better:大大大大优化自我认知处理器的token消耗和速度

This commit is contained in:
SengokuCola
2025-06-20 19:20:25 +08:00
parent ee126a343d
commit 7dafbff036
5 changed files with 449 additions and 173 deletions

View File

@@ -566,7 +566,16 @@ class RelationshipProcessor(BaseProcessor):
person_info_manager = get_person_info_manager()
for person_name, info_type in content_json.items():
person_id = person_info_manager.get_person_id_by_person_name(person_name)
if person_id:
if not person_id:
logger.warning(f"{self.log_prefix} 未找到用户 {person_name} 的ID跳过调取信息。")
continue
# 检查是否是bot自己如果是则跳过
user_id = person_info_manager.get_value_sync(person_id, "user_id")
if user_id == global_config.bot.qq_account:
logger.info(f"{self.log_prefix} 跳过调取bot自己({person_name})的信息。")
continue
self.info_fetching_cache.append(
{
"person_id": person_id,
@@ -578,13 +587,9 @@ class RelationshipProcessor(BaseProcessor):
)
if len(self.info_fetching_cache) > 20:
self.info_fetching_cache.pop(0)
else:
logger.warning(f"{self.log_prefix} 未找到用户 {person_name} 的ID跳过调取信息。")
continue
logger.info(f"{self.log_prefix} 调取用户 {person_name}{info_type} 信息。")
# 收集即时提取任务
instant_tasks.append((person_id, info_type, time.time()))
@@ -784,6 +789,8 @@ class RelationshipProcessor(BaseProcessor):
points_text_block = ""
if not points_text_block and not person_impression_block:
if person_id not in self.info_fetched_cache:
self.info_fetched_cache[person_id] = {}
self.info_fetched_cache[person_id][info_type] = {
"info": "none",
"ttl": 8,
@@ -791,6 +798,7 @@ class RelationshipProcessor(BaseProcessor):
"person_name": person_name,
"unknow": True,
}
return
prompt = (await global_prompt_manager.get_prompt_async("fetch_person_info_prompt")).format(
name_block=name_block,

View File

@@ -4,9 +4,6 @@ from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
import time
import traceback
import json
import os
import hashlib
from src.common.logger import get_logger
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.message_receive.chat_stream import get_chat_manager
@@ -15,6 +12,7 @@ from typing import List, Dict
from src.chat.heart_flow.observation.hfcloop_observation import HFCloopObservation
from src.chat.focus_chat.info.info_base import InfoBase
from src.chat.focus_chat.info.self_info import SelfInfo
from src.individuality.individuality import get_individuality
logger = get_logger("processor")
@@ -28,25 +26,19 @@ def init_prompt():
</聊天记录>
{name_block}
请你根据以上聊天记录,思考聊天记录中是否有人提到你自己相关的信息,或者有人询问你的相关信息,例如你的性格,身高,喜好,外貌,身份,兴趣,爱好,习惯,等等
然后请你根据你的聊天需要,输出关键词属性在数据库中进行查询,数据库包含了关于你的所有信息,你需要直接输出你要查询的关键词,如果要输出多个,请用逗号隔开
如果没有需要查询的内容请输出none
现在请输出关键词,注意只输出关键词就好,不要输出其他内容:
请你根据以上聊天记录,思考聊天记录中是否有人提到你自己相关的信息,或者有人询问你的相关信息。
数据库中包含以下关键词的信息:
{available_keywords}
请从上述关键词中选择你需要查询的关键词来回答聊天中的问题。如果需要多个关键词,请用逗号隔开。
如果聊天中没有涉及任何关于你的问题请输出none。
现在请输出你要查询的关键词,注意只输出关键词就好,不要输出其他内容:
"""
Prompt(indentify_prompt, "indentify_prompt")
fetch_info_prompt = """
{name_block},你的性格是:
{prompt_personality}
{indentify_block}
请从中提取有关你的有关"{keyword}"信息,请输出原始内容,如果{bot_name}没有涉及"{keyword}"相关信息请输出none
"""
Prompt(fetch_info_prompt, "fetch_info_prompt")
class SelfProcessor(BaseProcessor):
log_prefix = "自我认同"
@@ -57,98 +49,15 @@ class SelfProcessor(BaseProcessor):
self.info_fetched_cache: Dict[str, Dict[str, any]] = {}
self.fetch_info_file_path = "data/personality/fetch_info.json"
self.meta_info_file_path = "data/personality/meta_info.json"
self.llm_model = LLMRequest(
model=global_config.model.utils_small,
request_type="focus.processor.self_identify",
)
name = get_chat_manager().get_stream_name(self.subheartflow_id)
self.log_prefix = f"[{name}] "
# 在初始化时检查配置是否发生变化
self._check_config_change_and_clear()
def _get_config_hash(self) -> str:
"""获取当前personality和identity配置的哈希值"""
personality_sides = list(global_config.personality.personality_sides)
identity_detail = list(global_config.identity.identity_detail)
# 将配置转换为字符串并排序,确保一致性
config_str = json.dumps({
"personality_sides": sorted(personality_sides),
"identity_detail": sorted(identity_detail)
}, sort_keys=True)
return hashlib.md5(config_str.encode('utf-8')).hexdigest()
def _load_meta_info(self) -> Dict[str, str]:
"""从JSON文件中加载元信息"""
if os.path.exists(self.meta_info_file_path):
try:
with open(self.meta_info_file_path, 'r', encoding='utf-8') as f:
return json.load(f)
except Exception as e:
logger.warning(f"{self.log_prefix} 读取meta_info文件失败: {e}")
return {}
return {}
def _save_meta_info(self, meta_info: Dict[str, str]):
"""将元信息保存到JSON文件"""
try:
# 确保目录存在
os.makedirs(os.path.dirname(self.meta_info_file_path), exist_ok=True)
with open(self.meta_info_file_path, 'w', encoding='utf-8') as f:
json.dump(meta_info, f, ensure_ascii=False, indent=2)
except Exception as e:
logger.error(f"{self.log_prefix} 保存meta_info文件失败: {e}")
def _check_config_change_and_clear(self):
"""检查配置是否发生变化如果变化则清空fetch_info.json"""
current_config_hash = self._get_config_hash()
meta_info = self._load_meta_info()
stored_config_hash = meta_info.get("config_hash", "")
if current_config_hash != stored_config_hash:
logger.info(f"{self.log_prefix} 检测到personality或identity配置发生变化清空fetch_info数据")
# 清空fetch_info文件
if os.path.exists(self.fetch_info_file_path):
try:
os.remove(self.fetch_info_file_path)
logger.info(f"{self.log_prefix} 已清空fetch_info文件")
except Exception as e:
logger.error(f"{self.log_prefix} 清空fetch_info文件失败: {e}")
# 更新元信息
meta_info["config_hash"] = current_config_hash
self._save_meta_info(meta_info)
logger.info(f"{self.log_prefix} 已更新配置哈希值")
def _load_fetch_info_from_file(self) -> Dict[str, str]:
"""从JSON文件中加载已保存的fetch_info数据"""
if os.path.exists(self.fetch_info_file_path):
try:
with open(self.fetch_info_file_path, 'r', encoding='utf-8') as f:
return json.load(f)
except Exception as e:
logger.warning(f"{self.log_prefix} 读取fetch_info文件失败: {e}")
return {}
return {}
def _save_fetch_info_to_file(self, fetch_info_data: Dict[str, str]):
"""将fetch_info数据保存到JSON文件"""
try:
# 确保目录存在
os.makedirs(os.path.dirname(self.fetch_info_file_path), exist_ok=True)
with open(self.fetch_info_file_path, 'w', encoding='utf-8') as f:
json.dump(fetch_info_data, f, ensure_ascii=False, indent=2)
except Exception as e:
logger.error(f"{self.log_prefix} 保存fetch_info文件失败: {e}")
async def process_info(self, observations: List[Observation] = None, *infos) -> List[InfoBase]:
"""处理信息对象
@@ -210,19 +119,16 @@ class SelfProcessor(BaseProcessor):
nickname_str += f"{nicknames},"
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
personality_sides_str = ""
identity_detail_str = ""
for personality_side in global_config.personality.personality_sides:
personality_sides_str += f"{personality_side},"
for identity_detail in global_config.identity.identity_detail:
identity_detail_str += f"{identity_detail},"
# 获取所有可用的关键词
individuality = get_individuality()
available_keywords = individuality.get_all_keywords()
available_keywords_str = "".join(available_keywords) if available_keywords else "暂无关键词"
prompt = (await global_prompt_manager.get_prompt_async("indentify_prompt")).format(
name_block=name_block,
time_now=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),
chat_observe_info=chat_observe_info[-200:],
available_keywords=available_keywords_str,
bot_name = global_config.bot.nickname
)
@@ -242,8 +148,7 @@ class SelfProcessor(BaseProcessor):
keyword = "我是谁,我从哪来,要到哪去"
# keyword_json = json.loads(repair_json(keyword))
# 根据逗号分割为list
# 解析关键词
keyword = keyword.strip()
if not keyword or keyword == "none":
keyword_set = []
@@ -251,50 +156,30 @@ class SelfProcessor(BaseProcessor):
# 只保留非空关键词,去除多余空格
keyword_set = [k.strip() for k in keyword.split(",") if k.strip()]
# 从individuality缓存中查询关键词信息
for keyword in keyword_set:
if keyword not in self.info_fetched_cache:
# 首先尝试从文件中读取
fetch_info_data = self._load_fetch_info_from_file()
if keyword in fetch_info_data:
# 从文件中获取已保存的信息
fetched_info = fetch_info_data[keyword]
logger.info(f"{self.log_prefix} 从文件中读取到关键词 '{keyword}' 的信息")
else:
# 文件中没有使用LLM生成
prompt = (await global_prompt_manager.get_prompt_async("fetch_info_prompt")).format(
name_block=name_block,
prompt_personality=personality_sides_str,
indentify_block=identity_detail_str,
keyword=keyword,
bot_name = global_config.bot.nickname
)
print(prompt)
fetched_info, _ = await self.llm_model.generate_response_async(prompt=prompt)
if not fetched_info:
logger.warning(f"{self.log_prefix} LLM返回空结果自我识别失败。")
fetched_info = ""
elif fetched_info == "none":
fetched_info = ""
else:
# 保存新生成的信息到文件
fetch_info_data[keyword] = fetched_info
self._save_fetch_info_to_file(fetch_info_data)
logger.info(f"{self.log_prefix} 新生成的关键词 '{keyword}' 信息已保存到文件")
# 直接从individuality的json缓存中获取关键词信息
fetched_info = individuality.get_keyword_info(keyword)
if fetched_info:
self.info_fetched_cache[keyword] = {
"info": fetched_info,
"ttl": 5,
}
logger.info(f"{self.log_prefix} 从个体特征缓存中获取关键词 '{keyword}' 的信息")
# 管理TTL生存时间
expired_keywords = []
for fetched_keyword, info in self.info_fetched_cache.items():
if info["ttl"] > 0:
info["ttl"] -= 1
else:
del self.info_fetched_cache[fetched_keyword]
expired_keywords.append(fetched_keyword)
# 删除过期的关键词
for expired_keyword in expired_keywords:
del self.info_fetched_cache[expired_keyword]
fetched_info_str = ""

View File

@@ -402,7 +402,7 @@ class DefaultReplyer:
time_block=time_block,
reply_target_block=reply_target_block,
keywords_reaction_prompt=keywords_reaction_prompt,
indentify_block=indentify_block,
identity=indentify_block,
target_message=target,
sender_name=sender,
config_expression_style=global_config.expression.expression_style,
@@ -416,12 +416,9 @@ class DefaultReplyer:
chat_target=chat_target_1,
chat_info=chat_talking_prompt,
extra_info_block=extra_info_block,
relation_info_block=relation_info_block,
self_info_block=self_info_block,
time_block=time_block,
reply_target_block=reply_target_block,
keywords_reaction_prompt=keywords_reaction_prompt,
indentify_block=indentify_block,
identity=indentify_block,
target_message=target,
sender_name=sender,
config_expression_style=global_config.expression.expression_style,

View File

@@ -3,10 +3,52 @@ from .personality import Personality
from .identity import Identity
from .expression_style import PersonalityExpression
import random
import json
import os
import hashlib
import traceback
import time
from rich.traceback import install
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.manager.async_task_manager import AsyncTask
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
from src.common.logger import get_logger
install(extra_lines=3)
logger = get_logger("individuality")
def init_prompt():
"""初始化用于关键词提取的prompts"""
extract_keywords_prompt = """
请分析以下对某人的描述,提取出其中的独立关键词。每个关键词应该是可以用来从某一角度概括的方面:性格,身高,喜好,外貌,身份,兴趣,爱好,习惯,等等。
描述内容:
{personality_sides}
要求:
1. 提取独立的关键词,不要使用句子或短语
2. 每个关键词用逗号分隔
3. 只输出关键词,不要输出任何解释或其他内容
请输出关键词:
"""
Prompt(extract_keywords_prompt, "extract_keywords_prompt")
fetch_info_prompt = """
{name_block},你的性格的特征是:
{prompt_personality}
{indentify_block}
请从中提取有关你的有关"{keyword}"信息,请输出原始内容,如果{bot_name}没有涉及"{keyword}"相关信息请输出none
"""
Prompt(fetch_info_prompt, "fetch_info_prompt")
class Individuality:
"""个体特征管理类"""
@@ -19,6 +61,11 @@ class Individuality:
self.name = ""
# 关键词缓存相关
self.keyword_info_cache: dict = {} # {keyword: [info_list]}
self.fetch_info_file_path = "data/personality/fetch_info.json"
self.meta_info_file_path = "data/personality/meta_info.json"
async def initialize(
self,
bot_nickname: str,
@@ -46,6 +93,9 @@ class Individuality:
self.name = bot_nickname
# 预处理关键词和生成信息缓存
await self._preprocess_personality_keywords(personality_sides, identity_detail)
def to_dict(self) -> dict:
"""将个体特征转换为字典格式"""
return {
@@ -212,6 +262,280 @@ class Individuality:
return self.personality.neuroticism
return None
def _get_config_hash(self, personality_sides: list, identity_detail: list) -> str:
"""获取当前personality和identity配置的哈希值"""
# 将配置转换为字符串并排序,确保一致性
config_str = json.dumps({
"personality_sides": sorted(personality_sides),
"identity_detail": sorted(identity_detail)
}, sort_keys=True)
return hashlib.md5(config_str.encode('utf-8')).hexdigest()
def _load_meta_info(self) -> dict:
"""从JSON文件中加载元信息"""
if os.path.exists(self.meta_info_file_path):
try:
with open(self.meta_info_file_path, 'r', encoding='utf-8') as f:
return json.load(f)
except Exception as e:
print(f"读取meta_info文件失败: {e}")
return {}
return {}
def _save_meta_info(self, meta_info: dict):
"""将元信息保存到JSON文件"""
try:
# 确保目录存在
os.makedirs(os.path.dirname(self.meta_info_file_path), exist_ok=True)
with open(self.meta_info_file_path, 'w', encoding='utf-8') as f:
json.dump(meta_info, f, ensure_ascii=False, indent=2)
except Exception as e:
print(f"保存meta_info文件失败: {e}")
def _check_config_change_and_clear(self, personality_sides: list, identity_detail: list):
"""检查配置是否发生变化如果变化则清空fetch_info.json"""
current_config_hash = self._get_config_hash(personality_sides, identity_detail)
meta_info = self._load_meta_info()
stored_config_hash = meta_info.get("config_hash", "")
if current_config_hash != stored_config_hash:
logger.info(f"检测到personality或identity配置发生变化清空fetch_info数据")
# 清空fetch_info文件
if os.path.exists(self.fetch_info_file_path):
try:
os.remove(self.fetch_info_file_path)
logger.info(f"已清空fetch_info文件")
except Exception as e:
logger.error(f"清空fetch_info文件失败: {e}")
# 更新元信息
meta_info["config_hash"] = current_config_hash
self._save_meta_info(meta_info)
logger.info(f"已更新配置哈希值")
def _load_fetch_info_from_file(self) -> dict:
"""从JSON文件中加载已保存的fetch_info数据"""
if os.path.exists(self.fetch_info_file_path):
try:
with open(self.fetch_info_file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
# 兼容旧格式:如果是字符串则转换为列表
for keyword, value in data.items():
if isinstance(value, str):
data[keyword] = [value]
return data
except Exception as e:
logger.error(f"读取fetch_info文件失败: {e}")
return {}
return {}
def _save_fetch_info_to_file(self, fetch_info_data: dict):
"""将fetch_info数据保存到JSON文件"""
try:
# 确保目录存在
os.makedirs(os.path.dirname(self.fetch_info_file_path), exist_ok=True)
with open(self.fetch_info_file_path, 'w', encoding='utf-8') as f:
json.dump(fetch_info_data, f, ensure_ascii=False, indent=2)
except Exception as e:
logger.error(f"保存fetch_info文件失败: {e}")
async def _preprocess_personality_keywords(self, personality_sides: list, identity_detail: list):
"""预处理personality关键词提取关键词并生成缓存"""
try:
logger.info("开始预处理personality关键词...")
# 检查配置变化
self._check_config_change_and_clear(personality_sides, identity_detail)
# 加载已有的预处理数据(如果存在)
fetch_info_data = self._load_fetch_info_from_file()
logger.info(f"加载已有数据,现有关键词数量: {len(fetch_info_data)}")
# 检查并清理错误分割的关键词(包含逗号的键)
keys_to_fix = []
for key in fetch_info_data.keys():
if "," in key:
keys_to_fix.append(key)
if keys_to_fix:
logger.info(f"发现 {len(keys_to_fix)} 个需要重新分割的关键词")
for bad_key in keys_to_fix:
logger.info(f"重新分割关键词: '{bad_key}'")
# 获取对应的信息
info_list = fetch_info_data[bad_key]
# 删除旧的错误键
del fetch_info_data[bad_key]
# 按逗号分割并重新添加
split_keywords = [k.strip() for k in bad_key.split(",") if k.strip()]
for split_keyword in split_keywords:
if split_keyword not in fetch_info_data:
fetch_info_data[split_keyword] = []
# 将信息添加到分割后的关键词中
for info in info_list:
if info not in fetch_info_data[split_keyword]:
fetch_info_data[split_keyword].append(info)
logger.info(f"已将信息分配给关键词: '{split_keyword}'")
# 保存清理后的数据
self._save_fetch_info_to_file(fetch_info_data)
logger.info(f"清理完成,现在共有 {len(fetch_info_data)} 个关键词")
# 构建完整描述personality + identity
personality_sides_str = ""
for personality_side in personality_sides:
personality_sides_str += f"{personality_side}"
# 添加identity内容
for detail in identity_detail:
personality_sides_str += f"{detail}"
if not personality_sides_str:
logger.info("没有personality和identity配置跳过预处理")
return
# 提取关键词
extract_prompt = (await global_prompt_manager.get_prompt_async("extract_keywords_prompt")).format(
personality_sides=personality_sides_str
)
llm_model = LLMRequest(
model=global_config.model.utils_small,
request_type="individuality.keyword_extract",
)
keywords_result, _ = await llm_model.generate_response_async(prompt=extract_prompt)
logger.info(f"LLM返回的原始关键词结果: '{keywords_result}'")
if not keywords_result or keywords_result.strip() == "none":
logger.info("未提取到有效关键词")
return
# 解析关键词
keyword_set = [k.strip() for k in keywords_result.split(",") if k.strip()]
logger.info(f"分割后的关键词列表: {keyword_set}")
logger.info(f"共提取到 {len(keyword_set)} 个关键词")
# 构建名称块和身份信息
nickname_str = ""
for nickname in global_config.bot.alias_names:
nickname_str += f"{nickname},"
name_block = f"你的名字是{self.name},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
identity_detail_str = ""
for detail in identity_detail:
identity_detail_str += f"{detail},"
# 为每个关键词生成fetched_info添加到现有数据中
updated_count = 0
new_count = 0
for keyword in keyword_set:
try:
logger.info(f"正在处理关键词: '{keyword}' (长度: {len(keyword)})")
# 检查是否已存在该关键词
if keyword in fetch_info_data:
logger.info(f"关键词 '{keyword}' 已存在,将添加新信息...")
action_type = "追加"
else:
logger.info(f"正在为新关键词 '{keyword}' 生成信息...")
action_type = "新增"
fetch_info_data[keyword] = [] # 初始化为空列表
fetch_prompt = (await global_prompt_manager.get_prompt_async("fetch_info_prompt")).format(
name_block=name_block,
prompt_personality=personality_sides_str,
indentify_block=identity_detail_str,
keyword=keyword,
bot_name=self.name
)
fetched_info, _ = await llm_model.generate_response_async(prompt=fetch_prompt)
if fetched_info and fetched_info.strip() != "none":
# 添加到列表中,避免重复
if fetched_info not in fetch_info_data[keyword]:
fetch_info_data[keyword].append(fetched_info)
if action_type == "追加":
updated_count += 1
else:
new_count += 1
logger.info(f"{action_type}关键词 '{keyword}' 的信息成功")
else:
logger.info(f"关键词 '{keyword}' 的信息已存在,跳过重复添加")
else:
logger.info(f"关键词 '{keyword}' 没有相关信息")
except Exception as e:
logger.error(f"为关键词 '{keyword}' 生成信息时出错: {e}")
continue
# 保存合并后的数据到文件和内存缓存
if updated_count > 0 or new_count > 0:
self._save_fetch_info_to_file(fetch_info_data)
logger.info(f"预处理完成,新增 {new_count} 个关键词,追加 {updated_count} 个关键词信息,总计 {len(fetch_info_data)} 个关键词")
else:
logger.info("预处理完成,但没有生成任何新的有效信息")
# 将数据加载到内存缓存
self.keyword_info_cache = fetch_info_data
logger.info(f"关键词缓存已加载,共 {len(self.keyword_info_cache)} 个关键词")
# 注册定时任务(延迟执行,避免阻塞初始化)
import asyncio
asyncio.create_task(self._register_keyword_update_task_delayed())
except Exception as e:
logger.error(f"预处理personality关键词时出错: {e}")
traceback.print_exc()
async def _register_keyword_update_task_delayed(self):
"""延迟注册关键词更新定时任务"""
try:
# 等待一小段时间确保系统完全初始化
import asyncio
await asyncio.sleep(5)
from src.manager.async_task_manager import async_task_manager
logger = get_logger("individuality")
# 创建定时任务
task = KeywordUpdateTask(
personality_sides=list(global_config.personality.personality_sides),
identity_detail=list(global_config.identity.identity_detail),
individuality_instance=self
)
# 注册任务
await async_task_manager.add_task(task)
logger.info("关键词更新定时任务已注册")
except Exception as e:
logger.error(f"注册关键词更新定时任务失败: {e}")
traceback.print_exc()
def get_keyword_info(self, keyword: str) -> str:
"""获取指定关键词的信息
Args:
keyword: 关键词
Returns:
str: 随机选择的一条信息,如果没有则返回空字符串
"""
if keyword in self.keyword_info_cache and self.keyword_info_cache[keyword]:
return random.choice(self.keyword_info_cache[keyword])
return ""
def get_all_keywords(self) -> list:
"""获取所有已缓存的关键词列表"""
return list(self.keyword_info_cache.keys())
individuality = None
@@ -221,3 +545,65 @@ def get_individuality():
if individuality is None:
individuality = Individuality()
return individuality
class KeywordUpdateTask(AsyncTask):
"""关键词更新定时任务"""
def __init__(self, personality_sides: list, identity_detail: list, individuality_instance):
# 调用父类构造函数
super().__init__(
task_name="keyword_update_task",
wait_before_start=3600, # 1小时后开始
run_interval=3600 # 每小时运行一次
)
self.personality_sides = personality_sides
self.identity_detail = identity_detail
self.individuality_instance = individuality_instance
# 任务控制参数
self.max_runs = 20
self.current_runs = 0
self.original_config_hash = individuality_instance._get_config_hash(personality_sides, identity_detail)
async def run(self):
"""执行任务"""
try:
from src.common.logger import get_logger
logger = get_logger("individuality.task")
# 检查是否超过最大运行次数
if self.current_runs >= self.max_runs:
logger.info(f"关键词更新任务已达到最大运行次数({self.max_runs}),停止执行")
# 设置为0间隔来停止循环任务
self.run_interval = 0
return
# 检查配置是否发生变化
current_config_hash = self.individuality_instance._get_config_hash(
self.personality_sides, self.identity_detail
)
if current_config_hash != self.original_config_hash:
logger.info("检测到personality或identity配置发生变化停止定时任务")
# 设置为0间隔来停止循环任务
self.run_interval = 0
return
self.current_runs += 1
logger.info(f"开始执行关键词更新任务 (第{self.current_runs}/{self.max_runs}次)")
# 执行关键词预处理
await self.individuality_instance._preprocess_personality_keywords(
self.personality_sides, self.identity_detail
)
logger.info(f"关键词更新任务完成 (第{self.current_runs}/{self.max_runs}次)")
except Exception as e:
logger.error(f"关键词更新任务执行失败: {e}")
traceback.print_exc()
# 初始化prompt模板
init_prompt()

View File

@@ -468,15 +468,15 @@ class RelationshipManager:
forgotten_points = []
info_list = []
# 这句代码的作用是:将更新后的 forgotten_points遗忘的记忆点列表序列化为 JSON 字符串后,写回到数据库中的 forgotten_points 字段
await person_info_manager.update_one_field(
person_id, "forgotten_points", json.dumps(forgotten_points, ensure_ascii=False, indent=None)
)
await person_info_manager.update_one_field(
person_id, "info_list", json.dumps(info_list, ensure_ascii=False, indent=None)
)
await person_info_manager.update_one_field(
person_id, "forgotten_points", json.dumps(forgotten_points, ensure_ascii=False, indent=None)
)
# 更新数据库
await person_info_manager.update_one_field(
person_id, "points", json.dumps(current_points, ensure_ascii=False, indent=None)