feat:添加时段talk_frequency控制

This commit is contained in:
SengokuCola
2025-06-25 17:18:43 +08:00
parent cfe5eb7d4e
commit 7b559cdc5f
11 changed files with 210 additions and 23 deletions

View File

@@ -23,7 +23,7 @@ def init_prompt():
以下是可选的表达情境:
{all_situations}
请你分析聊天内容的语境、情绪、话题类型,从上述情境中选择最适合当前聊天情境的5-10个情境。
请你分析聊天内容的语境、情绪、话题类型,从上述情境中选择最适合当前聊天情境的{min_num}-{max_num}个情境。
考虑因素包括:
1. 聊天的情绪氛围(轻松、严肃、幽默等)
2. 话题类型(日常、技术、游戏、情感等)
@@ -32,11 +32,11 @@ def init_prompt():
请以JSON格式输出只需要输出选中的情境编号
例如:
{{
"selected_situations": [2, 3, 5, 7, 9, 12, 15, 18, 21, 25]
"selected_situations": [2, 3, 5, 7, 19, 22, 25, 38, 39, 45, 48 , 64]
}}
例如:
{{
"selected_situations": [1, 4, 7, 9, 13, 18, 24]
"selected_situations": [1, 4, 7, 9, 23, 38, 44]
}}
请严格按照JSON格式输出不要包含其他内容
@@ -146,7 +146,7 @@ class ExpressionSelector:
except Exception as e:
logger.error(f"更新表达方式count失败: {e}")
async def select_suitable_expressions_llm(self, chat_id: str, chat_info: str) -> List[Dict[str, str]]:
async def select_suitable_expressions_llm(self, chat_id: str, chat_info: str, max_num: int = 10, min_num: int = 5) -> List[Dict[str, str]]:
"""使用LLM选择适合的表达方式"""
# 1. 获取35个随机表达方式现在按权重抽取
@@ -191,9 +191,10 @@ class ExpressionSelector:
bot_name=global_config.bot.nickname,
chat_observe_info=chat_info,
all_situations=all_situations_str,
min_num=min_num,
max_num=max_num,
)
print(prompt)
# 4. 调用LLM
try:

View File

@@ -96,7 +96,7 @@ class ExpressionLearner:
current_chat_type = "private"
typed_chat_id = f"{platform}:{chat_stream.user_info.user_id}:{current_chat_type}"
logger.info(f"正在为 {typed_chat_id} 查找互通组...")
logger.debug(f"正在为 {typed_chat_id} 查找互通组...")
found_group = None
for group in expression_groups:
@@ -108,7 +108,7 @@ class ExpressionLearner:
break
if not found_group:
logger.info(f"未找到互通组,仅加载 {chat_id} 的表达方式")
logger.debug(f"未找到互通组,仅加载 {chat_id} 的表达方式")
if found_group:
# 从带类型的id中解析出原始id
@@ -121,7 +121,7 @@ class ExpressionLearner:
except Exception:
logger.warning(f"无法解析互通组中的ID: {item}")
chat_ids_to_load = parsed_ids
logger.info(f"将要加载以下id的表达方式: {chat_ids_to_load}")
logger.debug(f"将要加载以下id的表达方式: {chat_ids_to_load}")
learnt_style_expressions = []
learnt_grammar_expressions = []

View File

@@ -180,7 +180,8 @@ class HeartFCMessageReceiver:
# 7. 日志记录
mes_name = chat.group_info.group_name if chat.group_info else "私聊"
# current_time = time.strftime("%H:%M:%S", time.localtime(message.message_info.time))
logger.info(f"[{mes_name}]{userinfo.user_nickname}:{message.processed_plain_text}")
current_talk_frequency = global_config.chat.get_current_talk_frequency(chat.stream_id)
logger.info(f"[{mes_name}]{userinfo.user_nickname}:{message.processed_plain_text}[当前回复频率: {current_talk_frequency}]")
# 8. 关系处理
if global_config.relationship.enable_relationship:

View File

@@ -71,9 +71,7 @@ class ExpressionSelectorProcessor(BaseProcessor):
try:
# LLM模式调用LLM选择5-10个然后随机选5个
selected_expressions = await expression_selector.select_suitable_expressions_llm(
self.subheartflow_id, chat_info
)
selected_expressions = await expression_selector.select_suitable_expressions_llm(self.subheartflow_id, chat_info, max_num=12, min_num=2)
cache_size = len(selected_expressions) if selected_expressions else 0
mode_desc = f"LLM模式已缓存{cache_size}个)"

View File

@@ -292,8 +292,11 @@ class PersonImpressionpProcessor(BaseProcessor):
"message_count": self._count_messages_in_timerange(potential_start_time, message_time),
}
segments.append(new_segment)
person_name = get_person_info_manager().get_value(person_id, "person_name")
logger.info(
f"{self.log_prefix} 用户 {person_id} 创建新消息段: 时间范围 {time.strftime('%H:%M:%S', time.localtime(potential_start_time))} - {time.strftime('%H:%M:%S', time.localtime(message_time))}, 消息数: {new_segment['message_count']}"
f"{self.log_prefix} 眼熟用户 {person_name} {time.strftime('%H:%M:%S', time.localtime(potential_start_time))} - {time.strftime('%H:%M:%S', time.localtime(message_time))} 之间有 {new_segment['message_count']} 条消息"
)
self._save_cache()
return
@@ -339,7 +342,7 @@ class PersonImpressionpProcessor(BaseProcessor):
"message_count": self._count_messages_in_timerange(potential_start_time, message_time),
}
segments.append(new_segment)
logger.info(f"{self.log_prefix} 用户 {person_id} 创建新消息段超过10条消息间隔: {new_segment}")
logger.info(f"{self.log_prefix} 重新眼熟用户 {person_name} 创建新消息段超过10条消息间隔: {new_segment}")
self._save_cache()

View File

@@ -172,12 +172,12 @@ class ChatManager:
key = "_".join(components)
return hashlib.md5(key.encode()).hexdigest()
def get_stream_id(self, platform: str, chat_id: str, is_group: bool = True) -> str:
def get_stream_id(self, platform: str, id: str, is_group: bool = True) -> str:
"""获取聊天流ID"""
if is_group:
components = [platform, str(chat_id)]
components = [platform, str(id)]
else:
components = [platform, str(chat_id), "private"]
components = [platform, str(id), "private"]
key = "_".join(components)
return hashlib.md5(key.encode()).hexdigest()

View File

@@ -1000,7 +1000,7 @@ class NormalChat:
"""
# --- 1. 定义参数 ---
evaluation_minutes = 10.0
target_replies_per_min = global_config.chat.talk_frequency # 目标频率e.g. 1条/分钟
target_replies_per_min = global_config.chat.get_current_talk_frequency(self.stream_id) # 目标频率e.g. 1条/分钟
target_replies_in_window = target_replies_per_min * evaluation_minutes # 10分钟内的目标回复数
if target_replies_in_window <= 0:

View File

@@ -163,7 +163,7 @@ class PromptBuilder:
show_actions=True,
)
expressions = await expression_selector.select_suitable_expressions_llm(chat_stream.stream_id, chat_talking_prompt_half)
expressions = await expression_selector.select_suitable_expressions_llm(chat_stream.stream_id, chat_talking_prompt_half, max_num=8, min_num=3)
style_habbits = []
grammar_habbits = []
if expressions:

View File

@@ -72,12 +72,171 @@ class ChatConfig(ConfigBase):
talk_frequency: float = 1
"""回复频率阈值"""
# 修改:基于时段的回复频率配置,改为数组格式
time_based_talk_frequency: list[str] = field(default_factory=lambda: [])
"""
基于时段的回复频率配置(全局)
格式:["HH:MM,frequency", "HH:MM,frequency", ...]
示例:["8:00,1", "12:00,2", "18:00,1.5", "00:00,0.5"]
表示从该时间开始使用该频率,直到下一个时间点
"""
# 新增:基于聊天流的个性化时段频率配置
talk_frequency_adjust: list[list[str]] = field(default_factory=lambda: [])
"""
基于聊天流的个性化时段频率配置
格式:[["platform:chat_id:type", "HH:MM,frequency", "HH:MM,frequency", ...], ...]
示例:[
["qq:1026294844:group", "12:20,1", "16:10,2", "20:10,1", "00:10,0.3"],
["qq:729957033:group", "8:20,1", "12:10,2", "20:10,1.5", "00:10,0.2"]
]
每个子列表的第一个元素是聊天流标识符,后续元素是"时间,频率"格式
表示从该时间开始使用该频率,直到下一个时间点
"""
auto_focus_threshold: float = 1.0
"""自动切换到专注聊天的阈值,越低越容易进入专注聊天"""
exit_focus_threshold: float = 1.0
"""自动退出专注聊天的阈值,越低越容易退出专注聊天"""
def get_current_talk_frequency(self, chat_stream_id: str = None) -> float:
"""
根据当前时间和聊天流获取对应的 talk_frequency
Args:
chat_stream_id: 聊天流ID格式为 "platform:chat_id:type"
Returns:
float: 对应的频率值
"""
# 优先检查聊天流特定的配置
if chat_stream_id and self.talk_frequency_adjust:
stream_frequency = self._get_stream_specific_frequency(chat_stream_id)
if stream_frequency is not None:
return stream_frequency
# 如果没有聊天流特定配置,检查全局时段配置
if self.time_based_talk_frequency:
global_frequency = self._get_time_based_frequency(self.time_based_talk_frequency)
if global_frequency is not None:
return global_frequency
# 如果都没有匹配,返回默认值
return self.talk_frequency
def _get_time_based_frequency(self, time_freq_list: list[str]) -> float:
"""
根据时间配置列表获取当前时段的频率
Args:
time_freq_list: 时间频率配置列表,格式为 ["HH:MM,frequency", ...]
Returns:
float: 频率值,如果没有配置则返回 None
"""
from datetime import datetime
current_time = datetime.now().strftime("%H:%M")
current_hour, current_minute = map(int, current_time.split(":"))
current_minutes = current_hour * 60 + current_minute
# 解析时间频率配置
time_freq_pairs = []
for time_freq_str in time_freq_list:
try:
time_str, freq_str = time_freq_str.split(",")
hour, minute = map(int, time_str.split(":"))
frequency = float(freq_str)
minutes = hour * 60 + minute
time_freq_pairs.append((minutes, frequency))
except (ValueError, IndexError):
continue
if not time_freq_pairs:
return None
# 按时间排序
time_freq_pairs.sort(key=lambda x: x[0])
# 查找当前时间对应的频率
current_frequency = None
for minutes, frequency in time_freq_pairs:
if current_minutes >= minutes:
current_frequency = frequency
else:
break
# 如果当前时间在所有配置时间之前,使用最后一个时间段的频率(跨天逻辑)
if current_frequency is None and time_freq_pairs:
current_frequency = time_freq_pairs[-1][1]
return current_frequency
def _get_stream_specific_frequency(self, chat_stream_id: str) -> float:
"""
获取特定聊天流在当前时间的频率
Args:
chat_stream_id: 聊天流ID哈希值
Returns:
float: 频率值,如果没有配置则返回 None
"""
# 查找匹配的聊天流配置
for config_item in self.talk_frequency_adjust:
if not config_item or len(config_item) < 2:
continue
stream_config_str = config_item[0] # 例如 "qq:1026294844:group"
# 解析配置字符串并生成对应的 chat_id
config_chat_id = self._parse_stream_config_to_chat_id(stream_config_str)
if config_chat_id is None:
continue
# 比较生成的 chat_id
if config_chat_id != chat_stream_id:
continue
# 使用通用的时间频率解析方法
return self._get_time_based_frequency(config_item[1:])
return None
def _parse_stream_config_to_chat_id(self, stream_config_str: str) -> str:
"""
解析流配置字符串并生成对应的 chat_id
Args:
stream_config_str: 格式为 "platform:id:type" 的字符串
Returns:
str: 生成的 chat_id如果解析失败则返回 None
"""
try:
parts = stream_config_str.split(":")
if len(parts) != 3:
return None
platform = parts[0]
id_str = parts[1]
stream_type = parts[2]
# 判断是否为群聊
is_group = stream_type == "group"
# 使用与 ChatStream.get_stream_id 相同的逻辑生成 chat_id
import hashlib
if is_group:
components = [platform, str(id_str)]
else:
components = [platform, str(id_str), "private"]
key = "_".join(components)
return hashlib.md5(key.encode()).hexdigest()
except (ValueError, IndexError):
return None
@dataclass
class MessageReceiveConfig(ConfigBase):

View File

@@ -241,7 +241,7 @@ class NoReplyAction(BaseAction):
if sender_id == user_id:
bot_message_count += 1
talk_frequency_threshold = global_config.chat.talk_frequency * 10
talk_frequency_threshold = global_config.chat.get_current_talk_frequency(self.chat_id) * 10
if bot_message_count > talk_frequency_threshold:
over_count = bot_message_count - talk_frequency_threshold
@@ -444,7 +444,7 @@ class NoReplyAction(BaseAction):
# 计算阈值频率:使用 exit_focus_threshold * 1.5
threshold_multiplier = global_config.chat.exit_focus_threshold * 1.5
threshold_frequency = global_config.chat.talk_frequency * threshold_multiplier
threshold_frequency = global_config.chat.get_current_talk_frequency(self.chat_id) * threshold_multiplier
# 判断是否超过阈值
if current_frequency > threshold_frequency:

View File

@@ -1,5 +1,5 @@
[inner]
version = "2.26.0"
version = "2.27.0"
#----以下是给开发人员阅读的,如果你只是部署了麦麦,不需要阅读----
#如果你想要修改配置文件请在修改后将version的值进行变更
@@ -62,6 +62,31 @@ chat_mode = "normal" # 聊天模式 —— 普通模式normal专注模式
talk_frequency = 1 # 麦麦回复频率,越高,麦麦回复越频繁
time_based_talk_frequency = ["8:00,1", "12:00,1.5", "18:00,2", "01:00,0.5"]
# 基于时段的回复频率配置(可选)
# 格式time_based_talk_frequency = ["HH:MM,frequency", ...]
# 示例:
# time_based_talk_frequency = ["8:00,1", "12:00,2", "18:00,1.5", "00:00,0.5"]
# 说明:表示从该时间开始使用该频率,直到下一个时间点
# 注意:如果没有配置,则使用上面的默认 talk_frequency 值
talk_frequency_adjust = [
["qq:114514:group", "12:20,1", "16:10,2", "20:10,1", "00:10,0.3"],
["qq:1919810:private", "8:20,1", "12:10,2", "20:10,1.5", "00:10,0.2"]
]
# 基于聊天流的个性化时段频率配置(可选)
# 格式talk_frequency_adjust = [["platform:id:type", "HH:MM,frequency", ...], ...]
# 说明:
# - 第一个元素是聊天流标识符,格式为 "platform:id:type"
# - platform: 平台名称(如 qq
# - id: 群号或用户QQ号
# - type: group表示群聊private表示私聊
# - 后续元素是"时间,频率"格式,表示从该时间开始使用该频率,直到下一个时间点
# - 优先级:聊天流特定配置 > 全局时段配置 > 默认 talk_frequency
# - 时间支持跨天,例如 "00:10,0.3" 表示从凌晨0:10开始使用频率0.3
# - 系统会自动将 "platform:id:type" 转换为内部的哈希chat_id进行匹配
auto_focus_threshold = 1 # 自动切换到专注聊天的阈值,越低越容易进入专注聊天
exit_focus_threshold = 1 # 自动退出专注聊天的阈值,越低越容易退出专注聊天
# 普通模式下麦麦会针对感兴趣的消息进行回复token消耗量较低