Merge branch 'dev' of github.com:MaiM-with-u/MaiBot into dev
This commit is contained in:
@@ -2,13 +2,15 @@
|
||||
|
||||
## [0.9.1] - 2025-7-25
|
||||
|
||||
- 修复reply导致的planner异常空跳
|
||||
- 修复表达方式迁移空目录问题
|
||||
- 修复reply_to空字段问题
|
||||
- 将metioned bot 和 at应用到focus prompt中
|
||||
- 更好的兴趣度计算
|
||||
- 修复部分模型由于enable_thinking导致的400问题
|
||||
- 优化关键词提取
|
||||
|
||||
|
||||
|
||||
## [0.9.0] - 2025-7-25
|
||||
## [0.9.0] - 2025-7-24
|
||||
|
||||
### 摘要
|
||||
MaiBot 0.9.0 重磅升级!本版本带来两大核心突破:**全面重构的插件系统**提供更强大的扩展能力和管理功能;**normal和focus模式统一化处理**大幅简化架构并提升性能。同时新增s4u prompt模式优化、语音消息支持、全新情绪系统和mais4u直播互动功能,为MaiBot带来更自然、更智能的交互体验!
|
||||
|
||||
@@ -330,13 +330,13 @@ class HeartFChatting:
|
||||
|
||||
if self.loop_mode == ChatMode.NORMAL:
|
||||
if action_type == "no_action":
|
||||
logger.info(f"[{self.log_prefix}] {global_config.bot.nickname} 决定进行回复")
|
||||
logger.info(f"{self.log_prefix}{global_config.bot.nickname} 决定进行回复")
|
||||
elif is_parallel:
|
||||
logger.info(
|
||||
f"[{self.log_prefix}] {global_config.bot.nickname} 决定进行回复, 同时执行{action_type}动作"
|
||||
f"{self.log_prefix}{global_config.bot.nickname} 决定进行回复, 同时执行{action_type}动作"
|
||||
)
|
||||
else:
|
||||
logger.info(f"[{self.log_prefix}] {global_config.bot.nickname} 决定执行{action_type}动作")
|
||||
logger.info(f"{self.log_prefix}{global_config.bot.nickname} 决定执行{action_type}动作")
|
||||
|
||||
if action_type == "no_action":
|
||||
# 等待回复生成完毕
|
||||
@@ -351,15 +351,15 @@ class HeartFChatting:
|
||||
|
||||
# 模型炸了,没有回复内容生成
|
||||
if not response_set:
|
||||
logger.warning(f"[{self.log_prefix}] 模型未生成回复内容")
|
||||
logger.warning(f"{self.log_prefix}模型未生成回复内容")
|
||||
return False
|
||||
elif action_type not in ["no_action"] and not is_parallel:
|
||||
logger.info(
|
||||
f"[{self.log_prefix}] {global_config.bot.nickname} 原本想要回复:{content},但选择执行{action_type},不发表回复"
|
||||
f"{self.log_prefix}{global_config.bot.nickname} 原本想要回复:{content},但选择执行{action_type},不发表回复"
|
||||
)
|
||||
return False
|
||||
|
||||
logger.info(f"[{self.log_prefix}] {global_config.bot.nickname} 决定的回复内容: {content}")
|
||||
logger.info(f"{self.log_prefix}{global_config.bot.nickname} 决定的回复内容: {content}")
|
||||
|
||||
# 发送回复 (不再需要传入 chat)
|
||||
reply_text = await self._send_response(response_set, reply_to_str, loop_start_time,message_data)
|
||||
@@ -563,7 +563,7 @@ class HeartFChatting:
|
||||
return reply_set
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[{self.log_prefix}] 回复生成出现错误:{str(e)} {traceback.format_exc()}")
|
||||
logger.error(f"{self.log_prefix}回复生成出现错误:{str(e)} {traceback.format_exc()}")
|
||||
return None
|
||||
|
||||
async def _send_response(self, reply_set, reply_to, thinking_start_time, message_data):
|
||||
|
||||
@@ -12,6 +12,7 @@ from src.chat.message_receive.storage import MessageStorage
|
||||
from src.chat.heart_flow.heartflow import heartflow
|
||||
from src.chat.utils.utils import is_mentioned_bot_in_message
|
||||
from src.chat.utils.timer_calculator import Timer
|
||||
from src.chat.utils.chat_message_builder import replace_user_references_in_content
|
||||
from src.common.logger import get_logger
|
||||
from src.person_info.relationship_manager import get_relationship_manager
|
||||
from src.mood.mood_manager import mood_manager
|
||||
@@ -56,6 +57,7 @@ async def _calculate_interest(message: MessageRecv) -> Tuple[float, bool]:
|
||||
with Timer("记忆激活"):
|
||||
interested_rate = await hippocampus_manager.get_activate_from_text(
|
||||
message.processed_plain_text,
|
||||
max_depth= 5,
|
||||
fast_retrieval=False,
|
||||
)
|
||||
logger.debug(f"记忆激活率: {interested_rate:.2f}")
|
||||
@@ -148,6 +150,14 @@ class HeartFCMessageReceiver:
|
||||
picid_pattern = r"\[picid:([^\]]+)\]"
|
||||
processed_plain_text = re.sub(picid_pattern, "[图片]", message.processed_plain_text)
|
||||
|
||||
# 应用用户引用格式替换,将回复<aaa:bbb>和@<aaa:bbb>格式转换为可读格式
|
||||
processed_plain_text = replace_user_references_in_content(
|
||||
processed_plain_text,
|
||||
message.message_info.platform,
|
||||
is_async=False,
|
||||
replace_bot_name=True
|
||||
)
|
||||
|
||||
logger.info(f"[{mes_name}]{userinfo.user_nickname}:{processed_plain_text}[兴趣度:{interested_rate:.2f}]") # type: ignore
|
||||
|
||||
logger.debug(f"[{mes_name}][当前时段回复频率: {current_talk_frequency}]")
|
||||
|
||||
@@ -224,10 +224,15 @@ class Hippocampus:
|
||||
return hash((source, target))
|
||||
|
||||
@staticmethod
|
||||
def find_topic_llm(text, topic_num):
|
||||
# sourcery skip: inline-immediately-returned-variable
|
||||
def find_topic_llm(text:str, topic_num:int|list[int]):
|
||||
topic_num_str = ""
|
||||
if isinstance(topic_num, list):
|
||||
topic_num_str = f"{topic_num[0]}-{topic_num[1]}"
|
||||
else:
|
||||
topic_num_str = topic_num
|
||||
|
||||
prompt = (
|
||||
f"这是一段文字:\n{text}\n\n请你从这段话中总结出最多{topic_num}个关键的概念,可以是名词,动词,或者特定人物,帮我列出来,"
|
||||
f"这是一段文字:\n{text}\n\n请你从这段话中总结出最多{topic_num_str}个关键的概念,可以是名词,动词,或者特定人物,帮我列出来,"
|
||||
f"将主题用逗号隔开,并加上<>,例如<主题1>,<主题2>......尽可能精简。只需要列举最多{topic_num}个话题就好,不要有序号,不要告诉我其他内容。"
|
||||
f"如果确定找不出主题或者没有明显主题,返回<none>。"
|
||||
)
|
||||
@@ -300,7 +305,7 @@ class Hippocampus:
|
||||
memories.sort(key=lambda x: x[2], reverse=True)
|
||||
return memories
|
||||
|
||||
async def get_keywords_from_text(self, text: str, fast_retrieval: bool = False) -> list:
|
||||
async def get_keywords_from_text(self, text: str) -> list:
|
||||
"""从文本中提取关键词。
|
||||
|
||||
Args:
|
||||
@@ -312,33 +317,27 @@ class Hippocampus:
|
||||
if not text:
|
||||
return []
|
||||
|
||||
if fast_retrieval:
|
||||
# 使用jieba分词提取关键词
|
||||
words = jieba.cut(text)
|
||||
# 过滤掉停用词和单字词
|
||||
keywords = [word for word in words if len(word) > 1]
|
||||
# 去重
|
||||
keywords = list(set(keywords))
|
||||
# 限制关键词数量
|
||||
logger.debug(f"提取关键词: {keywords}")
|
||||
|
||||
else:
|
||||
# 使用LLM提取关键词 - 根据详细文本长度分布优化topic_num计算
|
||||
text_length = len(text)
|
||||
topic_num:str|list[int] = None
|
||||
if text_length <= 5:
|
||||
topic_num = 1 # 1-5字符: 1个关键词 (26.57%的文本)
|
||||
words = jieba.cut(text)
|
||||
keywords = [word for word in words if len(word) > 1]
|
||||
keywords = list(set(keywords))[:3] # 限制最多3个关键词
|
||||
logger.info(f"提取关键词: {keywords}")
|
||||
return keywords
|
||||
elif text_length <= 10:
|
||||
topic_num = 1 # 6-10字符: 1个关键词 (27.18%的文本)
|
||||
topic_num = [1,3] # 6-10字符: 1个关键词 (27.18%的文本)
|
||||
elif text_length <= 20:
|
||||
topic_num = 2 # 11-20字符: 2个关键词 (22.76%的文本)
|
||||
topic_num = [2,4] # 11-20字符: 2个关键词 (22.76%的文本)
|
||||
elif text_length <= 30:
|
||||
topic_num = 3 # 21-30字符: 3个关键词 (10.33%的文本)
|
||||
topic_num = [3,5] # 21-30字符: 3个关键词 (10.33%的文本)
|
||||
elif text_length <= 50:
|
||||
topic_num = 4 # 31-50字符: 4个关键词 (9.79%的文本)
|
||||
topic_num = [4,5] # 31-50字符: 4个关键词 (9.79%的文本)
|
||||
else:
|
||||
topic_num = 5 # 51+字符: 5个关键词 (其余长文本)
|
||||
|
||||
# logger.info(f"提取关键词数量: {topic_num}")
|
||||
|
||||
topics_response, (reasoning_content, model_name) = await self.model_summary.generate_response_async(
|
||||
self.find_topic_llm(text, topic_num)
|
||||
)
|
||||
@@ -354,6 +353,8 @@ class Hippocampus:
|
||||
if keyword.strip()
|
||||
]
|
||||
|
||||
logger.info(f"提取关键词: {keywords}")
|
||||
|
||||
return keywords
|
||||
|
||||
|
||||
@@ -382,7 +383,7 @@ class Hippocampus:
|
||||
- memory_items: list, 该主题下的记忆项列表
|
||||
- similarity: float, 与文本的相似度
|
||||
"""
|
||||
keywords = await self.get_keywords_from_text(text, fast_retrieval)
|
||||
keywords = await self.get_keywords_from_text(text)
|
||||
|
||||
# 过滤掉不存在于记忆图中的关键词
|
||||
valid_keywords = [keyword for keyword in keywords if keyword in self.memory_graph.G]
|
||||
@@ -704,7 +705,7 @@ class Hippocampus:
|
||||
Returns:
|
||||
float: 激活节点数与总节点数的比值
|
||||
"""
|
||||
keywords = await self.get_keywords_from_text(text, fast_retrieval)
|
||||
keywords = await self.get_keywords_from_text(text)
|
||||
|
||||
# 过滤掉不存在于记忆图中的关键词
|
||||
valid_keywords = [keyword for keyword in keywords if keyword in self.memory_graph.G]
|
||||
@@ -721,7 +722,7 @@ class Hippocampus:
|
||||
for keyword in valid_keywords:
|
||||
logger.debug(f"开始以关键词 '{keyword}' 为中心进行扩散检索 (最大深度: {max_depth}):")
|
||||
# 初始化激活值
|
||||
activation_values = {keyword: 1.0}
|
||||
activation_values = {keyword: 1.5}
|
||||
# 记录已访问的节点
|
||||
visited_nodes = {keyword}
|
||||
# 待处理的节点队列,每个元素是(节点, 激活值, 当前深度)
|
||||
|
||||
@@ -17,7 +17,7 @@ from src.chat.message_receive.uni_message_sender import HeartFCSender
|
||||
from src.chat.utils.timer_calculator import Timer # <--- Import Timer
|
||||
from src.chat.utils.utils import get_chat_type_and_target_info
|
||||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
|
||||
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat, replace_user_references_in_content
|
||||
from src.chat.express.expression_selector import expression_selector
|
||||
from src.chat.knowledge.knowledge_lib import qa_manager
|
||||
from src.chat.memory_system.memory_activator import MemoryActivator
|
||||
@@ -630,6 +630,14 @@ class DefaultReplyer:
|
||||
|
||||
sender, target = self._parse_reply_target(reply_to)
|
||||
|
||||
target = replace_user_references_in_content(
|
||||
target,
|
||||
chat_stream.platform,
|
||||
is_async=False,
|
||||
replace_bot_name=True
|
||||
)
|
||||
|
||||
|
||||
# 构建action描述 (如果启用planner)
|
||||
action_descriptions = ""
|
||||
if available_actions:
|
||||
|
||||
@@ -2,7 +2,7 @@ import time # 导入 time 模块以获取当前时间
|
||||
import random
|
||||
import re
|
||||
|
||||
from typing import List, Dict, Any, Tuple, Optional
|
||||
from typing import List, Dict, Any, Tuple, Optional, Union, Callable
|
||||
from rich.traceback import install
|
||||
|
||||
from src.config.config import global_config
|
||||
@@ -15,6 +15,155 @@ from src.chat.utils.utils import translate_timestamp_to_human_readable,assign_me
|
||||
install(extra_lines=3)
|
||||
|
||||
|
||||
def replace_user_references_in_content(
|
||||
content: str,
|
||||
platform: str,
|
||||
name_resolver: Union[Callable[[str, str], str], Callable[[str, str], Any]] = None,
|
||||
is_async: bool = False,
|
||||
replace_bot_name: bool = True
|
||||
) -> Union[str, Any]:
|
||||
"""
|
||||
替换内容中的用户引用格式,包括回复<aaa:bbb>和@<aaa:bbb>格式
|
||||
|
||||
Args:
|
||||
content: 要处理的内容字符串
|
||||
platform: 平台标识
|
||||
name_resolver: 名称解析函数,接收(platform, user_id)参数,返回用户名称
|
||||
如果为None,则使用默认的person_info_manager
|
||||
is_async: 是否为异步模式
|
||||
replace_bot_name: 是否将机器人的user_id替换为"机器人昵称(你)"
|
||||
|
||||
Returns:
|
||||
处理后的内容字符串(同步模式)或awaitable对象(异步模式)
|
||||
"""
|
||||
if is_async:
|
||||
return _replace_user_references_async(content, platform, name_resolver, replace_bot_name)
|
||||
else:
|
||||
return _replace_user_references_sync(content, platform, name_resolver, replace_bot_name)
|
||||
|
||||
|
||||
def _replace_user_references_sync(
|
||||
content: str,
|
||||
platform: str,
|
||||
name_resolver: Optional[Callable[[str, str], str]] = None,
|
||||
replace_bot_name: bool = True
|
||||
) -> str:
|
||||
"""同步版本的用户引用替换"""
|
||||
if name_resolver is None:
|
||||
person_info_manager = get_person_info_manager()
|
||||
def default_resolver(platform: str, user_id: str) -> str:
|
||||
# 检查是否是机器人自己
|
||||
if replace_bot_name and user_id == global_config.bot.qq_account:
|
||||
return f"{global_config.bot.nickname}(你)"
|
||||
person_id = PersonInfoManager.get_person_id(platform, user_id)
|
||||
return person_info_manager.get_value_sync(person_id, "person_name") or user_id
|
||||
name_resolver = default_resolver
|
||||
|
||||
# 处理回复<aaa:bbb>格式
|
||||
reply_pattern = r"回复<([^:<>]+):([^:<>]+)>"
|
||||
match = re.search(reply_pattern, content)
|
||||
if match:
|
||||
aaa = match.group(1)
|
||||
bbb = match.group(2)
|
||||
try:
|
||||
# 检查是否是机器人自己
|
||||
if replace_bot_name and bbb == global_config.bot.qq_account:
|
||||
reply_person_name = f"{global_config.bot.nickname}(你)"
|
||||
else:
|
||||
reply_person_name = name_resolver(platform, bbb) or aaa
|
||||
content = re.sub(reply_pattern, f"回复 {reply_person_name}", content, count=1)
|
||||
except Exception:
|
||||
# 如果解析失败,使用原始昵称
|
||||
content = re.sub(reply_pattern, f"回复 {aaa}", content, count=1)
|
||||
|
||||
# 处理@<aaa:bbb>格式
|
||||
at_pattern = r"@<([^:<>]+):([^:<>]+)>"
|
||||
at_matches = list(re.finditer(at_pattern, content))
|
||||
if at_matches:
|
||||
new_content = ""
|
||||
last_end = 0
|
||||
for m in at_matches:
|
||||
new_content += content[last_end:m.start()]
|
||||
aaa = m.group(1)
|
||||
bbb = m.group(2)
|
||||
try:
|
||||
# 检查是否是机器人自己
|
||||
if replace_bot_name and bbb == global_config.bot.qq_account:
|
||||
at_person_name = f"{global_config.bot.nickname}(你)"
|
||||
else:
|
||||
at_person_name = name_resolver(platform, bbb) or aaa
|
||||
new_content += f"@{at_person_name}"
|
||||
except Exception:
|
||||
# 如果解析失败,使用原始昵称
|
||||
new_content += f"@{aaa}"
|
||||
last_end = m.end()
|
||||
new_content += content[last_end:]
|
||||
content = new_content
|
||||
|
||||
return content
|
||||
|
||||
|
||||
async def _replace_user_references_async(
|
||||
content: str,
|
||||
platform: str,
|
||||
name_resolver: Optional[Callable[[str, str], Any]] = None,
|
||||
replace_bot_name: bool = True
|
||||
) -> str:
|
||||
"""异步版本的用户引用替换"""
|
||||
if name_resolver is None:
|
||||
person_info_manager = get_person_info_manager()
|
||||
async def default_resolver(platform: str, user_id: str) -> str:
|
||||
# 检查是否是机器人自己
|
||||
if replace_bot_name and user_id == global_config.bot.qq_account:
|
||||
return f"{global_config.bot.nickname}(你)"
|
||||
person_id = PersonInfoManager.get_person_id(platform, user_id)
|
||||
return await person_info_manager.get_value(person_id, "person_name") or user_id
|
||||
name_resolver = default_resolver
|
||||
|
||||
# 处理回复<aaa:bbb>格式
|
||||
reply_pattern = r"回复<([^:<>]+):([^:<>]+)>"
|
||||
match = re.search(reply_pattern, content)
|
||||
if match:
|
||||
aaa = match.group(1)
|
||||
bbb = match.group(2)
|
||||
try:
|
||||
# 检查是否是机器人自己
|
||||
if replace_bot_name and bbb == global_config.bot.qq_account:
|
||||
reply_person_name = f"{global_config.bot.nickname}(你)"
|
||||
else:
|
||||
reply_person_name = await name_resolver(platform, bbb) or aaa
|
||||
content = re.sub(reply_pattern, f"回复 {reply_person_name}", content, count=1)
|
||||
except Exception:
|
||||
# 如果解析失败,使用原始昵称
|
||||
content = re.sub(reply_pattern, f"回复 {aaa}", content, count=1)
|
||||
|
||||
# 处理@<aaa:bbb>格式
|
||||
at_pattern = r"@<([^:<>]+):([^:<>]+)>"
|
||||
at_matches = list(re.finditer(at_pattern, content))
|
||||
if at_matches:
|
||||
new_content = ""
|
||||
last_end = 0
|
||||
for m in at_matches:
|
||||
new_content += content[last_end:m.start()]
|
||||
aaa = m.group(1)
|
||||
bbb = m.group(2)
|
||||
try:
|
||||
# 检查是否是机器人自己
|
||||
if replace_bot_name and bbb == global_config.bot.qq_account:
|
||||
at_person_name = f"{global_config.bot.nickname}(你)"
|
||||
else:
|
||||
at_person_name = await name_resolver(platform, bbb) or aaa
|
||||
new_content += f"@{at_person_name}"
|
||||
except Exception:
|
||||
# 如果解析失败,使用原始昵称
|
||||
new_content += f"@{aaa}"
|
||||
last_end = m.end()
|
||||
new_content += content[last_end:]
|
||||
content = new_content
|
||||
|
||||
return content
|
||||
|
||||
|
||||
def get_raw_msg_by_timestamp(
|
||||
timestamp_start: float, timestamp_end: float, limit: int = 0, limit_mode: str = "latest"
|
||||
) -> List[Dict[str, Any]]:
|
||||
@@ -374,33 +523,8 @@ def _build_readable_messages_internal(
|
||||
else:
|
||||
person_name = "某人"
|
||||
|
||||
# 检查是否有 回复<aaa:bbb> 字段
|
||||
reply_pattern = r"回复<([^:<>]+):([^:<>]+)>"
|
||||
match = re.search(reply_pattern, content)
|
||||
if match:
|
||||
aaa: str = match[1]
|
||||
bbb: str = match[2]
|
||||
reply_person_id = PersonInfoManager.get_person_id(platform, bbb)
|
||||
reply_person_name = person_info_manager.get_value_sync(reply_person_id, "person_name") or aaa
|
||||
# 在内容前加上回复信息
|
||||
content = re.sub(reply_pattern, lambda m, name=reply_person_name: f"回复 {name}", content, count=1)
|
||||
|
||||
# 检查是否有 @<aaa:bbb> 字段 @<{member_info.get('nickname')}:{member_info.get('user_id')}>
|
||||
at_pattern = r"@<([^:<>]+):([^:<>]+)>"
|
||||
at_matches = list(re.finditer(at_pattern, content))
|
||||
if at_matches:
|
||||
new_content = ""
|
||||
last_end = 0
|
||||
for m in at_matches:
|
||||
new_content += content[last_end : m.start()]
|
||||
aaa = m.group(1)
|
||||
bbb = m.group(2)
|
||||
at_person_id = PersonInfoManager.get_person_id(platform, bbb)
|
||||
at_person_name = person_info_manager.get_value_sync(at_person_id, "person_name") or aaa
|
||||
new_content += f"@{at_person_name}"
|
||||
last_end = m.end()
|
||||
new_content += content[last_end:]
|
||||
content = new_content
|
||||
# 使用独立函数处理用户引用格式
|
||||
content = replace_user_references_in_content(content, platform, is_async=False, replace_bot_name=replace_bot_name)
|
||||
|
||||
target_str = "这是QQ的一个功能,用于提及某人,但没那么明显"
|
||||
if target_str in content and random.random() < 0.6:
|
||||
@@ -916,38 +1040,14 @@ async def build_anonymous_messages(messages: List[Dict[str, Any]]) -> str:
|
||||
anon_name = get_anon_name(platform, user_id)
|
||||
# print(f"anon_name:{anon_name}")
|
||||
|
||||
# 处理 回复<aaa:bbb>
|
||||
reply_pattern = r"回复<([^:<>]+):([^:<>]+)>"
|
||||
match = re.search(reply_pattern, content)
|
||||
if match:
|
||||
# print(f"发现回复match:{match}")
|
||||
bbb = match.group(2)
|
||||
# 使用独立函数处理用户引用格式,传入自定义的匿名名称解析器
|
||||
def anon_name_resolver(platform: str, user_id: str) -> str:
|
||||
try:
|
||||
anon_reply = get_anon_name(platform, bbb)
|
||||
# print(f"anon_reply:{anon_reply}")
|
||||
return get_anon_name(platform, user_id)
|
||||
except Exception:
|
||||
anon_reply = "?"
|
||||
content = re.sub(reply_pattern, f"回复 {anon_reply}", content, count=1)
|
||||
return "?"
|
||||
|
||||
# 处理 @<aaa:bbb>,无嵌套def
|
||||
at_pattern = r"@<([^:<>]+):([^:<>]+)>"
|
||||
at_matches = list(re.finditer(at_pattern, content))
|
||||
if at_matches:
|
||||
# print(f"发现@match:{at_matches}")
|
||||
new_content = ""
|
||||
last_end = 0
|
||||
for m in at_matches:
|
||||
new_content += content[last_end : m.start()]
|
||||
bbb = m.group(2)
|
||||
try:
|
||||
anon_at = get_anon_name(platform, bbb)
|
||||
# print(f"anon_at:{anon_at}")
|
||||
except Exception:
|
||||
anon_at = "?"
|
||||
new_content += f"@{anon_at}"
|
||||
last_end = m.end()
|
||||
new_content += content[last_end:]
|
||||
content = new_content
|
||||
content = replace_user_references_in_content(content, platform, anon_name_resolver, is_async=False, replace_bot_name=False)
|
||||
|
||||
header = f"{anon_name}说 "
|
||||
output_lines.append(header)
|
||||
|
||||
@@ -78,7 +78,7 @@ class ChatMood:
|
||||
if interested_rate <= 0:
|
||||
interest_multiplier = 0
|
||||
else:
|
||||
interest_multiplier = 3 * math.pow(interested_rate, 0.25)
|
||||
interest_multiplier = 2 * math.pow(interested_rate, 0.25)
|
||||
|
||||
logger.debug(
|
||||
f"base_probability: {base_probability}, time_multiplier: {time_multiplier}, interest_multiplier: {interest_multiplier}"
|
||||
|
||||
@@ -19,6 +19,7 @@
|
||||
await send_api.custom_message("video", video_data, "123456", True)
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import traceback
|
||||
import time
|
||||
import difflib
|
||||
@@ -30,7 +31,7 @@ from src.common.logger import get_logger
|
||||
from src.chat.message_receive.chat_stream import get_chat_manager
|
||||
from src.chat.message_receive.uni_message_sender import HeartFCSender
|
||||
from src.chat.message_receive.message import MessageSending, MessageRecv
|
||||
from src.chat.utils.chat_message_builder import get_raw_msg_before_timestamp_with_chat
|
||||
from src.chat.utils.chat_message_builder import get_raw_msg_before_timestamp_with_chat, replace_user_references_in_content
|
||||
from src.person_info.person_info import get_person_info_manager
|
||||
from maim_message import Seg, UserInfo
|
||||
from src.config.config import global_config
|
||||
@@ -183,32 +184,8 @@ async def _find_reply_message(target_stream, reply_to: str) -> Optional[MessageR
|
||||
if person_name == sender:
|
||||
translate_text = message["processed_plain_text"]
|
||||
|
||||
# 检查是否有 回复<aaa:bbb> 字段
|
||||
reply_pattern = r"回复<([^:<>]+):([^:<>]+)>"
|
||||
if match := re.search(reply_pattern, translate_text):
|
||||
aaa = match.group(1)
|
||||
bbb = match.group(2)
|
||||
reply_person_id = get_person_info_manager().get_person_id(platform, bbb)
|
||||
reply_person_name = await get_person_info_manager().get_value(reply_person_id, "person_name") or aaa
|
||||
# 在内容前加上回复信息
|
||||
translate_text = re.sub(reply_pattern, f"回复 {reply_person_name}", translate_text, count=1)
|
||||
|
||||
# 检查是否有 @<aaa:bbb> 字段
|
||||
at_pattern = r"@<([^:<>]+):([^:<>]+)>"
|
||||
at_matches = list(re.finditer(at_pattern, translate_text))
|
||||
if at_matches:
|
||||
new_content = ""
|
||||
last_end = 0
|
||||
for m in at_matches:
|
||||
new_content += translate_text[last_end : m.start()]
|
||||
aaa = m.group(1)
|
||||
bbb = m.group(2)
|
||||
at_person_id = get_person_info_manager().get_person_id(platform, bbb)
|
||||
at_person_name = await get_person_info_manager().get_value(at_person_id, "person_name") or aaa
|
||||
new_content += f"@{at_person_name}"
|
||||
last_end = m.end()
|
||||
new_content += translate_text[last_end:]
|
||||
translate_text = new_content
|
||||
# 使用独立函数处理用户引用格式
|
||||
translate_text = await replace_user_references_in_content(translate_text, platform, is_async=True)
|
||||
|
||||
similarity = difflib.SequenceMatcher(None, text, translate_text).ratio()
|
||||
if similarity >= 0.9:
|
||||
|
||||
Reference in New Issue
Block a user