better:大大大大优化自我认知处理器的token消耗和速度
This commit is contained in:
@@ -566,7 +566,16 @@ class RelationshipProcessor(BaseProcessor):
|
||||
person_info_manager = get_person_info_manager()
|
||||
for person_name, info_type in content_json.items():
|
||||
person_id = person_info_manager.get_person_id_by_person_name(person_name)
|
||||
if person_id:
|
||||
if not person_id:
|
||||
logger.warning(f"{self.log_prefix} 未找到用户 {person_name} 的ID,跳过调取信息。")
|
||||
continue
|
||||
|
||||
# 检查是否是bot自己,如果是则跳过
|
||||
user_id = person_info_manager.get_value_sync(person_id, "user_id")
|
||||
if user_id == global_config.bot.qq_account:
|
||||
logger.info(f"{self.log_prefix} 跳过调取bot自己({person_name})的信息。")
|
||||
continue
|
||||
|
||||
self.info_fetching_cache.append(
|
||||
{
|
||||
"person_id": person_id,
|
||||
@@ -578,13 +587,9 @@ class RelationshipProcessor(BaseProcessor):
|
||||
)
|
||||
if len(self.info_fetching_cache) > 20:
|
||||
self.info_fetching_cache.pop(0)
|
||||
else:
|
||||
logger.warning(f"{self.log_prefix} 未找到用户 {person_name} 的ID,跳过调取信息。")
|
||||
continue
|
||||
|
||||
logger.info(f"{self.log_prefix} 调取用户 {person_name} 的 {info_type} 信息。")
|
||||
|
||||
|
||||
# 收集即时提取任务
|
||||
instant_tasks.append((person_id, info_type, time.time()))
|
||||
|
||||
@@ -784,6 +789,8 @@ class RelationshipProcessor(BaseProcessor):
|
||||
points_text_block = ""
|
||||
|
||||
if not points_text_block and not person_impression_block:
|
||||
if person_id not in self.info_fetched_cache:
|
||||
self.info_fetched_cache[person_id] = {}
|
||||
self.info_fetched_cache[person_id][info_type] = {
|
||||
"info": "none",
|
||||
"ttl": 8,
|
||||
@@ -791,6 +798,7 @@ class RelationshipProcessor(BaseProcessor):
|
||||
"person_name": person_name,
|
||||
"unknow": True,
|
||||
}
|
||||
return
|
||||
|
||||
prompt = (await global_prompt_manager.get_prompt_async("fetch_person_info_prompt")).format(
|
||||
name_block=name_block,
|
||||
|
||||
@@ -4,9 +4,6 @@ from src.llm_models.utils_model import LLMRequest
|
||||
from src.config.config import global_config
|
||||
import time
|
||||
import traceback
|
||||
import json
|
||||
import os
|
||||
import hashlib
|
||||
from src.common.logger import get_logger
|
||||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
from src.chat.message_receive.chat_stream import get_chat_manager
|
||||
@@ -15,6 +12,7 @@ from typing import List, Dict
|
||||
from src.chat.heart_flow.observation.hfcloop_observation import HFCloopObservation
|
||||
from src.chat.focus_chat.info.info_base import InfoBase
|
||||
from src.chat.focus_chat.info.self_info import SelfInfo
|
||||
from src.individuality.individuality import get_individuality
|
||||
|
||||
logger = get_logger("processor")
|
||||
|
||||
@@ -28,25 +26,19 @@ def init_prompt():
|
||||
</聊天记录>
|
||||
|
||||
{name_block}
|
||||
请你根据以上聊天记录,思考聊天记录中是否有人提到你自己相关的信息,或者有人询问你的相关信息,例如你的性格,身高,喜好,外貌,身份,兴趣,爱好,习惯,等等。
|
||||
然后请你根据你的聊天需要,输出关键词属性在数据库中进行查询,数据库包含了关于你的所有信息,你需要直接输出你要查询的关键词,如果要输出多个,请用逗号隔开
|
||||
如果没有需要查询的内容,请输出none
|
||||
现在请输出关键词,注意只输出关键词就好,不要输出其他内容:
|
||||
请你根据以上聊天记录,思考聊天记录中是否有人提到你自己相关的信息,或者有人询问你的相关信息。
|
||||
|
||||
数据库中包含以下关键词的信息:
|
||||
{available_keywords}
|
||||
|
||||
请从上述关键词中选择你需要查询的关键词来回答聊天中的问题。如果需要多个关键词,请用逗号隔开。
|
||||
如果聊天中没有涉及任何关于你的问题,请输出none。
|
||||
|
||||
现在请输出你要查询的关键词,注意只输出关键词就好,不要输出其他内容:
|
||||
"""
|
||||
Prompt(indentify_prompt, "indentify_prompt")
|
||||
|
||||
|
||||
fetch_info_prompt = """
|
||||
|
||||
{name_block},你的性格是:
|
||||
{prompt_personality}
|
||||
{indentify_block}
|
||||
|
||||
请从中提取有关你的有关"{keyword}"信息,请输出原始内容,如果{bot_name}没有涉及"{keyword}"相关信息,请输出none:
|
||||
"""
|
||||
Prompt(fetch_info_prompt, "fetch_info_prompt")
|
||||
|
||||
|
||||
class SelfProcessor(BaseProcessor):
|
||||
log_prefix = "自我认同"
|
||||
|
||||
@@ -57,98 +49,15 @@ class SelfProcessor(BaseProcessor):
|
||||
|
||||
self.info_fetched_cache: Dict[str, Dict[str, any]] = {}
|
||||
|
||||
self.fetch_info_file_path = "data/personality/fetch_info.json"
|
||||
self.meta_info_file_path = "data/personality/meta_info.json"
|
||||
|
||||
self.llm_model = LLMRequest(
|
||||
model=global_config.model.utils_small,
|
||||
request_type="focus.processor.self_identify",
|
||||
)
|
||||
|
||||
|
||||
name = get_chat_manager().get_stream_name(self.subheartflow_id)
|
||||
self.log_prefix = f"[{name}] "
|
||||
|
||||
# 在初始化时检查配置是否发生变化
|
||||
self._check_config_change_and_clear()
|
||||
|
||||
def _get_config_hash(self) -> str:
|
||||
"""获取当前personality和identity配置的哈希值"""
|
||||
personality_sides = list(global_config.personality.personality_sides)
|
||||
identity_detail = list(global_config.identity.identity_detail)
|
||||
|
||||
# 将配置转换为字符串并排序,确保一致性
|
||||
config_str = json.dumps({
|
||||
"personality_sides": sorted(personality_sides),
|
||||
"identity_detail": sorted(identity_detail)
|
||||
}, sort_keys=True)
|
||||
|
||||
return hashlib.md5(config_str.encode('utf-8')).hexdigest()
|
||||
|
||||
def _load_meta_info(self) -> Dict[str, str]:
|
||||
"""从JSON文件中加载元信息"""
|
||||
if os.path.exists(self.meta_info_file_path):
|
||||
try:
|
||||
with open(self.meta_info_file_path, 'r', encoding='utf-8') as f:
|
||||
return json.load(f)
|
||||
except Exception as e:
|
||||
logger.warning(f"{self.log_prefix} 读取meta_info文件失败: {e}")
|
||||
return {}
|
||||
return {}
|
||||
|
||||
def _save_meta_info(self, meta_info: Dict[str, str]):
|
||||
"""将元信息保存到JSON文件"""
|
||||
try:
|
||||
# 确保目录存在
|
||||
os.makedirs(os.path.dirname(self.meta_info_file_path), exist_ok=True)
|
||||
with open(self.meta_info_file_path, 'w', encoding='utf-8') as f:
|
||||
json.dump(meta_info, f, ensure_ascii=False, indent=2)
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix} 保存meta_info文件失败: {e}")
|
||||
|
||||
def _check_config_change_and_clear(self):
|
||||
"""检查配置是否发生变化,如果变化则清空fetch_info.json"""
|
||||
current_config_hash = self._get_config_hash()
|
||||
meta_info = self._load_meta_info()
|
||||
|
||||
stored_config_hash = meta_info.get("config_hash", "")
|
||||
|
||||
if current_config_hash != stored_config_hash:
|
||||
logger.info(f"{self.log_prefix} 检测到personality或identity配置发生变化,清空fetch_info数据")
|
||||
|
||||
# 清空fetch_info文件
|
||||
if os.path.exists(self.fetch_info_file_path):
|
||||
try:
|
||||
os.remove(self.fetch_info_file_path)
|
||||
logger.info(f"{self.log_prefix} 已清空fetch_info文件")
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix} 清空fetch_info文件失败: {e}")
|
||||
|
||||
# 更新元信息
|
||||
meta_info["config_hash"] = current_config_hash
|
||||
self._save_meta_info(meta_info)
|
||||
logger.info(f"{self.log_prefix} 已更新配置哈希值")
|
||||
|
||||
def _load_fetch_info_from_file(self) -> Dict[str, str]:
|
||||
"""从JSON文件中加载已保存的fetch_info数据"""
|
||||
if os.path.exists(self.fetch_info_file_path):
|
||||
try:
|
||||
with open(self.fetch_info_file_path, 'r', encoding='utf-8') as f:
|
||||
return json.load(f)
|
||||
except Exception as e:
|
||||
logger.warning(f"{self.log_prefix} 读取fetch_info文件失败: {e}")
|
||||
return {}
|
||||
return {}
|
||||
|
||||
def _save_fetch_info_to_file(self, fetch_info_data: Dict[str, str]):
|
||||
"""将fetch_info数据保存到JSON文件"""
|
||||
try:
|
||||
# 确保目录存在
|
||||
os.makedirs(os.path.dirname(self.fetch_info_file_path), exist_ok=True)
|
||||
with open(self.fetch_info_file_path, 'w', encoding='utf-8') as f:
|
||||
json.dump(fetch_info_data, f, ensure_ascii=False, indent=2)
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix} 保存fetch_info文件失败: {e}")
|
||||
|
||||
async def process_info(self, observations: List[Observation] = None, *infos) -> List[InfoBase]:
|
||||
"""处理信息对象
|
||||
@@ -210,19 +119,16 @@ class SelfProcessor(BaseProcessor):
|
||||
nickname_str += f"{nicknames},"
|
||||
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
|
||||
|
||||
personality_sides_str = "你"
|
||||
identity_detail_str = "你"
|
||||
for personality_side in global_config.personality.personality_sides:
|
||||
personality_sides_str += f"{personality_side},"
|
||||
|
||||
for identity_detail in global_config.identity.identity_detail:
|
||||
identity_detail_str += f"{identity_detail},"
|
||||
|
||||
# 获取所有可用的关键词
|
||||
individuality = get_individuality()
|
||||
available_keywords = individuality.get_all_keywords()
|
||||
available_keywords_str = "、".join(available_keywords) if available_keywords else "暂无关键词"
|
||||
|
||||
prompt = (await global_prompt_manager.get_prompt_async("indentify_prompt")).format(
|
||||
name_block=name_block,
|
||||
time_now=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),
|
||||
chat_observe_info=chat_observe_info[-200:],
|
||||
available_keywords=available_keywords_str,
|
||||
bot_name = global_config.bot.nickname
|
||||
)
|
||||
|
||||
@@ -242,8 +148,7 @@ class SelfProcessor(BaseProcessor):
|
||||
keyword = "我是谁,我从哪来,要到哪去"
|
||||
|
||||
|
||||
# keyword_json = json.loads(repair_json(keyword))
|
||||
# 根据逗号分割为list
|
||||
# 解析关键词
|
||||
keyword = keyword.strip()
|
||||
if not keyword or keyword == "none":
|
||||
keyword_set = []
|
||||
@@ -251,50 +156,30 @@ class SelfProcessor(BaseProcessor):
|
||||
# 只保留非空关键词,去除多余空格
|
||||
keyword_set = [k.strip() for k in keyword.split(",") if k.strip()]
|
||||
|
||||
# 从individuality缓存中查询关键词信息
|
||||
for keyword in keyword_set:
|
||||
if keyword not in self.info_fetched_cache:
|
||||
# 首先尝试从文件中读取
|
||||
fetch_info_data = self._load_fetch_info_from_file()
|
||||
|
||||
if keyword in fetch_info_data:
|
||||
# 从文件中获取已保存的信息
|
||||
fetched_info = fetch_info_data[keyword]
|
||||
logger.info(f"{self.log_prefix} 从文件中读取到关键词 '{keyword}' 的信息")
|
||||
else:
|
||||
# 文件中没有,使用LLM生成
|
||||
prompt = (await global_prompt_manager.get_prompt_async("fetch_info_prompt")).format(
|
||||
name_block=name_block,
|
||||
prompt_personality=personality_sides_str,
|
||||
indentify_block=identity_detail_str,
|
||||
keyword=keyword,
|
||||
bot_name = global_config.bot.nickname
|
||||
)
|
||||
|
||||
print(prompt)
|
||||
|
||||
fetched_info, _ = await self.llm_model.generate_response_async(prompt=prompt)
|
||||
if not fetched_info:
|
||||
logger.warning(f"{self.log_prefix} LLM返回空结果,自我识别失败。")
|
||||
fetched_info = ""
|
||||
elif fetched_info == "none":
|
||||
fetched_info = ""
|
||||
else:
|
||||
# 保存新生成的信息到文件
|
||||
fetch_info_data[keyword] = fetched_info
|
||||
self._save_fetch_info_to_file(fetch_info_data)
|
||||
logger.info(f"{self.log_prefix} 新生成的关键词 '{keyword}' 信息已保存到文件")
|
||||
# 直接从individuality的json缓存中获取关键词信息
|
||||
fetched_info = individuality.get_keyword_info(keyword)
|
||||
|
||||
if fetched_info:
|
||||
self.info_fetched_cache[keyword] = {
|
||||
"info": fetched_info,
|
||||
"ttl": 5,
|
||||
}
|
||||
logger.info(f"{self.log_prefix} 从个体特征缓存中获取关键词 '{keyword}' 的信息")
|
||||
|
||||
# 管理TTL(生存时间)
|
||||
expired_keywords = []
|
||||
for fetched_keyword, info in self.info_fetched_cache.items():
|
||||
if info["ttl"] > 0:
|
||||
info["ttl"] -= 1
|
||||
else:
|
||||
del self.info_fetched_cache[fetched_keyword]
|
||||
expired_keywords.append(fetched_keyword)
|
||||
|
||||
# 删除过期的关键词
|
||||
for expired_keyword in expired_keywords:
|
||||
del self.info_fetched_cache[expired_keyword]
|
||||
|
||||
|
||||
fetched_info_str = ""
|
||||
|
||||
@@ -402,7 +402,7 @@ class DefaultReplyer:
|
||||
time_block=time_block,
|
||||
reply_target_block=reply_target_block,
|
||||
keywords_reaction_prompt=keywords_reaction_prompt,
|
||||
indentify_block=indentify_block,
|
||||
identity=indentify_block,
|
||||
target_message=target,
|
||||
sender_name=sender,
|
||||
config_expression_style=global_config.expression.expression_style,
|
||||
@@ -416,12 +416,9 @@ class DefaultReplyer:
|
||||
chat_target=chat_target_1,
|
||||
chat_info=chat_talking_prompt,
|
||||
extra_info_block=extra_info_block,
|
||||
relation_info_block=relation_info_block,
|
||||
self_info_block=self_info_block,
|
||||
time_block=time_block,
|
||||
reply_target_block=reply_target_block,
|
||||
keywords_reaction_prompt=keywords_reaction_prompt,
|
||||
indentify_block=indentify_block,
|
||||
identity=indentify_block,
|
||||
target_message=target,
|
||||
sender_name=sender,
|
||||
config_expression_style=global_config.expression.expression_style,
|
||||
|
||||
@@ -3,10 +3,52 @@ from .personality import Personality
|
||||
from .identity import Identity
|
||||
from .expression_style import PersonalityExpression
|
||||
import random
|
||||
import json
|
||||
import os
|
||||
import hashlib
|
||||
import traceback
|
||||
import time
|
||||
from rich.traceback import install
|
||||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
from src.manager.async_task_manager import AsyncTask
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
from src.config.config import global_config
|
||||
from src.common.logger import get_logger
|
||||
|
||||
install(extra_lines=3)
|
||||
|
||||
logger = get_logger("individuality")
|
||||
|
||||
def init_prompt():
|
||||
"""初始化用于关键词提取的prompts"""
|
||||
|
||||
|
||||
|
||||
extract_keywords_prompt = """
|
||||
请分析以下对某人的描述,提取出其中的独立关键词。每个关键词应该是可以用来从某一角度概括的方面:性格,身高,喜好,外貌,身份,兴趣,爱好,习惯,等等。
|
||||
|
||||
描述内容:
|
||||
{personality_sides}
|
||||
|
||||
要求:
|
||||
1. 提取独立的关键词,不要使用句子或短语
|
||||
2. 每个关键词用逗号分隔
|
||||
3. 只输出关键词,不要输出任何解释或其他内容
|
||||
|
||||
请输出关键词:
|
||||
"""
|
||||
Prompt(extract_keywords_prompt, "extract_keywords_prompt")
|
||||
|
||||
fetch_info_prompt = """
|
||||
{name_block},你的性格的特征是:
|
||||
{prompt_personality}
|
||||
{indentify_block}
|
||||
|
||||
请从中提取有关你的有关"{keyword}"信息,请输出原始内容,如果{bot_name}没有涉及"{keyword}"相关信息,请输出none:
|
||||
"""
|
||||
Prompt(fetch_info_prompt, "fetch_info_prompt")
|
||||
|
||||
|
||||
|
||||
class Individuality:
|
||||
"""个体特征管理类"""
|
||||
@@ -19,6 +61,11 @@ class Individuality:
|
||||
|
||||
self.name = ""
|
||||
|
||||
# 关键词缓存相关
|
||||
self.keyword_info_cache: dict = {} # {keyword: [info_list]}
|
||||
self.fetch_info_file_path = "data/personality/fetch_info.json"
|
||||
self.meta_info_file_path = "data/personality/meta_info.json"
|
||||
|
||||
async def initialize(
|
||||
self,
|
||||
bot_nickname: str,
|
||||
@@ -46,6 +93,9 @@ class Individuality:
|
||||
|
||||
self.name = bot_nickname
|
||||
|
||||
# 预处理关键词和生成信息缓存
|
||||
await self._preprocess_personality_keywords(personality_sides, identity_detail)
|
||||
|
||||
def to_dict(self) -> dict:
|
||||
"""将个体特征转换为字典格式"""
|
||||
return {
|
||||
@@ -212,6 +262,280 @@ class Individuality:
|
||||
return self.personality.neuroticism
|
||||
return None
|
||||
|
||||
def _get_config_hash(self, personality_sides: list, identity_detail: list) -> str:
|
||||
"""获取当前personality和identity配置的哈希值"""
|
||||
# 将配置转换为字符串并排序,确保一致性
|
||||
config_str = json.dumps({
|
||||
"personality_sides": sorted(personality_sides),
|
||||
"identity_detail": sorted(identity_detail)
|
||||
}, sort_keys=True)
|
||||
|
||||
return hashlib.md5(config_str.encode('utf-8')).hexdigest()
|
||||
|
||||
def _load_meta_info(self) -> dict:
|
||||
"""从JSON文件中加载元信息"""
|
||||
if os.path.exists(self.meta_info_file_path):
|
||||
try:
|
||||
with open(self.meta_info_file_path, 'r', encoding='utf-8') as f:
|
||||
return json.load(f)
|
||||
except Exception as e:
|
||||
print(f"读取meta_info文件失败: {e}")
|
||||
return {}
|
||||
return {}
|
||||
|
||||
def _save_meta_info(self, meta_info: dict):
|
||||
"""将元信息保存到JSON文件"""
|
||||
try:
|
||||
# 确保目录存在
|
||||
os.makedirs(os.path.dirname(self.meta_info_file_path), exist_ok=True)
|
||||
with open(self.meta_info_file_path, 'w', encoding='utf-8') as f:
|
||||
json.dump(meta_info, f, ensure_ascii=False, indent=2)
|
||||
except Exception as e:
|
||||
print(f"保存meta_info文件失败: {e}")
|
||||
|
||||
def _check_config_change_and_clear(self, personality_sides: list, identity_detail: list):
|
||||
"""检查配置是否发生变化,如果变化则清空fetch_info.json"""
|
||||
current_config_hash = self._get_config_hash(personality_sides, identity_detail)
|
||||
meta_info = self._load_meta_info()
|
||||
|
||||
stored_config_hash = meta_info.get("config_hash", "")
|
||||
|
||||
if current_config_hash != stored_config_hash:
|
||||
logger.info(f"检测到personality或identity配置发生变化,清空fetch_info数据")
|
||||
|
||||
# 清空fetch_info文件
|
||||
if os.path.exists(self.fetch_info_file_path):
|
||||
try:
|
||||
os.remove(self.fetch_info_file_path)
|
||||
logger.info(f"已清空fetch_info文件")
|
||||
except Exception as e:
|
||||
logger.error(f"清空fetch_info文件失败: {e}")
|
||||
|
||||
# 更新元信息
|
||||
meta_info["config_hash"] = current_config_hash
|
||||
self._save_meta_info(meta_info)
|
||||
logger.info(f"已更新配置哈希值")
|
||||
|
||||
def _load_fetch_info_from_file(self) -> dict:
|
||||
"""从JSON文件中加载已保存的fetch_info数据"""
|
||||
if os.path.exists(self.fetch_info_file_path):
|
||||
try:
|
||||
with open(self.fetch_info_file_path, 'r', encoding='utf-8') as f:
|
||||
data = json.load(f)
|
||||
# 兼容旧格式:如果是字符串则转换为列表
|
||||
for keyword, value in data.items():
|
||||
if isinstance(value, str):
|
||||
data[keyword] = [value]
|
||||
return data
|
||||
except Exception as e:
|
||||
logger.error(f"读取fetch_info文件失败: {e}")
|
||||
return {}
|
||||
return {}
|
||||
|
||||
def _save_fetch_info_to_file(self, fetch_info_data: dict):
|
||||
"""将fetch_info数据保存到JSON文件"""
|
||||
try:
|
||||
# 确保目录存在
|
||||
os.makedirs(os.path.dirname(self.fetch_info_file_path), exist_ok=True)
|
||||
with open(self.fetch_info_file_path, 'w', encoding='utf-8') as f:
|
||||
json.dump(fetch_info_data, f, ensure_ascii=False, indent=2)
|
||||
except Exception as e:
|
||||
logger.error(f"保存fetch_info文件失败: {e}")
|
||||
|
||||
async def _preprocess_personality_keywords(self, personality_sides: list, identity_detail: list):
|
||||
"""预处理personality关键词,提取关键词并生成缓存"""
|
||||
try:
|
||||
|
||||
logger.info("开始预处理personality关键词...")
|
||||
|
||||
# 检查配置变化
|
||||
self._check_config_change_and_clear(personality_sides, identity_detail)
|
||||
|
||||
# 加载已有的预处理数据(如果存在)
|
||||
fetch_info_data = self._load_fetch_info_from_file()
|
||||
logger.info(f"加载已有数据,现有关键词数量: {len(fetch_info_data)}")
|
||||
|
||||
# 检查并清理错误分割的关键词(包含逗号的键)
|
||||
keys_to_fix = []
|
||||
for key in fetch_info_data.keys():
|
||||
if "," in key:
|
||||
keys_to_fix.append(key)
|
||||
|
||||
if keys_to_fix:
|
||||
logger.info(f"发现 {len(keys_to_fix)} 个需要重新分割的关键词")
|
||||
for bad_key in keys_to_fix:
|
||||
logger.info(f"重新分割关键词: '{bad_key}'")
|
||||
# 获取对应的信息
|
||||
info_list = fetch_info_data[bad_key]
|
||||
# 删除旧的错误键
|
||||
del fetch_info_data[bad_key]
|
||||
|
||||
# 按逗号分割并重新添加
|
||||
split_keywords = [k.strip() for k in bad_key.split(",") if k.strip()]
|
||||
for split_keyword in split_keywords:
|
||||
if split_keyword not in fetch_info_data:
|
||||
fetch_info_data[split_keyword] = []
|
||||
# 将信息添加到分割后的关键词中
|
||||
for info in info_list:
|
||||
if info not in fetch_info_data[split_keyword]:
|
||||
fetch_info_data[split_keyword].append(info)
|
||||
logger.info(f"已将信息分配给关键词: '{split_keyword}'")
|
||||
|
||||
# 保存清理后的数据
|
||||
self._save_fetch_info_to_file(fetch_info_data)
|
||||
logger.info(f"清理完成,现在共有 {len(fetch_info_data)} 个关键词")
|
||||
|
||||
# 构建完整描述(personality + identity)
|
||||
personality_sides_str = ""
|
||||
for personality_side in personality_sides:
|
||||
personality_sides_str += f"{personality_side},"
|
||||
|
||||
# 添加identity内容
|
||||
for detail in identity_detail:
|
||||
personality_sides_str += f"{detail},"
|
||||
|
||||
if not personality_sides_str:
|
||||
logger.info("没有personality和identity配置,跳过预处理")
|
||||
return
|
||||
|
||||
# 提取关键词
|
||||
extract_prompt = (await global_prompt_manager.get_prompt_async("extract_keywords_prompt")).format(
|
||||
personality_sides=personality_sides_str
|
||||
)
|
||||
|
||||
llm_model = LLMRequest(
|
||||
model=global_config.model.utils_small,
|
||||
request_type="individuality.keyword_extract",
|
||||
)
|
||||
|
||||
keywords_result, _ = await llm_model.generate_response_async(prompt=extract_prompt)
|
||||
logger.info(f"LLM返回的原始关键词结果: '{keywords_result}'")
|
||||
|
||||
if not keywords_result or keywords_result.strip() == "none":
|
||||
logger.info("未提取到有效关键词")
|
||||
return
|
||||
|
||||
# 解析关键词
|
||||
keyword_set = [k.strip() for k in keywords_result.split(",") if k.strip()]
|
||||
logger.info(f"分割后的关键词列表: {keyword_set}")
|
||||
logger.info(f"共提取到 {len(keyword_set)} 个关键词")
|
||||
|
||||
# 构建名称块和身份信息
|
||||
nickname_str = ""
|
||||
for nickname in global_config.bot.alias_names:
|
||||
nickname_str += f"{nickname},"
|
||||
name_block = f"你的名字是{self.name},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
|
||||
|
||||
identity_detail_str = "你"
|
||||
for detail in identity_detail:
|
||||
identity_detail_str += f"{detail},"
|
||||
|
||||
# 为每个关键词生成fetched_info,添加到现有数据中
|
||||
updated_count = 0
|
||||
new_count = 0
|
||||
|
||||
for keyword in keyword_set:
|
||||
try:
|
||||
logger.info(f"正在处理关键词: '{keyword}' (长度: {len(keyword)})")
|
||||
|
||||
# 检查是否已存在该关键词
|
||||
if keyword in fetch_info_data:
|
||||
logger.info(f"关键词 '{keyword}' 已存在,将添加新信息...")
|
||||
action_type = "追加"
|
||||
else:
|
||||
logger.info(f"正在为新关键词 '{keyword}' 生成信息...")
|
||||
action_type = "新增"
|
||||
fetch_info_data[keyword] = [] # 初始化为空列表
|
||||
|
||||
fetch_prompt = (await global_prompt_manager.get_prompt_async("fetch_info_prompt")).format(
|
||||
name_block=name_block,
|
||||
prompt_personality=personality_sides_str,
|
||||
indentify_block=identity_detail_str,
|
||||
keyword=keyword,
|
||||
bot_name=self.name
|
||||
)
|
||||
|
||||
fetched_info, _ = await llm_model.generate_response_async(prompt=fetch_prompt)
|
||||
|
||||
if fetched_info and fetched_info.strip() != "none":
|
||||
# 添加到列表中,避免重复
|
||||
if fetched_info not in fetch_info_data[keyword]:
|
||||
fetch_info_data[keyword].append(fetched_info)
|
||||
if action_type == "追加":
|
||||
updated_count += 1
|
||||
else:
|
||||
new_count += 1
|
||||
logger.info(f"{action_type}关键词 '{keyword}' 的信息成功")
|
||||
else:
|
||||
logger.info(f"关键词 '{keyword}' 的信息已存在,跳过重复添加")
|
||||
else:
|
||||
logger.info(f"关键词 '{keyword}' 没有相关信息")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"为关键词 '{keyword}' 生成信息时出错: {e}")
|
||||
continue
|
||||
|
||||
# 保存合并后的数据到文件和内存缓存
|
||||
if updated_count > 0 or new_count > 0:
|
||||
self._save_fetch_info_to_file(fetch_info_data)
|
||||
logger.info(f"预处理完成,新增 {new_count} 个关键词,追加 {updated_count} 个关键词信息,总计 {len(fetch_info_data)} 个关键词")
|
||||
else:
|
||||
logger.info("预处理完成,但没有生成任何新的有效信息")
|
||||
|
||||
# 将数据加载到内存缓存
|
||||
self.keyword_info_cache = fetch_info_data
|
||||
logger.info(f"关键词缓存已加载,共 {len(self.keyword_info_cache)} 个关键词")
|
||||
|
||||
# 注册定时任务(延迟执行,避免阻塞初始化)
|
||||
import asyncio
|
||||
asyncio.create_task(self._register_keyword_update_task_delayed())
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"预处理personality关键词时出错: {e}")
|
||||
traceback.print_exc()
|
||||
|
||||
async def _register_keyword_update_task_delayed(self):
|
||||
"""延迟注册关键词更新定时任务"""
|
||||
try:
|
||||
# 等待一小段时间确保系统完全初始化
|
||||
import asyncio
|
||||
await asyncio.sleep(5)
|
||||
|
||||
from src.manager.async_task_manager import async_task_manager
|
||||
logger = get_logger("individuality")
|
||||
|
||||
# 创建定时任务
|
||||
task = KeywordUpdateTask(
|
||||
personality_sides=list(global_config.personality.personality_sides),
|
||||
identity_detail=list(global_config.identity.identity_detail),
|
||||
individuality_instance=self
|
||||
)
|
||||
|
||||
# 注册任务
|
||||
await async_task_manager.add_task(task)
|
||||
logger.info("关键词更新定时任务已注册")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"注册关键词更新定时任务失败: {e}")
|
||||
traceback.print_exc()
|
||||
|
||||
def get_keyword_info(self, keyword: str) -> str:
|
||||
"""获取指定关键词的信息
|
||||
|
||||
Args:
|
||||
keyword: 关键词
|
||||
|
||||
Returns:
|
||||
str: 随机选择的一条信息,如果没有则返回空字符串
|
||||
"""
|
||||
if keyword in self.keyword_info_cache and self.keyword_info_cache[keyword]:
|
||||
return random.choice(self.keyword_info_cache[keyword])
|
||||
return ""
|
||||
|
||||
def get_all_keywords(self) -> list:
|
||||
"""获取所有已缓存的关键词列表"""
|
||||
return list(self.keyword_info_cache.keys())
|
||||
|
||||
|
||||
individuality = None
|
||||
|
||||
@@ -221,3 +545,65 @@ def get_individuality():
|
||||
if individuality is None:
|
||||
individuality = Individuality()
|
||||
return individuality
|
||||
|
||||
|
||||
class KeywordUpdateTask(AsyncTask):
|
||||
"""关键词更新定时任务"""
|
||||
|
||||
def __init__(self, personality_sides: list, identity_detail: list, individuality_instance):
|
||||
# 调用父类构造函数
|
||||
super().__init__(
|
||||
task_name="keyword_update_task",
|
||||
wait_before_start=3600, # 1小时后开始
|
||||
run_interval=3600 # 每小时运行一次
|
||||
)
|
||||
|
||||
self.personality_sides = personality_sides
|
||||
self.identity_detail = identity_detail
|
||||
self.individuality_instance = individuality_instance
|
||||
|
||||
# 任务控制参数
|
||||
self.max_runs = 20
|
||||
self.current_runs = 0
|
||||
self.original_config_hash = individuality_instance._get_config_hash(personality_sides, identity_detail)
|
||||
|
||||
async def run(self):
|
||||
"""执行任务"""
|
||||
try:
|
||||
from src.common.logger import get_logger
|
||||
logger = get_logger("individuality.task")
|
||||
|
||||
# 检查是否超过最大运行次数
|
||||
if self.current_runs >= self.max_runs:
|
||||
logger.info(f"关键词更新任务已达到最大运行次数({self.max_runs}),停止执行")
|
||||
# 设置为0间隔来停止循环任务
|
||||
self.run_interval = 0
|
||||
return
|
||||
|
||||
# 检查配置是否发生变化
|
||||
current_config_hash = self.individuality_instance._get_config_hash(
|
||||
self.personality_sides, self.identity_detail
|
||||
)
|
||||
if current_config_hash != self.original_config_hash:
|
||||
logger.info("检测到personality或identity配置发生变化,停止定时任务")
|
||||
# 设置为0间隔来停止循环任务
|
||||
self.run_interval = 0
|
||||
return
|
||||
|
||||
self.current_runs += 1
|
||||
logger.info(f"开始执行关键词更新任务 (第{self.current_runs}/{self.max_runs}次)")
|
||||
|
||||
# 执行关键词预处理
|
||||
await self.individuality_instance._preprocess_personality_keywords(
|
||||
self.personality_sides, self.identity_detail
|
||||
)
|
||||
|
||||
logger.info(f"关键词更新任务完成 (第{self.current_runs}/{self.max_runs}次)")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"关键词更新任务执行失败: {e}")
|
||||
traceback.print_exc()
|
||||
|
||||
|
||||
# 初始化prompt模板
|
||||
init_prompt()
|
||||
|
||||
@@ -468,15 +468,15 @@ class RelationshipManager:
|
||||
|
||||
forgotten_points = []
|
||||
info_list = []
|
||||
|
||||
# 这句代码的作用是:将更新后的 forgotten_points(遗忘的记忆点)列表,序列化为 JSON 字符串后,写回到数据库中的 forgotten_points 字段
|
||||
await person_info_manager.update_one_field(
|
||||
person_id, "forgotten_points", json.dumps(forgotten_points, ensure_ascii=False, indent=None)
|
||||
)
|
||||
await person_info_manager.update_one_field(
|
||||
person_id, "info_list", json.dumps(info_list, ensure_ascii=False, indent=None)
|
||||
)
|
||||
|
||||
await person_info_manager.update_one_field(
|
||||
person_id, "forgotten_points", json.dumps(forgotten_points, ensure_ascii=False, indent=None)
|
||||
)
|
||||
|
||||
|
||||
# 更新数据库
|
||||
await person_info_manager.update_one_field(
|
||||
person_id, "points", json.dumps(current_points, ensure_ascii=False, indent=None)
|
||||
|
||||
Reference in New Issue
Block a user