.is_replying, "is_replying": self.is_replying,
"reply_finished_time": self.reply_finished_time, "reply_finished_time": self.reply_finished_time,
"state_needs_update": self.state_needs_update "state_needs_update": self.state_needs_update,
} }
class WatchingManager: class WatchingManager:
def __init__(self): def __init__(self):
self.watching_list: list[ChatWatching] = [] self.watching_list: list[ChatWatching] = []
@@ -200,10 +194,7 @@ class WatchingManager:
def get_all_watching_info(self) -> dict: def get_all_watching_info(self) -> dict:
"""获取所有聊天的视线状态信息(用于调试)""" """获取所有聊天的视线状态信息(用于调试)"""
return { return {watching.chat_id: watching.get_state_info() for watching in self.watching_list}
watching.chat_id: watching.get_state_info()
for watching in self.watching_list
}
# 全局视线管理器实例 # 全局视线管理器实例

View File

@@ -92,7 +92,7 @@ class ChatMood:
chat_id=self.chat_id, chat_id=self.chat_id,
timestamp_start=self.last_change_time, timestamp_start=self.last_change_time,
timestamp_end=message_time, timestamp_end=message_time,
limit=int(global_config.chat.max_context_size/3), limit=int(global_config.chat.max_context_size / 3),
limit_mode="last", limit_mode="last",
) )
chat_talking_prompt = build_readable_messages( chat_talking_prompt = build_readable_messages(
@@ -121,8 +121,6 @@ class ChatMood:
mood_state=self.mood_state, mood_state=self.mood_state,
) )
response, (reasoning_content, model_name) = await self.mood_model.generate_response_async(prompt=prompt) response, (reasoning_content, model_name) = await self.mood_model.generate_response_async(prompt=prompt)
if global_config.debug.show_prompt: if global_config.debug.show_prompt:
logger.info(f"{self.log_prefix} prompt: {prompt}") logger.info(f"{self.log_prefix} prompt: {prompt}")
@@ -170,7 +168,6 @@ class ChatMood:
mood_state=self.mood_state, mood_state=self.mood_state,
) )
response, (reasoning_content, model_name) = await self.mood_model.generate_response_async(prompt=prompt) response, (reasoning_content, model_name) = await self.mood_model.generate_response_async(prompt=prompt)
if global_config.debug.show_prompt: if global_config.debug.show_prompt:

View File

@@ -39,7 +39,12 @@ class ChatManager:
Returns: Returns:
List[ChatStream]: 聊天流列表 List[ChatStream]: 聊天流列表
Raises:
TypeError: 如果 platform 不是字符串或 SpecialTypes 枚举类型
""" """
if not isinstance(platform, (str, SpecialTypes)):
raise TypeError("platform 必须是字符串或是 SpecialTypes 枚举")
streams = [] streams = []
try: try:
for _, stream in get_chat_manager().streams.items(): for _, stream in get_chat_manager().streams.items():
@@ -60,6 +65,8 @@ class ChatManager:
Returns: Returns:
List[ChatStream]: 群聊聊天流列表 List[ChatStream]: 群聊聊天流列表
""" """
if not isinstance(platform, (str, SpecialTypes)):
raise TypeError("platform 必须是字符串或是 SpecialTypes 枚举")
streams = [] streams = []
try: try:
for _, stream in get_chat_manager().streams.items(): for _, stream in get_chat_manager().streams.items():
@@ -79,7 +86,12 @@ class ChatManager:
Returns: Returns:
List[ChatStream]: 私聊聊天流列表 List[ChatStream]: 私聊聊天流列表
Raises:
TypeError: 如果 platform 不是字符串或 SpecialTypes 枚举类型
""" """
if not isinstance(platform, (str, SpecialTypes)):
raise TypeError("platform 必须是字符串或是 SpecialTypes 枚举")
streams = [] streams = []
try: try:
for _, stream in get_chat_manager().streams.items(): for _, stream in get_chat_manager().streams.items():
@@ -102,7 +114,17 @@ class ChatManager:
Returns: Returns:
Optional[ChatStream]: 聊天流对象如果未找到返回None Optional[ChatStream]: 聊天流对象如果未找到返回None
Raises:
ValueError: 如果 group_id 为空字符串
TypeError: 如果 group_id 不是字符串类型或 platform 不是字符串或 SpecialTypes
""" """
if not isinstance(group_id, str):
raise TypeError("group_id 必须是字符串类型")
if not isinstance(platform, (str, SpecialTypes)):
raise TypeError("platform 必须是字符串或是 SpecialTypes 枚举")
if not group_id:
raise ValueError("group_id 不能为空")
try: try:
for _, stream in get_chat_manager().streams.items(): for _, stream in get_chat_manager().streams.items():
if ( if (
@@ -129,7 +151,17 @@ class ChatManager:
Returns: Returns:
Optional[ChatStream]: 聊天流对象如果未找到返回None Optional[ChatStream]: 聊天流对象如果未找到返回None
Raises:
ValueError: 如果 user_id 为空字符串
TypeError: 如果 user_id 不是字符串类型或 platform 不是字符串或 SpecialTypes
""" """
if not isinstance(user_id, str):
raise TypeError("user_id 必须是字符串类型")
if not isinstance(platform, (str, SpecialTypes)):
raise TypeError("platform 必须是字符串或是 SpecialTypes 枚举")
if not user_id:
raise ValueError("user_id 不能为空")
try: try:
for _, stream in get_chat_manager().streams.items(): for _, stream in get_chat_manager().streams.items():
if ( if (
@@ -153,9 +185,15 @@ class ChatManager:
Returns: Returns:
str: 聊天类型 ("group", "private", "unknown") str: 聊天类型 ("group", "private", "unknown")
Raises:
TypeError: 如果 chat_stream 不是 ChatStream 类型
ValueError: 如果 chat_stream 为空
""" """
if not isinstance(chat_stream, ChatStream):
raise TypeError("chat_stream 必须是 ChatStream 类型")
if not chat_stream: if not chat_stream:
raise ValueError("chat_stream cannot be None") raise ValueError("chat_stream 不能为 None")
if hasattr(chat_stream, "group_info"): if hasattr(chat_stream, "group_info"):
return "group" if chat_stream.group_info else "private" return "group" if chat_stream.group_info else "private"
@@ -170,9 +208,15 @@ class ChatManager:
Returns: Returns:
Dict[str, Any]: 聊天流信息字典 Dict[str, Any]: 聊天流信息字典
Raises:
TypeError: 如果 chat_stream 不是 ChatStream 类型
ValueError: 如果 chat_stream 为空
""" """
if not chat_stream: if not chat_stream:
return {} raise ValueError("chat_stream 不能为 None")
if not isinstance(chat_stream, ChatStream):
raise TypeError("chat_stream 必须是 ChatStream 类型")
try: try:
info: Dict[str, Any] = { info: Dict[str, Any] = {

View File

@@ -8,6 +8,8 @@
count = emoji_api.get_count() count = emoji_api.get_count()
""" """
import random
from typing import Optional, Tuple, List from typing import Optional, Tuple, List
from src.common.logger import get_logger from src.common.logger import get_logger
from src.chat.emoji_system.emoji_manager import get_emoji_manager from src.chat.emoji_system.emoji_manager import get_emoji_manager
@@ -29,7 +31,15 @@ async def get_by_description(description: str) -> Optional[Tuple[str, str, str]]
Returns: Returns:
Optional[Tuple[str, str, str]]: (base64编码, 表情包描述, 匹配的情感标签) 或 None Optional[Tuple[str, str, str]]: (base64编码, 表情包描述, 匹配的情感标签) 或 None
Raises:
ValueError: 如果描述为空字符串
TypeError: 如果描述不是字符串类型
""" """
if not description:
raise ValueError("描述不能为空")
if not isinstance(description, str):
raise TypeError("描述必须是字符串类型")
try: try:
logger.debug(f"[EmojiAPI] 根据描述获取表情包: {description}") logger.debug(f"[EmojiAPI] 根据描述获取表情包: {description}")
@@ -55,7 +65,7 @@ async def get_by_description(description: str) -> Optional[Tuple[str, str, str]]
return None return None
async def get_random(count: int = 1) -> Optional[List[Tuple[str, str, str]]]: async def get_random(count: Optional[int] = 1) -> Optional[List[Tuple[str, str, str]]]:
"""随机获取指定数量的表情包 """随机获取指定数量的表情包
Args: Args:
@@ -63,8 +73,17 @@ async def get_random(count: int = 1) -> Optional[List[Tuple[str, str, str]]]:
Returns: Returns:
Optional[List[Tuple[str, str, str]]]: 包含(base64编码, 表情包描述, 随机情感标签)的元组列表如果失败则为None Optional[List[Tuple[str, str, str]]]: 包含(base64编码, 表情包描述, 随机情感标签)的元组列表如果失败则为None
Raises:
TypeError: 如果count不是整数类型
ValueError: 如果count为负数
""" """
if count <= 0: if not isinstance(count, int):
raise TypeError("count 必须是整数类型")
if count < 0:
raise ValueError("count 不能为负数")
if count == 0:
logger.warning("[EmojiAPI] count 为0返回空列表")
return [] return []
try: try:
@@ -90,8 +109,6 @@ async def get_random(count: int = 1) -> Optional[List[Tuple[str, str, str]]]:
count = len(valid_emojis) count = len(valid_emojis)
# 随机选择 # 随机选择
import random
selected_emojis = random.sample(valid_emojis, count) selected_emojis = random.sample(valid_emojis, count)
results = [] results = []
@@ -128,7 +145,15 @@ async def get_by_emotion(emotion: str) -> Optional[Tuple[str, str, str]]:
Returns: Returns:
Optional[Tuple[str, str, str]]: (base64编码, 表情包描述, 匹配的情感标签) 或 None Optional[Tuple[str, str, str]]: (base64编码, 表情包描述, 匹配的情感标签) 或 None
Raises:
ValueError: 如果情感标签为空字符串
TypeError: 如果情感标签不是字符串类型
""" """
if not emotion:
raise ValueError("情感标签不能为空")
if not isinstance(emotion, str):
raise TypeError("情感标签必须是字符串类型")
try: try:
logger.info(f"[EmojiAPI] 根据情感获取表情包: {emotion}") logger.info(f"[EmojiAPI] 根据情感获取表情包: {emotion}")
@@ -146,8 +171,6 @@ async def get_by_emotion(emotion: str) -> Optional[Tuple[str, str, str]]:
return None return None
# 随机选择匹配的表情包 # 随机选择匹配的表情包
import random
selected_emoji = random.choice(matching_emojis) selected_emoji = random.choice(matching_emojis)
emoji_base64 = image_path_to_base64(selected_emoji.full_path) emoji_base64 = image_path_to_base64(selected_emoji.full_path)
@@ -185,11 +208,11 @@ def get_count() -> int:
return 0 return 0
def get_info() -> dict: def get_info():
"""获取表情包系统信息 """获取表情包系统信息
Returns: Returns:
dict: 包含表情包数量、最大数量信息 dict: 包含表情包数量、最大数量、可用数量信息
""" """
try: try:
emoji_manager = get_emoji_manager() emoji_manager = get_emoji_manager()
@@ -203,7 +226,7 @@ def get_info() -> dict:
return {"current_count": 0, "max_count": 0, "available_emojis": 0} return {"current_count": 0, "max_count": 0, "available_emojis": 0}
def get_emotions() -> list: def get_emotions() -> List[str]:
"""获取所有可用的情感标签 """获取所有可用的情感标签
Returns: Returns:
@@ -223,7 +246,7 @@ def get_emotions() -> list:
return [] return []
def get_descriptions() -> list: def get_descriptions() -> List[str]:
"""获取所有表情包描述 """获取所有表情包描述
Returns: Returns:

View File

@@ -5,11 +5,12 @@
使用方式: 使用方式:
from src.plugin_system.apis import generator_api from src.plugin_system.apis import generator_api
replyer = generator_api.get_replyer(chat_stream) replyer = generator_api.get_replyer(chat_stream)
success, reply_set = await generator_api.generate_reply(chat_stream, action_data, reasoning) success, reply_set, _ = await generator_api.generate_reply(chat_stream, action_data, reasoning)
""" """
import traceback import traceback
from typing import Tuple, Any, Dict, List, Optional from typing import Tuple, Any, Dict, List, Optional
from rich.traceback import install
from src.common.logger import get_logger from src.common.logger import get_logger
from src.chat.replyer.default_generator import DefaultReplyer from src.chat.replyer.default_generator import DefaultReplyer
from src.chat.message_receive.chat_stream import ChatStream from src.chat.message_receive.chat_stream import ChatStream
@@ -17,6 +18,8 @@ from src.chat.utils.utils import process_llm_response
from src.chat.replyer.replyer_manager import replyer_manager from src.chat.replyer.replyer_manager import replyer_manager
from src.plugin_system.base.component_types import ActionInfo from src.plugin_system.base.component_types import ActionInfo
install(extra_lines=3)
logger = get_logger("generator_api") logger = get_logger("generator_api")
@@ -44,7 +47,12 @@ def get_replyer(
Returns: Returns:
Optional[DefaultReplyer]: 回复器对象如果获取失败则返回None Optional[DefaultReplyer]: 回复器对象如果获取失败则返回None
Raises:
ValueError: chat_stream 和 chat_id 均为空
""" """
if not chat_id and not chat_stream:
raise ValueError("chat_stream 和 chat_id 不可均为空")
try: try:
logger.debug(f"[GeneratorAPI] 正在获取回复器chat_id: {chat_id}, chat_stream: {'' if chat_stream else ''}") logger.debug(f"[GeneratorAPI] 正在获取回复器chat_id: {chat_id}, chat_stream: {'' if chat_stream else ''}")
return replyer_manager.get_replyer( return replyer_manager.get_replyer(

View File

@@ -14,7 +14,6 @@ from src.config.config import global_config
logger = get_logger("llm_api") logger = get_logger("llm_api")
# ============================================================================= # =============================================================================
# LLM模型API函数 # LLM模型API函数
# ============================================================================= # =============================================================================
@@ -31,8 +30,21 @@ def get_available_models() -> Dict[str, Any]:
logger.error("[LLMAPI] 无法获取模型列表:全局配置中未找到 model 配置") logger.error("[LLMAPI] 无法获取模型列表:全局配置中未找到 model 配置")
return {} return {}
# 自动获取所有属性并转换为字典形式
rets = {}
models = global_config.model models = global_config.model
return models attrs = dir(models)
for attr in attrs:
if not attr.startswith("__"):
try:
value = getattr(models, attr)
if not callable(value): # 排除方法
rets[attr] = value
except Exception as e:
logger.debug(f"[LLMAPI] 获取属性 {attr} 失败: {e}")
continue
return rets
except Exception as e: except Exception as e:
logger.error(f"[LLMAPI] 获取可用模型失败: {e}") logger.error(f"[LLMAPI] 获取可用模型失败: {e}")
return {} return {}

View File

@@ -114,7 +114,11 @@ async def _send_to_target(
# 发送消息 # 发送消息
sent_msg = await heart_fc_sender.send_message( sent_msg = await heart_fc_sender.send_message(
bot_message, typing=typing, set_reply=(anchor_message is not None), storage_message=storage_message, show_log=show_log bot_message,
typing=typing,
set_reply=(anchor_message is not None),
storage_message=storage_message,
show_log=show_log,
) )
if sent_msg: if sent_msg:
@@ -362,7 +366,9 @@ async def custom_to_stream(
Returns: Returns:
bool: 是否发送成功 bool: 是否发送成功
""" """
return await _send_to_target(message_type, content, stream_id, display_message, typing, reply_to, storage_message, show_log) return await _send_to_target(
message_type, content, stream_id, display_message, typing, reply_to, storage_message, show_log
)
async def text_to_group( async def text_to_group(