feat:优化关键词显示,优化表达方式配置和逻辑

This commit is contained in:
SengokuCola
2025-08-09 00:10:41 +08:00
parent 59ac6713b1
commit 8053067af5
12 changed files with 634 additions and 691 deletions

View File

@@ -9,7 +9,7 @@ from typing import List, Dict, Optional, Any, Tuple
from src.common.logger import get_logger
from src.common.database.database_model import Expression
from src.llm_models.utils_model import LLMRequest
from src.config.config import model_config
from src.config.config import model_config, global_config
from src.chat.utils.chat_message_builder import get_raw_msg_by_timestamp_random, build_anonymous_messages
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.message_receive.chat_stream import get_chat_manager
@@ -79,15 +79,410 @@ def init_prompt() -> None:
class ExpressionLearner:
def __init__(self) -> None:
def __init__(self, chat_id: str) -> None:
self.express_learn_model: LLMRequest = LLMRequest(
model_set=model_config.model_task_config.replyer_1, request_type="expressor.learner"
)
self.llm_model = None
self.chat_id = chat_id
self.chat_name = get_chat_manager().get_stream_name(chat_id) or chat_id
# 维护每个chat的上次学习时间
self.last_learning_time: float = time.time()
# 学习参数
self.min_messages_for_learning = 25 # 触发学习所需的最少消息数
self.min_learning_interval = 300 # 最短学习时间间隔(秒)
def can_learn_for_chat(self) -> bool:
"""
检查指定聊天流是否允许学习表达
Args:
chat_id: 聊天流ID
Returns:
bool: 是否允许学习
"""
try:
use_expression, enable_learning, _ = global_config.expression.get_expression_config_for_chat(self.chat_id)
return enable_learning
except Exception as e:
logger.error(f"检查学习权限失败: {e}")
return False
def should_trigger_learning(self) -> bool:
"""
检查是否应该触发学习
Args:
chat_id: 聊天流ID
Returns:
bool: 是否应该触发学习
"""
current_time = time.time()
# 获取该聊天流的学习强度
try:
use_expression, enable_learning, learning_intensity = global_config.expression.get_expression_config_for_chat(self.chat_id)
except Exception as e:
logger.error(f"获取聊天流 {self.chat_id} 的学习配置失败: {e}")
return False
# 检查是否允许学习
if not enable_learning:
return False
# 根据学习强度计算最短学习时间间隔
min_interval = self.min_learning_interval / learning_intensity
# 检查时间间隔
time_diff = current_time - self.last_learning_time
if time_diff < min_interval:
return False
# 检查消息数量(只检查指定聊天流的消息)
recent_messages = get_raw_msg_by_timestamp_random(
self.last_learning_time, current_time, limit=self.min_messages_for_learning + 1, chat_id=self.chat_id
)
if not recent_messages or len(recent_messages) < self.min_messages_for_learning:
return False
return True
async def trigger_learning_for_chat(self) -> bool:
"""
为指定聊天流触发学习
Args:
chat_id: 聊天流ID
Returns:
bool: 是否成功触发学习
"""
if not self.should_trigger_learning():
return False
try:
logger.info(f"为聊天流 {self.chat_name} 触发表达学习")
# 学习语言风格
learnt_style = await self.learn_and_store(type="style", num=25)
# 学习句法特点
learnt_grammar = await self.learn_and_store(type="grammar", num=10)
# 更新学习时间
self.last_learning_time = time.time()
if learnt_style or learnt_grammar:
logger.info(f"聊天流 {self.chat_name} 表达学习完成")
return True
else:
logger.warning(f"聊天流 {self.chat_name} 表达学习未获得有效结果")
return False
except Exception as e:
logger.error(f"为聊天流 {self.chat_name} 触发学习失败: {e}")
return False
def get_expression_by_chat_id(self) -> Tuple[List[Dict[str, float]], List[Dict[str, float]]]:
"""
获取指定chat_id的style和grammar表达方式
返回的每个表达方式字典中都包含了source_id, 用于后续的更新操作
"""
learnt_style_expressions = []
learnt_grammar_expressions = []
# 直接从数据库查询
style_query = Expression.select().where((Expression.chat_id == self.chat_id) & (Expression.type == "style"))
for expr in style_query:
# 确保create_date存在如果不存在则使用last_active_time
create_date = expr.create_date if expr.create_date is not None else expr.last_active_time
learnt_style_expressions.append(
{
"situation": expr.situation,
"style": expr.style,
"count": expr.count,
"last_active_time": expr.last_active_time,
"source_id": self.chat_id,
"type": "style",
"create_date": create_date,
}
)
grammar_query = Expression.select().where((Expression.chat_id == self.chat_id) & (Expression.type == "grammar"))
for expr in grammar_query:
# 确保create_date存在如果不存在则使用last_active_time
create_date = expr.create_date if expr.create_date is not None else expr.last_active_time
learnt_grammar_expressions.append(
{
"situation": expr.situation,
"style": expr.style,
"count": expr.count,
"last_active_time": expr.last_active_time,
"source_id": self.chat_id,
"type": "grammar",
"create_date": create_date,
}
)
return learnt_style_expressions, learnt_grammar_expressions
def _apply_global_decay_to_database(self, current_time: float) -> None:
"""
对数据库中的所有表达方式应用全局衰减
"""
try:
# 获取所有表达方式
all_expressions = Expression.select()
updated_count = 0
deleted_count = 0
for expr in all_expressions:
# 计算时间差
last_active = expr.last_active_time
time_diff_days = (current_time - last_active) / (24 * 3600) # 转换为天
# 计算衰减值
decay_value = self.calculate_decay_factor(time_diff_days)
new_count = max(0.01, expr.count - decay_value)
if new_count <= 0.01:
# 如果count太小删除这个表达方式
expr.delete_instance()
deleted_count += 1
else:
# 更新count
expr.count = new_count
expr.save()
updated_count += 1
if updated_count > 0 or deleted_count > 0:
logger.info(f"全局衰减完成:更新了 {updated_count} 个表达方式,删除了 {deleted_count} 个表达方式")
except Exception as e:
logger.error(f"数据库全局衰减失败: {e}")
def calculate_decay_factor(self, time_diff_days: float) -> float:
"""
计算衰减值
当时间差为0天时衰减值为0最近活跃的不衰减
当时间差为7天时衰减值为0.002(中等衰减)
当时间差为30天或更长时衰减值为0.01(高衰减)
使用二次函数进行曲线插值
"""
if time_diff_days <= 0:
return 0.0 # 刚激活的表达式不衰减
if time_diff_days >= DECAY_DAYS:
return 0.01 # 长时间未活跃的表达式大幅衰减
# 使用二次函数插值在0-30天之间从0衰减到0.01
# 使用简单的二次函数y = a * x^2
# 当x=30时y=0.01,所以 a = 0.01 / (30^2) = 0.01 / 900
a = 0.01 / (DECAY_DAYS**2)
decay = a * (time_diff_days**2)
return min(0.01, decay)
async def learn_and_store(self, type: str, num: int = 10) -> List[Tuple[str, str, str]]:
# sourcery skip: use-join
"""
学习并存储表达方式
type: "style" or "grammar"
"""
if type == "style":
type_str = "语言风格"
elif type == "grammar":
type_str = "句法特点"
else:
raise ValueError(f"Invalid type: {type}")
# 检查是否允许在此聊天流中学习(在函数最前面检查)
if not self.can_learn_for_chat():
logger.debug(f"聊天流 {self.chat_name} 不允许学习表达,跳过学习")
return []
res = await self.learn_expression(type, num)
if res is None:
return []
learnt_expressions, chat_id = res
chat_stream = get_chat_manager().get_stream(chat_id)
if chat_stream is None:
group_name = f"聊天流 {chat_id}"
elif chat_stream.group_info:
group_name = chat_stream.group_info.group_name
else:
group_name = f"{chat_stream.user_info.user_nickname}的私聊"
learnt_expressions_str = ""
for _chat_id, situation, style in learnt_expressions:
learnt_expressions_str += f"{situation}->{style}\n"
logger.info(f"{group_name} 学习到{type_str}:\n{learnt_expressions_str}")
if not learnt_expressions:
logger.info(f"没有学习到{type_str}")
return []
# 按chat_id分组
chat_dict: Dict[str, List[Dict[str, Any]]] = {}
for chat_id, situation, style in learnt_expressions:
if chat_id not in chat_dict:
chat_dict[chat_id] = []
chat_dict[chat_id].append({"situation": situation, "style": style})
current_time = time.time()
# 存储到数据库 Expression 表
for chat_id, expr_list in chat_dict.items():
for new_expr in expr_list:
# 查找是否已存在相似表达方式
query = Expression.select().where(
(Expression.chat_id == chat_id)
& (Expression.type == type)
& (Expression.situation == new_expr["situation"])
& (Expression.style == new_expr["style"])
)
if query.exists():
expr_obj = query.get()
# 50%概率替换内容
if random.random() < 0.5:
expr_obj.situation = new_expr["situation"]
expr_obj.style = new_expr["style"]
expr_obj.count = expr_obj.count + 1
expr_obj.last_active_time = current_time
expr_obj.save()
else:
Expression.create(
situation=new_expr["situation"],
style=new_expr["style"],
count=1,
last_active_time=current_time,
chat_id=chat_id,
type=type,
create_date=current_time, # 手动设置创建日期
)
# 限制最大数量
exprs = list(
Expression.select()
.where((Expression.chat_id == chat_id) & (Expression.type == type))
.order_by(Expression.count.asc())
)
if len(exprs) > MAX_EXPRESSION_COUNT:
# 删除count最小的多余表达方式
for expr in exprs[: len(exprs) - MAX_EXPRESSION_COUNT]:
expr.delete_instance()
return learnt_expressions
async def learn_expression(self, type: str, num: int = 10) -> Optional[Tuple[List[Tuple[str, str, str]], str]]:
"""从指定聊天流学习表达方式
Args:
type: "style" or "grammar"
"""
if type == "style":
type_str = "语言风格"
prompt = "learn_style_prompt"
elif type == "grammar":
type_str = "句法特点"
prompt = "learn_grammar_prompt"
else:
raise ValueError(f"Invalid type: {type}")
current_time = time.time()
# 获取上次学习时间
last_time = self.last_learning_time.get(self.chat_id, current_time - 3600 * 24)
random_msg: Optional[List[Dict[str, Any]]] = get_raw_msg_by_timestamp_random(
last_time, current_time, limit=num, chat_id=self.chat_id
)
# print(random_msg)
if not random_msg or random_msg == []:
return None
# 转化成str
chat_id: str = random_msg[0]["chat_id"]
# random_msg_str: str = build_readable_messages(random_msg, timestamp_mode="normal")
random_msg_str: str = await build_anonymous_messages(random_msg)
# print(f"random_msg_str:{random_msg_str}")
prompt: str = await global_prompt_manager.format_prompt(
prompt,
chat_str=random_msg_str,
)
logger.debug(f"学习{type_str}的prompt: {prompt}")
try:
response, _ = await self.express_learn_model.generate_response_async(prompt, temperature=0.3)
except Exception as e:
logger.error(f"学习{type_str}失败: {e}")
return None
logger.debug(f"学习{type_str}的response: {response}")
expressions: List[Tuple[str, str, str]] = self.parse_expression_response(response, chat_id)
return expressions, chat_id
def parse_expression_response(self, response: str, chat_id: str) -> List[Tuple[str, str, str]]:
"""
解析LLM返回的表达风格总结每一行提取"""使用"之间的内容,存储为(situation, style)元组
"""
expressions: List[Tuple[str, str, str]] = []
for line in response.splitlines():
line = line.strip()
if not line:
continue
# 查找"当"和下一个引号
idx_when = line.find('"')
if idx_when == -1:
continue
idx_quote1 = idx_when + 1
idx_quote2 = line.find('"', idx_quote1 + 1)
if idx_quote2 == -1:
continue
situation = line[idx_quote1 + 1 : idx_quote2]
# 查找"使用"
idx_use = line.find('使用"', idx_quote2)
if idx_use == -1:
continue
idx_quote3 = idx_use + 2
idx_quote4 = line.find('"', idx_quote3 + 1)
if idx_quote4 == -1:
continue
style = line[idx_quote3 + 1 : idx_quote4]
expressions.append((chat_id, situation, style))
return expressions
init_prompt()
class ExpressionLearnerManager:
def __init__(self):
self.expression_learners = {}
self._ensure_expression_directories()
self._auto_migrate_json_to_db()
self._migrate_old_data_create_date()
def get_expression_learner(self, chat_id: str) -> ExpressionLearner:
if chat_id not in self.expression_learners:
self.expression_learners[chat_id] = ExpressionLearner(chat_id)
return self.expression_learners[chat_id]
def _ensure_expression_directories(self):
"""
确保表达方式相关的目录结构存在
@@ -106,6 +501,7 @@ class ExpressionLearner:
except Exception as e:
logger.error(f"创建目录失败 {directory}: {e}")
def _auto_migrate_json_to_db(self):
"""
自动将/data/expression/learnt_style 和 learnt_grammar 下所有expressions.json迁移到数据库。
@@ -238,346 +634,5 @@ class ExpressionLearner:
except Exception as e:
logger.error(f"迁移老数据创建日期失败: {e}")
def get_expression_by_chat_id(self, chat_id: str) -> Tuple[List[Dict[str, float]], List[Dict[str, float]]]:
"""
获取指定chat_id的style和grammar表达方式
返回的每个表达方式字典中都包含了source_id, 用于后续的更新操作
"""
learnt_style_expressions = []
learnt_grammar_expressions = []
# 直接从数据库查询
style_query = Expression.select().where((Expression.chat_id == chat_id) & (Expression.type == "style"))
for expr in style_query:
# 确保create_date存在如果不存在则使用last_active_time
create_date = expr.create_date if expr.create_date is not None else expr.last_active_time
learnt_style_expressions.append(
{
"situation": expr.situation,
"style": expr.style,
"count": expr.count,
"last_active_time": expr.last_active_time,
"source_id": chat_id,
"type": "style",
"create_date": create_date,
}
)
grammar_query = Expression.select().where((Expression.chat_id == chat_id) & (Expression.type == "grammar"))
for expr in grammar_query:
# 确保create_date存在如果不存在则使用last_active_time
create_date = expr.create_date if expr.create_date is not None else expr.last_active_time
learnt_grammar_expressions.append(
{
"situation": expr.situation,
"style": expr.style,
"count": expr.count,
"last_active_time": expr.last_active_time,
"source_id": chat_id,
"type": "grammar",
"create_date": create_date,
}
)
return learnt_style_expressions, learnt_grammar_expressions
def get_expression_create_info(self, chat_id: str, limit: int = 10) -> List[Dict[str, Any]]:
"""
获取指定chat_id的表达方式创建信息按创建日期排序
"""
try:
expressions = (
Expression.select()
.where(Expression.chat_id == chat_id)
.order_by(Expression.create_date.desc())
.limit(limit)
)
result = []
for expr in expressions:
create_date = expr.create_date if expr.create_date is not None else expr.last_active_time
result.append(
{
"situation": expr.situation,
"style": expr.style,
"type": expr.type,
"count": expr.count,
"create_date": create_date,
"create_date_formatted": format_create_date(create_date),
"last_active_time": expr.last_active_time,
"last_active_formatted": format_create_date(expr.last_active_time),
}
)
return result
except Exception as e:
logger.error(f"获取表达方式创建信息失败: {e}")
return []
def is_similar(self, s1: str, s2: str) -> bool:
"""
判断两个字符串是否相似只考虑长度大于5且有80%以上重合,不考虑子串)
"""
if not s1 or not s2:
return False
min_len = min(len(s1), len(s2))
if min_len < 5:
return False
same = sum(a == b for a, b in zip(s1, s2, strict=False))
return same / min_len > 0.8
async def learn_and_store_expression(self) -> Tuple[List[Tuple[str, str, str]], List[Tuple[str, str, str]]]:
"""
学习并存储表达方式,分别学习语言风格和句法特点
同时对所有已存储的表达方式进行全局衰减
"""
current_time = time.time()
# 全局衰减所有已存储的表达方式(直接操作数据库)
self._apply_global_decay_to_database(current_time)
learnt_style: Optional[List[Tuple[str, str, str]]] = []
learnt_grammar: Optional[List[Tuple[str, str, str]]] = []
# 学习新的表达方式(这里会进行局部衰减)
for _ in range(3):
learnt_style = await self.learn_and_store(type="style", num=25)
if not learnt_style:
return [], []
for _ in range(1):
learnt_grammar = await self.learn_and_store(type="grammar", num=10)
if not learnt_grammar:
return [], []
return learnt_style, learnt_grammar
def _apply_global_decay_to_database(self, current_time: float) -> None:
"""
对数据库中的所有表达方式应用全局衰减
"""
try:
# 获取所有表达方式
all_expressions = Expression.select()
updated_count = 0
deleted_count = 0
for expr in all_expressions:
# 计算时间差
last_active = expr.last_active_time
time_diff_days = (current_time - last_active) / (24 * 3600) # 转换为天
# 计算衰减值
decay_value = self.calculate_decay_factor(time_diff_days)
new_count = max(0.01, expr.count - decay_value)
if new_count <= 0.01:
# 如果count太小删除这个表达方式
expr.delete_instance()
deleted_count += 1
else:
# 更新count
expr.count = new_count
expr.save()
updated_count += 1
if updated_count > 0 or deleted_count > 0:
logger.info(f"全局衰减完成:更新了 {updated_count} 个表达方式,删除了 {deleted_count} 个表达方式")
except Exception as e:
logger.error(f"数据库全局衰减失败: {e}")
def calculate_decay_factor(self, time_diff_days: float) -> float:
"""
计算衰减值
当时间差为0天时衰减值为0最近活跃的不衰减
当时间差为7天时衰减值为0.002(中等衰减)
当时间差为30天或更长时衰减值为0.01(高衰减)
使用二次函数进行曲线插值
"""
if time_diff_days <= 0:
return 0.0 # 刚激活的表达式不衰减
if time_diff_days >= DECAY_DAYS:
return 0.01 # 长时间未活跃的表达式大幅衰减
# 使用二次函数插值在0-30天之间从0衰减到0.01
# 使用简单的二次函数y = a * x^2
# 当x=30时y=0.01,所以 a = 0.01 / (30^2) = 0.01 / 900
a = 0.01 / (DECAY_DAYS**2)
decay = a * (time_diff_days**2)
return min(0.01, decay)
async def learn_and_store(self, type: str, num: int = 10) -> List[Tuple[str, str, str]]:
# sourcery skip: use-join
"""
选择从当前到最近1小时内的随机num条消息然后学习这些消息的表达方式
type: "style" or "grammar"
"""
if type == "style":
type_str = "语言风格"
elif type == "grammar":
type_str = "句法特点"
else:
raise ValueError(f"Invalid type: {type}")
res = await self.learn_expression(type, num)
if res is None:
return []
learnt_expressions, chat_id = res
chat_stream = get_chat_manager().get_stream(chat_id)
if chat_stream is None:
group_name = f"聊天流 {chat_id}"
elif chat_stream.group_info:
group_name = chat_stream.group_info.group_name
else:
group_name = f"{chat_stream.user_info.user_nickname}的私聊"
learnt_expressions_str = ""
for _chat_id, situation, style in learnt_expressions:
learnt_expressions_str += f"{situation}->{style}\n"
logger.info(f"{group_name} 学习到{type_str}:\n{learnt_expressions_str}")
if not learnt_expressions:
logger.info(f"没有学习到{type_str}")
return []
# 按chat_id分组
chat_dict: Dict[str, List[Dict[str, Any]]] = {}
for chat_id, situation, style in learnt_expressions:
if chat_id not in chat_dict:
chat_dict[chat_id] = []
chat_dict[chat_id].append({"situation": situation, "style": style})
current_time = time.time()
# 存储到数据库 Expression 表
for chat_id, expr_list in chat_dict.items():
for new_expr in expr_list:
# 查找是否已存在相似表达方式
query = Expression.select().where(
(Expression.chat_id == chat_id)
& (Expression.type == type)
& (Expression.situation == new_expr["situation"])
& (Expression.style == new_expr["style"])
)
if query.exists():
expr_obj = query.get()
# 50%概率替换内容
if random.random() < 0.5:
expr_obj.situation = new_expr["situation"]
expr_obj.style = new_expr["style"]
expr_obj.count = expr_obj.count + 1
expr_obj.last_active_time = current_time
expr_obj.save()
else:
Expression.create(
situation=new_expr["situation"],
style=new_expr["style"],
count=1,
last_active_time=current_time,
chat_id=chat_id,
type=type,
create_date=current_time, # 手动设置创建日期
)
# 限制最大数量
exprs = list(
Expression.select()
.where((Expression.chat_id == chat_id) & (Expression.type == type))
.order_by(Expression.count.asc())
)
if len(exprs) > MAX_EXPRESSION_COUNT:
# 删除count最小的多余表达方式
for expr in exprs[: len(exprs) - MAX_EXPRESSION_COUNT]:
expr.delete_instance()
return learnt_expressions
async def learn_expression(self, type: str, num: int = 10) -> Optional[Tuple[List[Tuple[str, str, str]], str]]:
"""选择从当前到最近1小时内的随机num条消息然后学习这些消息的表达方式
Args:
type: "style" or "grammar"
"""
if type == "style":
type_str = "语言风格"
prompt = "learn_style_prompt"
elif type == "grammar":
type_str = "句法特点"
prompt = "learn_grammar_prompt"
else:
raise ValueError(f"Invalid type: {type}")
current_time = time.time()
random_msg: Optional[List[Dict[str, Any]]] = get_raw_msg_by_timestamp_random(
current_time - 3600 * 24, current_time, limit=num
)
# print(random_msg)
if not random_msg or random_msg == []:
return None
# 转化成str
chat_id: str = random_msg[0]["chat_id"]
# random_msg_str: str = build_readable_messages(random_msg, timestamp_mode="normal")
random_msg_str: str = await build_anonymous_messages(random_msg)
# print(f"random_msg_str:{random_msg_str}")
prompt: str = await global_prompt_manager.format_prompt(
prompt,
chat_str=random_msg_str,
)
logger.debug(f"学习{type_str}的prompt: {prompt}")
try:
response, _ = await self.express_learn_model.generate_response_async(prompt, temperature=0.3)
except Exception as e:
logger.error(f"学习{type_str}失败: {e}")
return None
logger.debug(f"学习{type_str}的response: {response}")
expressions: List[Tuple[str, str, str]] = self.parse_expression_response(response, chat_id)
return expressions, chat_id
def parse_expression_response(self, response: str, chat_id: str) -> List[Tuple[str, str, str]]:
"""
解析LLM返回的表达风格总结每一行提取"""使用"之间的内容,存储为(situation, style)元组
"""
expressions: List[Tuple[str, str, str]] = []
for line in response.splitlines():
line = line.strip()
if not line:
continue
# 查找"当"和下一个引号
idx_when = line.find('"')
if idx_when == -1:
continue
idx_quote1 = idx_when + 1
idx_quote2 = line.find('"', idx_quote1 + 1)
if idx_quote2 == -1:
continue
situation = line[idx_quote1 + 1 : idx_quote2]
# 查找"使用"
idx_use = line.find('使用"', idx_quote2)
if idx_use == -1:
continue
idx_quote3 = idx_use + 2
idx_quote4 = line.find('"', idx_quote3 + 1)
if idx_quote4 == -1:
continue
style = line[idx_quote3 + 1 : idx_quote4]
expressions.append((chat_id, situation, style))
return expressions
init_prompt()
expression_learner = None
def get_expression_learner():
global expression_learner
if expression_learner is None:
expression_learner = ExpressionLearner()
return expression_learner
expression_learner_manager = ExpressionLearnerManager()