feat: 现在使用工具调用来更新关系和心情而不是固定更新

This commit is contained in:
SengokuCola
2025-04-14 00:36:33 +08:00
parent d1bbda9e60
commit 7eba42f84a
16 changed files with 551 additions and 87 deletions

View File

@@ -0,0 +1,58 @@
from src.do_tool.tool_can_use.base_tool import BaseTool, register_tool
from src.plugins.config.config import global_config
from src.common.logger import get_module_logger
from src.plugins.moods.moods import MoodManager
from src.plugins.chat_module.think_flow_chat.think_flow_generator import ResponseGenerator
from typing import Dict, Any
logger = get_module_logger("change_mood_tool")
class ChangeMoodTool(BaseTool):
"""改变心情的工具"""
name = "change_mood"
description = "根据收到的内容和自身回复的内容,改变心情,当你回复了别人的消息,你可以使用这个工具"
parameters = {
"type": "object",
"properties": {
"text": {"type": "string", "description": "引起你改变心情的文本"},
"response_set": {"type": "list", "description": "你对文本的回复"}
},
"required": ["text", "response_set"],
}
async def execute(self, function_args: Dict[str, Any],message_txt:str) -> Dict[str, Any]:
"""执行心情改变
Args:
function_args: 工具参数
message_processed_plain_text: 原始消息文本
response_set: 原始消息文本
Returns:
Dict: 工具执行结果
"""
try:
response_set = function_args.get("response_set")
message_processed_plain_text = function_args.get("text")
mood_manager = MoodManager.get_instance()
gpt = ResponseGenerator()
if response_set is None:
response_set = ["你还没有回复"]
ori_response = ",".join(response_set)
_stance, emotion = await gpt._get_emotion_tags(ori_response, message_processed_plain_text)
mood_manager.update_mood_from_emotion(emotion, global_config.mood_intensity_factor)
return {"name": "change_mood", "content": f"你的心情刚刚变化了,现在的心情是: {emotion}"}
except Exception as e:
logger.error(f"心情改变工具执行失败: {str(e)}")
return {"name": "change_mood", "content": f"心情改变失败: {str(e)}"}
# 注册工具
# register_tool(ChangeMoodTool)

View File

@@ -0,0 +1,53 @@
from src.plugins.person_info.relationship_manager import relationship_manager
from src.common.logger import get_module_logger
from src.do_tool.tool_can_use.base_tool import BaseTool
from src.plugins.chat_module.think_flow_chat.think_flow_generator import ResponseGenerator
logger = get_module_logger("relationship_tool")
class RelationshipTool(BaseTool):
name = "change_relationship"
description = "根据收到的文本和回复内容,修改与特定用户的关系值,当你回复了别人的消息,你可以使用这个工具"
parameters = {
"type": "object",
"properties": {
"text": {
"type": "string",
"description": "收到的文本"
},
"changed_value": {
"type": "number",
"description": "变更值"
},
"reason": {
"type": "string",
"description": "变更原因"
}
},
"required": ["text", "changed_value", "reason"]
}
async def execute(self, args: dict,message_txt:str) -> dict:
"""执行工具功能
Args:
args: 包含工具参数的字典
text: 原始消息文本
changed_value: 变更值
reason: 变更原因
Returns:
dict: 包含执行结果的字典
"""
try:
text = args.get("text")
changed_value = args.get("changed_value")
reason = args.get("reason")
return {"content": f"因为你刚刚因为{reason},所以你和发[{text}]这条消息的人的关系值变化为{changed_value}"}
except Exception as e:
logger.error(f"修改关系值时发生错误: {str(e)}")
return {"content": f"修改关系值失败: {str(e)}"}

View File

@@ -47,4 +47,4 @@ class CompareNumbersTool(BaseTool):
# 注册工具
register_tool(CompareNumbersTool)
# register_tool(CompareNumbersTool)

View File

@@ -51,4 +51,4 @@ class GetCurrentTaskTool(BaseTool):
# 注册工具
register_tool(GetCurrentTaskTool)
# register_tool(GetCurrentTaskTool)

View File

@@ -132,4 +132,4 @@ class SearchKnowledgeTool(BaseTool):
# 注册工具
register_tool(SearchKnowledgeTool)
# register_tool(SearchKnowledgeTool)

View File

@@ -56,4 +56,4 @@ class GetMemoryTool(BaseTool):
# 注册工具
register_tool(GetMemoryTool)
# register_tool(GetMemoryTool)

View File

@@ -21,7 +21,7 @@ class ToolUser:
model=global_config.llm_heartflow, temperature=0.2, max_tokens=1000, request_type="tool_use"
)
async def _build_tool_prompt(self, message_txt: str, sender_name: str, chat_stream: ChatStream):
async def _build_tool_prompt(self, message_txt: str, sender_name: str, chat_stream: ChatStream, reply_message:str = ""):
"""构建工具使用的提示词
Args:
@@ -45,9 +45,11 @@ class ToolUser:
prompt = ""
prompt += "你正在思考如何回复群里的消息。\n"
prompt += f"你注意到{sender_name}刚刚说:{message_txt}\n"
if reply_message:
prompt += f"你刚刚回复的内容是:{reply_message}\n"
prompt += f"注意你就是{bot_name}{bot_name}指的就是你。"
prompt += "你现在需要对群里的聊天内容进行回复,现在请你思考,你是否需要额外的信息,或者一些工具来帮你回复,不要使用危险功能(比如文件操作或者系统操作爬虫),比如回忆或者搜寻已有的知识,或者了解你现在正在做什么,请输出你需要的工具,或者你需要的额外信息。"
prompt += "你现在需要对群里的聊天内容进行回复,现在选择工具来对消息和你的回复进行处理,你是否需要额外的信息,或者进行一些动作,比如回忆或者搜寻已有的知识,改变关系和情感,或者了解你现在正在做什么,请输出你需要的工具,或者你需要的额外信息。"
return prompt
def _define_tools(self):
@@ -81,10 +83,26 @@ class ToolUser:
# 执行工具
result = await tool_instance.execute(function_args, message_txt)
if result:
# 根据工具名称确定类型标签
tool_type = ""
if "memory" in function_name.lower():
tool_type = "memory"
elif "schedule" in function_name.lower() or "task" in function_name.lower():
tool_type = "schedule"
elif "knowledge" in function_name.lower():
tool_type = "knowledge"
elif "change_relationship" in function_name.lower():
tool_type = "change_relationship"
elif "change_mood" in function_name.lower():
tool_type = "change_mood"
else:
tool_type = "other"
return {
"tool_call_id": tool_call["id"],
"role": "tool",
"name": function_name,
"type": tool_type,
"content": result["content"],
}
return None
@@ -101,7 +119,7 @@ class ToolUser:
chat_stream: 聊天流对象
Returns:
dict: 工具使用结果
dict: 工具使用结果,包含结构化的信息
"""
try:
# 构建提示词
@@ -109,6 +127,7 @@ class ToolUser:
# 定义可用工具
tools = self._define_tools()
logger.trace(f"工具定义: {tools}")
# 使用llm_model_tool发送带工具定义的请求
payload = {
@@ -119,7 +138,7 @@ class ToolUser:
"temperature": 0.2,
}
logger.debug(f"发送工具调用请求,模型: {self.llm_model_tool.model_name}")
logger.trace(f"发送工具调用请求,模型: {self.llm_model_tool.model_name}")
# 发送请求获取模型是否需要调用工具
response = await self.llm_model_tool._execute_request(
endpoint="/chat/completions", payload=payload, prompt=prompt
@@ -128,36 +147,50 @@ class ToolUser:
# 根据返回值数量判断是否有工具调用
if len(response) == 3:
content, reasoning_content, tool_calls = response
logger.info(f"工具思考: {tool_calls}")
# logger.info(f"工具思考: {tool_calls}")
# logger.debug(f"工具思考: {content}")
# 检查响应中工具调用是否有效
if not tool_calls:
logger.info("模型返回了空的tool_calls列表")
logger.debug("模型返回了空的tool_calls列表")
return {"used_tools": False}
logger.info(f"模型请求调用{len(tool_calls)}个工具")
tool_calls_str = ""
for tool_call in tool_calls:
tool_calls_str += f"{tool_call['function']['name']}\n"
logger.info(f"模型请求调用{len(tool_calls)}个工具: {tool_calls_str}")
tool_results = []
collected_info = ""
structured_info = {
"memory": [],
"schedule": [],
"knowledge": [],
"change_relationship": [],
"change_mood": [],
"other": []
}
# 执行所有工具调用
for tool_call in tool_calls:
result = await self._execute_tool_call(tool_call, message_txt)
if result:
tool_results.append(result)
# 将工具结果添加到收集的信息
collected_info += f"\n{result['name']}返回结果: {result['content']}\n"
# 将工具结果添加到对应类型的列表
structured_info[result["type"]].append({
"name": result["name"],
"content": result["content"]
})
# 如果有工具结果,直接返回收集的信息
if collected_info:
logger.info(f"工具调用收集到信息: {collected_info}")
# 如果有工具结果,返回结构化的信息
if any(structured_info.values()):
logger.info(f"工具调用收集到结构化信息: {json.dumps(structured_info, ensure_ascii=False)}")
return {
"used_tools": True,
"collected_info": collected_info,
"structured_info": structured_info
}
else:
# 没有工具调用
content, reasoning_content = response
logger.info("模型没有请求调用任何工具")
logger.debug("模型没有请求调用任何工具")
# 如果没有工具调用或处理失败,直接返回原始思考
return {