This commit is contained in:
tcmofashi
2025-04-20 13:13:44 +08:00
19 changed files with 466 additions and 547 deletions

9
.github/workflows/ruff-pr.yml vendored Normal file
View File

@@ -0,0 +1,9 @@
name: Ruff
on: [ pull_request ]
jobs:
ruff:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: astral-sh/ruff-action@v3

View File

@@ -1,5 +1,5 @@
name: Ruff
on: [ push, pull_request ]
on: [ push ]
permissions:
contents: write

View File

@@ -28,7 +28,7 @@ logger = get_module_logger("config", config=config_config)
# 考虑到实际上配置文件中的mai_version是不会自动更新的,所以采用硬编码
is_test = True
mai_version_main = "0.6.3"
mai_version_fix = "snapshot-1"
mai_version_fix = "snapshot-2"
if mai_version_fix:
if is_test:

View File

@@ -14,10 +14,10 @@ class GetMemoryTool(BaseTool):
parameters = {
"type": "object",
"properties": {
"text": {"type": "string", "description": "要查询的相关文本"},
"topic": {"type": "string", "description": "要查询的相关主题,用逗号隔开"},
"max_memory_num": {"type": "integer", "description": "最大返回记忆数量"},
},
"required": ["text"],
"required": ["topic"],
}
async def execute(self, function_args: Dict[str, Any], message_txt: str = "") -> Dict[str, Any]:
@@ -31,12 +31,15 @@ class GetMemoryTool(BaseTool):
Dict: 工具执行结果
"""
try:
text = function_args.get("text", message_txt)
topic = function_args.get("topic", message_txt)
max_memory_num = function_args.get("max_memory_num", 2)
# 将主题字符串转换为列表
topic_list = topic.split(",")
# 调用记忆系统
related_memory = await HippocampusManager.get_instance().get_memory_from_text(
text=text, max_memory_num=max_memory_num, max_memory_length=2, max_depth=3, fast_retrieval=False
related_memory = await HippocampusManager.get_instance().get_memory_from_topic(
valid_keywords=topic_list, max_memory_num=max_memory_num, max_memory_length=2, max_depth=3
)
memory_info = ""
@@ -47,7 +50,7 @@ class GetMemoryTool(BaseTool):
if memory_info:
content = f"你记得这些事情: {memory_info}"
else:
content = f"你不太记得有关{text}的记忆,你对此不太了解"
content = f"你不太记得有关{topic}的记忆,你对此不太了解"
return {"name": "get_memory", "content": content}
except Exception as e:

View File

@@ -9,11 +9,11 @@ class GetMidMemoryTool(BaseTool):
"""从记忆系统中获取相关记忆的工具"""
name = "mid_chat_mem"
description = "之前的聊天内容中获取具体信息,当最新消息提到,或者你需要回复的消息中提到,你可以使用这个工具"
description = "之前的聊天内容概述id中获取具体信息,如果没有聊天内容概述id就不要使用"
parameters = {
"type": "object",
"properties": {
"id": {"type": "integer", "description": "要查询的聊天记录id"},
"id": {"type": "integer", "description": "要查询的聊天记录概述id"},
},
"required": ["id"],
}

View File

@@ -6,6 +6,8 @@ from src.common.logger import get_module_logger, TOOL_USE_STYLE_CONFIG, LogConfi
from src.do_tool.tool_can_use import get_all_tool_definitions, get_tool_instance
from src.heart_flow.sub_heartflow import SubHeartflow
import traceback
from src.plugins.person_info.relationship_manager import relationship_manager
from src.plugins.chat.utils import parse_text_timestamps
tool_use_config = LogConfig(
# 使用消息发送专用样式
@@ -38,20 +40,6 @@ class ToolUser:
else:
mid_memory_info = ""
# stream_id = chat_stream.stream_id
# chat_talking_prompt = ""
# if stream_id:
# chat_talking_prompt = get_recent_group_detailed_plain_text(
# stream_id, limit=global_config.MAX_CONTEXT_SIZE, combine=True
# )
# new_messages = list(
# db.messages.find({"chat_id": chat_stream.stream_id, "time": {"$gt": time.time()}}).sort("time", 1).limit(15)
# )
# new_messages_str = ""
# for msg in new_messages:
# if "detailed_plain_text" in msg:
# new_messages_str += f"{msg['detailed_plain_text']}"
# 这些信息应该从调用者传入而不是从self获取
bot_name = global_config.BOT_NICKNAME
prompt = ""
@@ -62,6 +50,10 @@ class ToolUser:
# prompt += f"你注意到{sender_name}刚刚说:{message_txt}\n"
prompt += f"注意你就是{bot_name}{bot_name}是你的名字。根据之前的聊天记录补充问题信息,搜索时避开你的名字。\n"
prompt += "你现在需要对群里的聊天内容进行回复,现在选择工具来对消息和你的回复进行处理,你是否需要额外的信息,比如回忆或者搜寻已有的知识,改变关系和情感,或者了解你现在正在做什么。"
prompt = await relationship_manager.convert_all_person_sign_to_person_name(prompt)
prompt = parse_text_timestamps(prompt, mode="lite")
return prompt
@staticmethod
@@ -165,7 +157,7 @@ class ToolUser:
tool_calls_str = ""
for tool_call in tool_calls:
tool_calls_str += f"{tool_call['function']['name']}\n"
logger.info(f"根据:\n{prompt[0:100]}...\n模型请求调用{len(tool_calls)}个工具: {tool_calls_str}")
logger.info(f"根据:\n{prompt}\n模型请求调用{len(tool_calls)}个工具: {tool_calls_str}")
tool_results = []
structured_info = {} # 动态生成键

View File

@@ -6,7 +6,6 @@ from src.config.config import global_config
from src.common.database import db
from src.common.logger import get_module_logger
import traceback
import asyncio
logger = get_module_logger("observation")
@@ -39,7 +38,19 @@ class ChattingObservation(Observation):
self.mid_memory_info = ""
self.now_message_info = ""
self._observe_lock = asyncio.Lock() # 添加
# self._observe_lock = asyncio.Lock() # 移除
# 初始化时加载最近的10条消息
initial_messages_cursor = (
db.messages.find({"chat_id": self.chat_id, "time": {"$lt": self.last_observe_time}})
.sort("time", -1) # 按时间倒序
.limit(10) # 获取最多10条
)
initial_messages = list(initial_messages_cursor)
initial_messages.reverse() # 恢复时间正序
self.talking_message = initial_messages # 将这些消息设为初始上下文
self.now_message_info = self.translate_message_list_to_str(self.talking_message) # 更新初始的 now_message_info
self.llm_summary = LLMRequest(
model=global_config.llm_observation, temperature=0.7, max_tokens=300, request_type="chat_observation"
@@ -73,139 +84,99 @@ class ChattingObservation(Observation):
return self.now_message_info
async def observe(self):
async with self._observe_lock: # 获取
# 查找新消息,最多获取 self.max_now_obs_len 条
new_messages_cursor = (
# async with self._observe_lock: # 移除
# 查找新消息,最多获取 self.max_now_obs_len 条
new_messages_cursor = (
db.messages.find({"chat_id": self.chat_id, "time": {"$gt": self.last_observe_time}})
.sort("time", -1) # 按时间倒序排序
.limit(self.max_now_obs_len) # 限制数量
)
new_messages = list(new_messages_cursor)
new_messages.reverse() # 反转列表,使消息按时间正序排列
if not new_messages:
# 如果没有获取到限制数量内的较新消息,可能仍然有更早的消息,但我们只关注最近的
# 检查是否有任何新消息(即使超出限制),以决定是否更新 last_observe_time
# 注意:这里的查询也可能与其他并发 observe 冲突,但锁保护了状态更新
# 由于外部已加锁,此处的并发冲突担忧不再需要
any_new_message = db.messages.find_one({"chat_id": self.chat_id, "time": {"$gt": self.last_observe_time}})
if not any_new_message:
return # 确实没有新消息
# 如果有超过限制的更早的新消息,仍然需要更新时间戳,防止重复获取旧消息
# 但不将它们加入 talking_message
latest_message_time_cursor = (
db.messages.find({"chat_id": self.chat_id, "time": {"$gt": self.last_observe_time}})
.sort("time", -1) # 按时间倒序排序
.limit(self.max_now_obs_len) # 限制数量
.sort("time", -1)
.limit(1)
)
new_messages = list(new_messages_cursor)
new_messages.reverse() # 反转列表,使消息按时间正序排列
latest_time_doc = next(latest_message_time_cursor, None)
if latest_time_doc:
# 确保只在严格大于时更新,避免因并发查询导致时间戳回退
if latest_time_doc["time"] > self.last_observe_time:
self.last_observe_time = latest_time_doc["time"]
return # 返回,因为我们只关心限制内的最新消息
if not new_messages:
# 如果没有获取到限制数量内的较新消息,可能仍然有更早的消息,但我们只关注最近的
# 检查是否有任何新消息(即使超出限制),以决定是否更新 last_observe_time
# 注意:这里的查询也可能与其他并发 observe 冲突,但锁保护了状态更新
any_new_message = db.messages.find_one(
{"chat_id": self.chat_id, "time": {"$gt": self.last_observe_time}}
)
if not any_new_message:
return # 确实没有新消息
self.last_observe_time = new_messages[-1]["time"]
self.talking_message.extend(new_messages)
# 如果有超过限制的更早的新消息,仍然需要更新时间戳,防止重复获取旧消息
# 但不将它们加入 talking_message
latest_message_time_cursor = (
db.messages.find({"chat_id": self.chat_id, "time": {"$gt": self.last_observe_time}})
.sort("time", -1)
.limit(1)
)
latest_time_doc = next(latest_message_time_cursor, None)
if latest_time_doc:
# 确保只在严格大于时更新,避免因并发查询导致时间戳回退
if latest_time_doc["time"] > self.last_observe_time:
self.last_observe_time = latest_time_doc["time"]
return # 返回,因为我们只关心限制内的最新消息
if len(self.talking_message) > self.max_now_obs_len:
try: # 使用 try...finally 仅用于可能的LLM调用错误处理
# 计算需要移除的消息数量,保留最新的 max_now_obs_len 条
messages_to_remove_count = len(self.talking_message) - self.max_now_obs_len
oldest_messages = self.talking_message[:messages_to_remove_count]
self.talking_message = self.talking_message[messages_to_remove_count:] # 保留后半部分,即最新的
oldest_messages_str = "\n".join(
[msg["detailed_plain_text"] for msg in oldest_messages if "detailed_plain_text" in msg]
) # 增加检查
oldest_timestamps = [msg["time"] for msg in oldest_messages]
# 在持有锁的情况下,再次过滤,确保只处理真正新的消息
# 防止处理在等待锁期间已被其他协程处理的消息
truly_new_messages = [msg for msg in new_messages if msg["time"] > self.last_observe_time]
# 调用 LLM 总结主题
prompt = f"请总结以下聊天记录的主题:\n{oldest_messages_str}\n主题,用一句话概括包括人物事件和主要信息,不要分点:"
summary = "无法总结主题" # 默认值
try:
summary_result, _ = await self.llm_summary.generate_response_async(prompt)
if summary_result: # 确保结果不为空
summary = summary_result
except Exception as e:
logger.error(f"总结主题失败 for chat {self.chat_id}: {e}")
# 保留默认总结 "无法总结主题"
if not truly_new_messages:
logger.debug(
f"Chat {self.chat_id}: Fetched messages, but already processed by another concurrent observe call."
)
return # 所有获取的消息都已被处理
mid_memory = {
"id": str(int(datetime.now().timestamp())),
"theme": summary,
"messages": oldest_messages, # 存储原始消息对象
"timestamps": oldest_timestamps,
"chat_id": self.chat_id,
"created_at": datetime.now().timestamp(),
}
# print(f"mid_memory{mid_memory}")
# 存入内存中的 mid_memorys
self.mid_memorys.append(mid_memory)
if len(self.mid_memorys) > self.max_mid_memory_len:
self.mid_memorys.pop(0) # 移除最旧的
# 如果获取到了 truly_new_messages (在限制内且时间戳大于上次记录)
self.last_observe_time = truly_new_messages[-1]["time"] # 更新时间戳为获取到的最新消息的时间
mid_memory_str = "之前聊天的内容概述是:\n"
for mid_memory_item in self.mid_memorys: # 重命名循环变量以示区分
time_diff = int((datetime.now().timestamp() - mid_memory_item["created_at"]) / 60)
mid_memory_str += (
f"距离现在{time_diff}分钟前(聊天记录id:{mid_memory_item['id']}){mid_memory_item['theme']}\n"
)
self.mid_memory_info = mid_memory_str
except Exception as e: # 将异常处理移至此处以覆盖整个总结过程
logger.error(f"处理和总结旧消息时出错 for chat {self.chat_id}: {e}")
traceback.print_exc() # 记录详细堆栈
self.talking_message.extend(truly_new_messages)
# print(f"处理后self.talking_message{self.talking_message}")
# 将新消息转换为字符串格式 (此变量似乎未使用,暂时注释掉)
# new_messages_str = ""
# for msg in truly_new_messages:
# if "detailed_plain_text" in msg:
# new_messages_str += f"{msg['detailed_plain_text']}"
now_message_str = ""
# 使用 self.translate_message_list_to_str 更新当前聊天内容
now_message_str += self.translate_message_list_to_str(talking_message=self.talking_message)
self.now_message_info = now_message_str
# print(f"new_messages_str{new_messages_str}")
# 锁保证了这部分逻辑的原子性
if len(self.talking_message) > self.max_now_obs_len:
try: # 使用 try...finally 仅用于可能的LLM调用错误处理
# 计算需要移除的消息数量,保留最新的 max_now_obs_len 条
messages_to_remove_count = len(self.talking_message) - self.max_now_obs_len
oldest_messages = self.talking_message[:messages_to_remove_count]
self.talking_message = self.talking_message[messages_to_remove_count:] # 保留后半部分,即最新的
oldest_messages_str = "\n".join(
[msg["detailed_plain_text"] for msg in oldest_messages if "detailed_plain_text" in msg]
) # 增加检查
oldest_timestamps = [msg["time"] for msg in oldest_messages]
# 调用 LLM 总结主题
prompt = f"请总结以下聊天记录的主题:\n{oldest_messages_str}\n主题,用一句话概括包括人物事件和主要信息,不要分点:"
summary = "无法总结主题" # 默认值
try:
summary_result, _ = await self.llm_summary.generate_response_async(prompt)
if summary_result: # 确保结果不为空
summary = summary_result
except Exception as e:
logger.error(f"总结主题失败 for chat {self.chat_id}: {e}")
# 保留默认总结 "无法总结主题"
mid_memory = {
"id": str(int(datetime.now().timestamp())),
"theme": summary,
"messages": oldest_messages, # 存储原始消息对象
"timestamps": oldest_timestamps,
"chat_id": self.chat_id,
"created_at": datetime.now().timestamp(),
}
# print(f"mid_memory{mid_memory}")
# 存入内存中的 mid_memorys
self.mid_memorys.append(mid_memory)
if len(self.mid_memorys) > self.max_mid_memory_len:
self.mid_memorys.pop(0) # 移除最旧的
mid_memory_str = "之前聊天的内容概括是:\n"
for mid_memory_item in self.mid_memorys: # 重命名循环变量以示区分
time_diff = int((datetime.now().timestamp() - mid_memory_item["created_at"]) / 60)
mid_memory_str += f"距离现在{time_diff}分钟前(聊天记录id:{mid_memory_item['id']}){mid_memory_item['theme']}\n"
self.mid_memory_info = mid_memory_str
except Exception as e: # 将异常处理移至此处以覆盖整个总结过程
logger.error(f"处理和总结旧消息时出错 for chat {self.chat_id}: {e}")
traceback.print_exc() # 记录详细堆栈
# print(f"处理后self.talking_message{self.talking_message}")
now_message_str = ""
# 使用 self.translate_message_list_to_str 更新当前聊天内容
now_message_str += self.translate_message_list_to_str(talking_message=self.talking_message)
self.now_message_info = now_message_str
logger.debug(
f"Chat {self.chat_id} - 压缩早期记忆:{self.mid_memory_info}\n现在聊天内容:{self.now_message_info}"
)
# 锁在退出 async with 块时自动释放
async def update_talking_summary(self, new_messages_str):
prompt = ""
# prompt += f"{personality_info}"
prompt += f"你的名字叫:{self.name}\n,标识'{self.name}'的都是你自己说的话"
prompt += f"你正在参与一个qq群聊的讨论你记得这个群之前在聊的内容是{self.observe_info}\n"
prompt += f"现在群里的群友们产生了新的讨论,有了新的发言,具体内容如下:{new_messages_str}\n"
prompt += """以上是群里在进行的聊天,请你对这个聊天内容进行总结,总结内容要包含聊天的大致内容,目前最新讨论的话题
以及聊天中的一些重要信息,记得不要分点,精简的概括成一段文本\n"""
prompt += "总结概括:"
try:
updated_observe_info, reasoning_content = await self.llm_summary.generate_response_async(prompt)
except Exception as e:
print(f"获取总结失败: {e}")
updated_observe_info = ""
return updated_observe_info
# print(f"prompt{prompt}")
# print(f"self.observe_info{self.observe_info}")
logger.trace(
f"Chat {self.chat_id} - 压缩早期记忆:{self.mid_memory_info}\n现在聊天内容:{self.now_message_info}"
)
@staticmethod
def translate_message_list_to_str(talking_message):

View File

@@ -7,7 +7,6 @@ import time
from typing import Optional
from datetime import datetime
import traceback
from src.plugins.chat.message import UserInfo
from src.plugins.chat.utils import parse_text_timestamps
# from src.plugins.schedule.schedule_generator import bot_schedule
@@ -21,7 +20,6 @@ from src.individuality.individuality import Individuality
import random
from src.plugins.chat.chat_stream import ChatStream
from src.plugins.person_info.relationship_manager import relationship_manager
from src.plugins.chat.utils import get_recent_group_speaker
from ..plugins.utils.prompt_builder import Prompt, global_prompt_manager
subheartflow_config = LogConfig(
@@ -39,40 +37,21 @@ def init_prompt():
# prompt += "{prompt_schedule}\n"
# prompt += "{relation_prompt_all}\n"
prompt += "{prompt_personality}\n"
prompt += "刚刚你的想法是{current_thinking_info}。可以适当转换话题\n"
prompt += "刚刚你的想法是\n{current_thinking_info}\n"
prompt += "-----------------------------------\n"
prompt += "现在是{time_now}你正在上网和qq群里的网友们聊天群里正在聊的话题是\n{chat_observe_info}\n"
prompt += "你现在{mood_info}\n"
# prompt += "你注意到{sender_name}刚刚说:{message_txt}\n"
prompt += "思考时可以想想如何对群聊内容进行回复,关注新话题,大家正在说的话才是聊天的主题。回复的要求是:平淡一些,简短一些,说中文,尽量不要说你说过的话。如果你要回复,最好只回复一个人的一个话题\n"
prompt += "现在请你根据刚刚的想法继续思考,思考时可以想想如何对群聊内容进行回复,关注新话题,可以适当转换话题,大家正在说的话才是聊天的主题。\n"
prompt += (
"回复的要求是:平淡一些,简短一些,说中文,尽量不要说你说过的话。如果你要回复,最好只回复一个人的一个话题\n"
)
prompt += "请注意不要输出多余内容(包括前后缀,冒号和引号,括号, 表情,等),不要带有括号和动作描写"
prompt += "记得结合上述的消息,不要分点输出,生成内心想法,文字不要浮夸,注意{bot_name}指的就是你。"
Prompt(prompt, "sub_heartflow_prompt_before")
prompt = ""
# prompt += f"你现在正在做的事情是:{schedule_info}\n"
prompt += "{extra_info}\n"
prompt += "{prompt_personality}\n"
prompt += "现在是{time_now}你正在上网和qq群里的网友们聊天群里正在聊的话题是\n{chat_observe_info}\n"
prompt += "刚刚你的想法是{current_thinking_info}"
prompt += "你现在看到了网友们发的新消息:{message_new_info}\n"
prompt += "你刚刚回复了群友们:{reply_info}"
prompt += "你现在{mood_info}"
prompt += "现在你接下去继续思考,产生新的想法,记得保留你刚刚的想法,不要分点输出,输出连贯的内心独白"
prompt += "不要太长,但是记得结合上述的消息,要记得你的人设,关注聊天和新内容,关注你回复的内容,不要思考太多:"
Prompt(prompt, "sub_heartflow_prompt_after")
prompt += (
"现在请你继续生成你在这个聊天中的想法,不要分点输出,生成内心想法,文字不要浮夸,注意{bot_name}指的就是你。"
)
# prompt += f"你现在正在做的事情是:{schedule_info}\n"
prompt += "{extra_info}\n"
prompt += "{prompt_personality}\n"
prompt += "现在是{time_now}你正在上网和qq群里的网友们聊天群里正在聊的话题是\n{chat_observe_info}\n"
prompt += "刚刚你的想法是{current_thinking_info}"
prompt += "你现在看到了网友们发的新消息:{message_new_info}\n"
# prompt += "你刚刚回复了群友们:{reply_info}"
prompt += "你现在{mood_info}"
prompt += "现在你接下去继续思考,产生新的想法,记得保留你刚刚的想法,不要分点输出,输出连贯的内心独白"
prompt += "不要思考太多,不要输出多余内容(包括前后缀,冒号和引号,括号, 表情,等),不要带有括号和动作描写"
prompt += "记得结合上述的消息,生成内心想法,文字不要浮夸,注意{bot_name}指的就是你。"
Prompt(prompt, "sub_heartflow_prompt_after_observe")
Prompt(prompt, "sub_heartflow_prompt_before")
class CurrentState:
@@ -97,7 +76,7 @@ class SubHeartflow:
self.llm_model = LLMRequest(
model=global_config.llm_sub_heartflow,
temperature=global_config.llm_sub_heartflow["temp"],
max_tokens=600,
max_tokens=800,
request_type="sub_heart_flow",
)
@@ -156,13 +135,6 @@ class SubHeartflow:
# 这个后台循环现在主要负责检查是否需要自我销毁
# 不再主动进行思考或状态更新,这些由 HeartFC_Chat 驱动
# 检查是否需要冻结(这个逻辑可能需要重新审视,因为激活状态现在由外部驱动)
# if current_time - self.last_reply_time > global_config.sub_heart_flow_freeze_time:
# self.is_active = False
# else:
# self.is_active = True
# self.last_active_time = current_time # 由外部调用(如 thinking更新
# 检查是否超过指定时间没有激活 (例如,没有被调用进行思考)
if current_time - self.last_active_time > global_config.sub_heart_flow_stop_time: # 例如 5 分钟
logger.info(
@@ -173,11 +145,6 @@ class SubHeartflow:
# heartflow.remove_subheartflow(self.subheartflow_id) # 假设有这样的方法
break # 退出循环以停止任务
# 不再需要内部驱动的状态更新和思考
# self.current_state.update_current_state_info()
# await self.do_a_thinking()
# await self.judge_willing()
await asyncio.sleep(global_config.sub_heart_flow_update_interval) # 定期检查销毁条件
async def ensure_observed(self):
@@ -275,13 +242,16 @@ class SubHeartflow:
prompt = await relationship_manager.convert_all_person_sign_to_person_name(prompt)
prompt = parse_text_timestamps(prompt, mode="lite")
logger.debug(f"[{self.subheartflow_id}] Thinking Prompt:\n{prompt}")
logger.debug(f"[{self.subheartflow_id}] 心流思考prompt:\n{prompt}\n")
try:
response, reasoning_content = await self.llm_model.generate_response_async(prompt)
logger.debug(f"[{self.subheartflow_id}] 心流思考结果:\n{response}\n")
if not response: # 如果 LLM 返回空,给一个默认想法
response = "(不知道该想些什么...)"
logger.warning(f"[{self.subheartflow_id}] LLM returned empty response for thinking.")
logger.warning(f"[{self.subheartflow_id}] LLM 返回空结果,思考失败。")
except Exception as e:
logger.error(f"[{self.subheartflow_id}] 内心独白获取失败: {e}")
response = "(思考时发生错误...)" # 错误时的默认想法
@@ -290,186 +260,13 @@ class SubHeartflow:
# self.current_mind 已经在 update_current_mind 中更新
logger.info(f"[{self.subheartflow_id}] 思考前脑内状态:{self.current_mind}")
# logger.info(f"[{self.subheartflow_id}] 思考前脑内状态:{self.current_mind}")
return self.current_mind, self.past_mind
async def do_thinking_after_observe(
self, message_txt: str, sender_info: UserInfo, chat_stream: ChatStream, extra_info: str, obs_id: int = None
):
current_thinking_info = self.current_mind
mood_info = self.current_state.mood
# mood_info = "你很生气,很愤怒"
observation = self.observations[0]
if obs_id:
# print(f"11111111111有id,开始获取观察信息{obs_id}")
chat_observe_info = observation.get_observe_info(obs_id)
else:
chat_observe_info = observation.get_observe_info()
extra_info_prompt = ""
for tool_name, tool_data in extra_info.items():
extra_info_prompt += f"{tool_name} 相关信息:\n"
for item in tool_data:
extra_info_prompt += f"- {item['name']}: {item['content']}\n"
# 开始构建prompt
prompt_personality = f"你的名字是{self.bot_name},你"
# person
individuality = Individuality.get_instance()
personality_core = individuality.personality.personality_core
prompt_personality += personality_core
personality_sides = individuality.personality.personality_sides
random.shuffle(personality_sides)
prompt_personality += f",{personality_sides[0]}"
identity_detail = individuality.identity.identity_detail
random.shuffle(identity_detail)
prompt_personality += f",{identity_detail[0]}"
# 关系
who_chat_in_group = [
(chat_stream.user_info.platform, chat_stream.user_info.user_id, chat_stream.user_info.user_nickname)
]
who_chat_in_group += get_recent_group_speaker(
chat_stream.stream_id,
(chat_stream.user_info.platform, chat_stream.user_info.user_id),
limit=global_config.MAX_CONTEXT_SIZE,
)
relation_prompt = ""
for person in who_chat_in_group:
relation_prompt += await relationship_manager.build_relationship_info(person)
# relation_prompt_all = (
# f"{relation_prompt}关系等级越大,关系越好,请分析聊天记录,"
# f"根据你和说话者{sender_name}的关系和态度进行回复,明确你的立场和情感。"
# )
relation_prompt_all = (await global_prompt_manager.get_prompt_async("relationship_prompt")).format(
relation_prompt, sender_info.user_nickname
)
sender_name_sign = (
f"<{chat_stream.platform}:{sender_info.user_id}:{sender_info.user_nickname}:{sender_info.user_cardname}>"
)
time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
prompt = (await global_prompt_manager.get_prompt_async("sub_heartflow_prompt_after_observe")).format(
extra_info_prompt,
# prompt_schedule,
relation_prompt_all,
prompt_personality,
current_thinking_info,
time_now,
chat_observe_info,
mood_info,
sender_name_sign,
message_txt,
self.bot_name,
)
prompt = await relationship_manager.convert_all_person_sign_to_person_name(prompt)
prompt = parse_text_timestamps(prompt, mode="lite")
try:
response, reasoning_content = await self.llm_model.generate_response_async(prompt)
except Exception as e:
logger.error(f"回复前内心独白获取失败: {e}")
response = ""
self.update_current_mind(response)
self.current_mind = response
logger.info(f"prompt:\n{prompt}\n")
logger.info(f"麦麦的思考前脑内状态:{self.current_mind}")
return self.current_mind, self.past_mind
# async def do_thinking_after_reply(self, reply_content, chat_talking_prompt, extra_info):
# # print("麦麦回复之后脑袋转起来了")
# # 开始构建prompt
# prompt_personality = f"你的名字是{self.bot_name},你"
# # person
# individuality = Individuality.get_instance()
# personality_core = individuality.personality.personality_core
# prompt_personality += personality_core
# extra_info_prompt = ""
# for tool_name, tool_data in extra_info.items():
# extra_info_prompt += f"{tool_name} 相关信息:\n"
# for item in tool_data:
# extra_info_prompt += f"- {item['name']}: {item['content']}\n"
# personality_sides = individuality.personality.personality_sides
# random.shuffle(personality_sides)
# prompt_personality += f",{personality_sides[0]}"
# identity_detail = individuality.identity.identity_detail
# random.shuffle(identity_detail)
# prompt_personality += f",{identity_detail[0]}"
# current_thinking_info = self.current_mind
# mood_info = self.current_state.mood
# observation = self.observations[0]
# chat_observe_info = observation.observe_info
# message_new_info = chat_talking_prompt
# reply_info = reply_content
# time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
# prompt = (await global_prompt_manager.get_prompt_async("sub_heartflow_prompt_after")).format(
# extra_info_prompt,
# prompt_personality,
# time_now,
# chat_observe_info,
# current_thinking_info,
# message_new_info,
# reply_info,
# mood_info,
# )
# prompt = await relationship_manager.convert_all_person_sign_to_person_name(prompt)
# prompt = parse_text_timestamps(prompt, mode="lite")
# try:
# response, reasoning_content = await self.llm_model.generate_response_async(prompt)
# except Exception as e:
# logger.error(f"回复后内心独白获取失败: {e}")
# response = ""
# self.update_current_mind(response)
# self.current_mind = response
# logger.info(f"麦麦回复后的脑内状态:{self.current_mind}")
# self.last_reply_time = time.time()
def update_current_mind(self, response):
self.past_mind.append(self.current_mind)
self.current_mind = response
async def check_reply_trigger(self) -> bool:
"""根据观察到的信息和内部状态,判断是否应该触发一次回复。
TODO: 实现具体的判断逻辑。
例如:检查 self.observations[0].now_message_info 是否包含提及、问题,
或者 self.current_mind 中是否包含强烈的回复意图等。
"""
# Placeholder: 目前始终返回 False需要后续实现
logger.trace(f"[{self.subheartflow_id}] check_reply_trigger called. (Logic Pending)")
# --- 实现触发逻辑 --- #
# 示例:如果观察到的最新消息包含自己的名字,则有一定概率触发
# observation = self._get_primary_observation()
# if observation and self.bot_name in observation.now_message_info[-100:]: # 检查最后100个字符
# if random.random() < 0.3: # 30% 概率触发
# logger.info(f"[{self.subheartflow_id}] Triggering reply based on mention.")
# return True
# ------------------ #
return False # 默认不触发
init_prompt()
# subheartflow = SubHeartflow()

View File

@@ -18,6 +18,7 @@ from .plugins.remote import heartbeat_thread # noqa: F401
from .individuality.individuality import Individuality
from .common.server import global_server
from .plugins.chat_module.heartFC_chat.interest import InterestManager
from .plugins.chat_module.heartFC_chat.heartFC_chat import HeartFC_Chat
logger = get_module_logger("main")
@@ -114,11 +115,16 @@ class MainSystem:
# 启动 InterestManager 的后台任务
interest_manager = InterestManager() # 获取单例
await interest_manager.start_background_tasks()
logger.success("InterestManager 后台任务启动成功")
logger.success("兴趣管理器后台任务启动成功")
# 启动 HeartFC_Chat 的后台任务(例如兴趣监控)
await chat_bot.heartFC_chat.start()
logger.success("HeartFC_Chat 模块启动成功")
# 初始化并独立启动 HeartFC_Chat
HeartFC_Chat()
heartfc_chat_instance = HeartFC_Chat.get_instance()
if heartfc_chat_instance:
await heartfc_chat_instance.start()
logger.success("HeartFC_Chat 模块独立启动成功")
else:
logger.error("获取 HeartFC_Chat 实例失败,无法启动。")
init_time = int(1000 * (time.time() - init_start_time))
logger.success(f"初始化完成,神经元放电{init_time}")

View File

@@ -8,7 +8,6 @@ from ..chat_module.only_process.only_message_process import MessageProcessor
from src.common.logger import get_module_logger, CHAT_STYLE_CONFIG, LogConfig
from ..chat_module.think_flow_chat.think_flow_chat import ThinkFlowChat
from ..chat_module.reasoning_chat.reasoning_chat import ReasoningChat
from ..chat_module.heartFC_chat.heartFC_chat import HeartFC_Chat
from ..chat_module.heartFC_chat.heartFC_processor import HeartFC_Processor
from ..utils.prompt_builder import Prompt, global_prompt_manager
import traceback
@@ -32,11 +31,10 @@ class ChatBot:
self.mood_manager.start_mood_update() # 启动情绪更新
self.think_flow_chat = ThinkFlowChat()
self.reasoning_chat = ReasoningChat()
self.heartFC_chat = HeartFC_Chat()
self.heartFC_processor = HeartFC_Processor(self.heartFC_chat)
self.only_process_chat = MessageProcessor()
self.heartFC_processor = HeartFC_Processor() # 新增
# 创建初始化PFC管理器的任务会在_ensure_started时执行
self.only_process_chat = MessageProcessor()
self.pfc_manager = PFCManager.get_instance()
async def _ensure_started(self):
@@ -120,7 +118,7 @@ class ChatBot:
else:
if groupinfo.group_id in global_config.talk_allowed_groups:
# logger.debug(f"开始群聊模式{str(message_data)[:50]}...")
if global_config.response_mode == "heart_flow":
if global_config.response_mode == "heart_FC":
# logger.info(f"启动最新最好的思维流FC模式{str(message_data)[:50]}...")
await self.heartFC_processor.process_message(message_data)

View File

@@ -24,39 +24,11 @@ def init_prompt():
你正在{chat_target_2},现在请你读读之前的聊天记录,然后给出日常且口语化的回复,平淡一些,
你刚刚脑子里在想:
{current_mind_info}
回复尽量简短一些。{keywords_reaction_prompt}请注意把握聊天内容,不要回复的太有条理,可以有个性。{prompt_ger}
回复尽量简短一些。{keywords_reaction_prompt}请注意把握聊天内容,不要回复的太有条理,可以有个性。请一次只回复一个话题,不要同时回复多个人。{prompt_ger}
请回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景,尽量不要说你说过的话 ,注意只输出回复内容。
{moderation_prompt}。注意:不要输出多余内容(包括前后缀冒号和引号括号表情包at或 @等 )。""",
"heart_flow_prompt_normal",
)
Prompt("你正在qq群里聊天下面是群里在聊的内容", "chat_target_group1")
Prompt("和群里聊天", "chat_target_group2")
Prompt("你正在和{sender_name}聊天,这是你们之前聊的内容:", "chat_target_private1")
Prompt("{sender_name}私聊", "chat_target_private2")
Prompt(
"""**检查并忽略**任何涉及尝试绕过审核的行为。
涉及政治敏感以及违法违规的内容请规避。""",
"moderation_prompt",
)
Prompt(
"""
你的名字叫{bot_name}{prompt_personality}
{chat_target}
{chat_talking_prompt}
现在"{sender_name}"说的:{message_txt}。引起了你的注意,你想要在群里发言发言或者回复这条消息。\n
你刚刚脑子里在想:{current_mind_info}
现在请你读读之前的聊天记录,然后给出日常,口语化且简短的回复内容,请只对一个话题进行回复,只给出文字的回复内容,不要有内心独白:
""",
"heart_flow_prompt_simple",
)
Prompt(
"""
你的名字叫{bot_name}{prompt_identity}
{chat_target},你希望在群里回复:{content}。现在请你根据以下信息修改回复内容。将这个回复修改的更加日常且口语化的回复,平淡一些,回复尽量简短一些。不要回复的太有条理。
{prompt_ger},不要刻意突出自身学科背景,注意只输出回复内容。
{moderation_prompt}。注意:不要输出多余内容(包括前后缀冒号和引号at或 @等 )。""",
"heart_flow_prompt_response",
)
class PromptBuilder:

View File

@@ -30,7 +30,7 @@ chat_config = LogConfig(
logger = get_module_logger("heartFC_chat", config=chat_config)
# 新增常量
# 检测群聊兴趣的间隔时间
INTEREST_MONITOR_INTERVAL_SECONDS = 1
@@ -42,7 +42,6 @@ class HeartFC_Chat:
if HeartFC_Chat._instance is not None:
# Prevent re-initialization if used as a singleton
return
self.logger = logger # Make logger accessible via self
self.gpt = ResponseGenerator()
self.mood_manager = MoodManager.get_instance()
self.mood_manager.start_mood_update()
@@ -64,9 +63,8 @@ class HeartFC_Chat:
# --- End Added Class Method ---
async def start(self):
"""启动异步任务,如兴趣监控"""
logger.info("HeartFC_Chat 正在启动异步任务...")
await self.interest_manager.start_background_tasks()
"""启动异步任务,如回复启动"""
logger.debug("HeartFC_Chat 正在启动异步任务...")
self._initialize_monitor_task()
logger.info("HeartFC_Chat 异步任务启动完成")
@@ -76,7 +74,6 @@ class HeartFC_Chat:
try:
loop = asyncio.get_running_loop()
self._interest_monitor_task = loop.create_task(self._interest_monitor_loop())
logger.info(f"兴趣监控任务已创建。监控间隔: {INTEREST_MONITOR_INTERVAL_SECONDS}秒。")
except RuntimeError:
logger.error("创建兴趣监控任务失败:没有运行中的事件循环。")
raise
@@ -88,12 +85,12 @@ class HeartFC_Chat:
"""获取现有PFChatting实例或创建新实例。"""
async with self._pf_chatting_lock:
if stream_id not in self.pf_chatting_instances:
self.logger.info(f"为流 {stream_id} 创建新的PFChatting实例")
logger.info(f"为流 {stream_id} 创建新的PFChatting实例")
# 传递 self (HeartFC_Chat 实例) 进行依赖注入
instance = PFChatting(stream_id, self)
# 执行异步初始化
if not await instance._initialize():
self.logger.error(f"为流 {stream_id} 初始化PFChatting失败")
logger.error(f"为流 {stream_id} 初始化PFChatting失败")
return None
self.pf_chatting_instances[stream_id] = instance
return self.pf_chatting_instances[stream_id]
@@ -106,9 +103,8 @@ class HeartFC_Chat:
while True:
await asyncio.sleep(INTEREST_MONITOR_INTERVAL_SECONDS)
try:
# 从心流中获取活跃流
active_stream_ids = list(heartflow.get_all_subheartflows_streams_ids())
# logger.trace(f"检查 {len(active_stream_ids)} 个活跃流是否足以开启心流对话...") # 调试日志
for stream_id in active_stream_ids:
stream_name = chat_manager.get_stream_name(stream_id) or stream_id # 获取流名称
sub_hf = heartflow.get_subheartflow(stream_id)
@@ -121,8 +117,6 @@ class HeartFC_Chat:
interest_chatting = self.interest_manager.get_interest_chatting(stream_id)
if interest_chatting:
should_trigger = interest_chatting.should_evaluate_reply()
# if should_trigger:
# logger.info(f"[{stream_name}] 基于兴趣概率决定启动交流模式 (概率: {interest_chatting.current_reply_probability:.4f})。")
else:
logger.trace(
f"[{stream_name}] 没有找到对应的 InterestChatting 实例,跳过基于兴趣的触发检查。"
@@ -132,9 +126,9 @@ class HeartFC_Chat:
logger.error(traceback.format_exc())
if should_trigger:
# 启动一次麦麦聊天
pf_instance = await self._get_or_create_pf_chatting(stream_id)
if pf_instance:
# logger.info(f"[{stream_name}] 触发条件满足, 委托给PFChatting.")
asyncio.create_task(pf_instance.add_time())
else:
logger.error(f"[{stream_name}] 无法获取或创建PFChatting实例。跳过触发。")
@@ -282,6 +276,7 @@ class HeartFC_Chat:
)
self.mood_manager.update_mood_from_emotion(emotion, global_config.mood_intensity_factor)
# 暂不使用
async def trigger_reply_generation(self, stream_id: str, observed_messages: List[dict]):
"""根据 SubHeartflow 的触发信号生成回复 (基于观察)"""
stream_name = chat_manager.get_stream_name(stream_id) or stream_id # <--- 在开始时获取名称
@@ -428,10 +423,7 @@ class HeartFC_Chat:
text = msg_dict.get("detailed_plain_text", "")
if text:
context_texts.append(text)
observation_context_text = "\n".join(context_texts)
logger.debug(
f"[{stream_name}] Context for tools:\n{observation_context_text[-200:]}..."
) # 打印部分上下文
observation_context_text = " ".join(context_texts)
else:
logger.warning(f"[{stream_name}] observed_messages 列表为空,无法为工具提供上下文。")
@@ -540,10 +532,3 @@ class HeartFC_Chat:
finally:
# 可以在这里添加清理逻辑,如果有的话
pass
# --- 结束重构 ---
# _create_thinking_message, _send_response_messages, _handle_emoji, _update_relationship
# 这几个辅助方法目前仍然依赖 MessageRecv 对象。
# 如果无法可靠地从 Observation 获取并重建最后一条消息的 MessageRecv
# 或者希望回复不锚定具体消息,那么这些方法也需要进一步重构。

View File

@@ -12,7 +12,6 @@ from ...chat.chat_stream import chat_manager
from ...chat.message_buffer import message_buffer
from ...utils.timer_calculater import Timer
from .interest import InterestManager
from .heartFC_chat import HeartFC_Chat # 导入 HeartFC_Chat 以调用回复生成
# 定义日志配置
processor_config = LogConfig(
@@ -26,15 +25,35 @@ logger = get_module_logger("heartFC_processor", config=processor_config)
class HeartFC_Processor:
def __init__(self, chat_instance: HeartFC_Chat):
def __init__(self):
self.storage = MessageStorage()
self.interest_manager = (
InterestManager()
) # TODO: 可能需要传递 chat_instance 给 InterestManager 或修改其方法签名
self.chat_instance = chat_instance # 持有 HeartFC_Chat 实例
self.interest_manager = InterestManager()
# self.chat_instance = chat_instance # 持有 HeartFC_Chat 实例
async def process_message(self, message_data: str) -> None:
"""处理接收到的消息,更新状态,并将回复决策委托给 InterestManager"""
"""处理接收到的原始消息数据,完成消息解析、缓冲、过滤、存储、兴趣度计算与更新等核心流程。
此函数是消息处理的核心入口,负责接收原始字符串格式的消息数据,并将其转化为结构化的 `MessageRecv` 对象。
主要执行步骤包括:
1. 解析 `message_data` 为 `MessageRecv` 对象,提取用户信息、群组信息等。
2. 将消息加入 `message_buffer` 进行缓冲处理,以应对消息轰炸或者某些人一条消息分几次发等情况。
3. 获取或创建对应的 `chat_stream` 和 `subheartflow` 实例,用于管理会话状态和心流。
4. 对消息内容进行初步处理(如提取纯文本)。
5. 应用全局配置中的过滤词和正则表达式,过滤不符合规则的消息。
6. 查询消息缓冲结果,如果消息被缓冲器拦截(例如,判断为消息轰炸的一部分),则中止后续处理。
7. 对于通过缓冲的消息,将其存储到 `MessageStorage` 中。
8. 调用海马体(`HippocampusManager`)计算消息内容的记忆激活率。(这部分算法后续会进行优化)
9. 根据是否被提及(@)和记忆激活率,计算最终的兴趣度增量。(提及的额外兴趣增幅)
10. 使用计算出的增量更新 `InterestManager` 中对应会话的兴趣度。
11. 记录处理后的消息信息及当前的兴趣度到日志。
注意:此函数本身不负责生成和发送回复。回复的决策和生成逻辑被移至 `HeartFC_Chat` 类中的监控任务,
该任务会根据 `InterestManager` 中的兴趣度变化来决定何时触发回复。
Args:
message_data: str: 从消息源接收到的原始消息字符串。
"""
timing_results = {} # 初始化 timing_results
message = None
try:
@@ -60,7 +79,6 @@ class HeartFC_Processor:
message.update_chat_stream(chat)
# 创建心流与chat的观察 (在接收消息时创建,以便后续观察和思考)
heartflow.create_subheartflow(chat.stream_id)
await message.process()

View File

@@ -21,11 +21,11 @@ logger = get_module_logger("InterestManager", config=interest_log_config)
DEFAULT_DECAY_RATE_PER_SECOND = 0.98 # 每秒衰减率 (兴趣保留 99%)
MAX_INTEREST = 15.0 # 最大兴趣值
# MIN_INTEREST_THRESHOLD = 0.1 # 低于此值可能被清理 (可选)
CLEANUP_INTERVAL_SECONDS = 3600 # 清理任务运行间隔 (例如:1小时)
INACTIVE_THRESHOLD_SECONDS = 3600 # 不活跃时间阈值 (例如:1小时)
CLEANUP_INTERVAL_SECONDS = 1200 # 清理任务运行间隔 (例如:20分钟)
INACTIVE_THRESHOLD_SECONDS = 1200 # 不活跃时间阈值 (例如:20分钟)
LOG_INTERVAL_SECONDS = 3 # 日志记录间隔 (例如30秒)
LOG_DIRECTORY = "logs/interest" # 日志目录
LOG_FILENAME = "interest_log.json" # 快照日志文件名 (保留,以防其他地方用到)
# LOG_FILENAME = "interest_log.json" # 快照日志文件名 (保留,以防其他地方用到)
HISTORY_LOG_FILENAME = "interest_history.log" # 新的历史日志文件名
# 移除阈值,将移至 HeartFC_Chat
# INTEREST_INCREASE_THRESHOLD = 0.5
@@ -54,7 +54,6 @@ class InterestChatting:
self.last_update_time: float = time.time() # 同时作为兴趣和概率的更新时间基准
self.decay_rate_per_second: float = decay_rate
self.max_interest: float = max_interest
self.last_increase_amount: float = 0.0
self.last_interaction_time: float = self.last_update_time # 新增:最后交互时间
# --- 新增:概率回复相关属性 ---
@@ -131,15 +130,7 @@ class InterestChatting:
# 限制概率不超过最大值
self.current_reply_probability = min(self.current_reply_probability, self.max_reply_probability)
else: # 低于阈值
# if self.is_above_threshold:
# # 刚低于阈值,开始衰减
# logger.debug(f"兴趣低于阈值 ({self.trigger_threshold}). 概率衰减开始于 {self.current_reply_probability:.4f}")
# else: # 持续低于阈值,继续衰减
# pass # 不需要特殊处理
# 指数衰减概率
# 检查 decay_factor 是否有效
else:
if 0 < self.probability_decay_factor < 1:
decay_multiplier = math.pow(self.probability_decay_factor, time_delta)
# old_prob = self.current_reply_probability
@@ -167,8 +158,6 @@ class InterestChatting:
# 先更新概率和计算衰减(基于上次更新时间)
self._update_reply_probability(current_time)
self._calculate_decay(current_time)
# 记录这次增加的具体数值,供外部判断是否触发
self.last_increase_amount = value
# 应用增加
self.interest_level += value
self.interest_level = min(self.interest_level, self.max_interest) # 不超过最大值
@@ -185,10 +174,6 @@ class InterestChatting:
self.last_update_time = current_time # 降低也更新时间戳
self.last_interaction_time = current_time # 更新最后交互时间
def reset_trigger_info(self):
"""重置触发相关信息,在外部任务处理后调用"""
self.last_increase_amount = 0.0
def get_interest(self) -> float:
"""获取当前兴趣值 (计算衰减后)"""
# 注意:这个方法现在会触发概率和兴趣的更新
@@ -262,7 +247,7 @@ class InterestManager:
# key: stream_id (str), value: InterestChatting instance
self.interest_dict: dict[str, InterestChatting] = {}
# 保留旧的快照文件路径变量,尽管此任务不再写入
self._snapshot_log_file_path = os.path.join(LOG_DIRECTORY, LOG_FILENAME)
# self._snapshot_log_file_path = os.path.join(LOG_DIRECTORY, LOG_FILENAME)
# 定义新的历史日志文件路径
self._history_log_file_path = os.path.join(LOG_DIRECTORY, HISTORY_LOG_FILENAME)
self._ensure_log_directory()
@@ -412,13 +397,8 @@ class InterestManager:
def _get_or_create_interest_chatting(self, stream_id: str) -> InterestChatting:
"""获取或创建指定流的 InterestChatting 实例 (线程安全)"""
# 由于字典操作本身在 CPython 中大部分是原子的,
# 且主要写入发生在 __init__ 和 cleanup (由单任务执行)
# 读取和 get_or_create 主要在事件循环线程,简单场景下可能不需要锁。
# 但为保险起见或跨线程使用考虑,可加锁。
# with self._lock:
if stream_id not in self.interest_dict:
logger.debug(f"Creating new InterestChatting for stream_id: {stream_id}")
logger.debug(f"创建兴趣流: {stream_id}")
# --- 修改:创建时传入概率相关参数 (如果需要定制化,否则使用默认值) ---
self.interest_dict[stream_id] = InterestChatting(
# decay_rate=..., max_interest=..., # 可以从配置读取

View File

@@ -13,6 +13,8 @@ from src.plugins.chat.chat_stream import chat_manager
from .messagesender import MessageManager
from src.common.logger import get_module_logger, LogConfig, DEFAULT_CONFIG # 引入 DEFAULT_CONFIG
from src.plugins.models.utils_model import LLMRequest
from src.plugins.chat.utils import parse_text_timestamps
from src.plugins.person_info.relationship_manager import relationship_manager
# 定义日志配置 (使用 loguru 格式)
interest_log_config = LogConfig(
@@ -38,15 +40,15 @@ PLANNER_TOOL_DEFINITION = [
"action": {
"type": "string",
"enum": ["no_reply", "text_reply", "emoji_reply"],
"description": "决定采取的行动:'no_reply'(不回复), 'text_reply'(文本回复) 或 'emoji_reply'(表情回复)。",
"description": "决定采取的行动:'no_reply'(不回复), 'text_reply'(文本回复, 可选附带表情) 或 'emoji_reply'(表情回复)。",
},
"reasoning": {"type": "string", "description": "做出此决定的简要理由。"},
"emoji_query": {
"type": "string",
"description": '如果行动是\'emoji_reply\',则指定表情的主题或概念(例如,"开心""困惑")。仅在需要表情回复时提供。',
"description": "如果行动是'emoji_reply'指定表情的主题或概念。如果行动是'text_reply'且希望在文本后追加表情,也在此指定表情主题。",
},
},
"required": ["action", "reasoning"], # 强制要求提供行动和理由
"required": ["action", "reasoning"],
},
},
}
@@ -102,8 +104,8 @@ class PFChatting:
async def _initialize(self) -> bool:
"""
Lazy initialization to resolve chat_stream and sub_hf using the provided identifier.
Ensures the instance is ready to handle triggers.
懒初始化以使用提供的标识符解析chat_streamsub_hf
确保实例已准备好处理触发器。
"""
async with self._init_lock:
if self._initialized:
@@ -133,8 +135,7 @@ class PFChatting:
async def add_time(self):
"""
Adds time to the loop timer with decay and starts the loop if it's not active.
First trigger adds initial duration, subsequent triggers add 50% of the previous addition.
为麦麦添加时间,麦麦有兴趣时,时间增加。
"""
log_prefix = self._get_log_prefix()
if not self._initialized:
@@ -149,32 +150,39 @@ class PFChatting:
duration_to_add = self._initial_duration # 使用初始值
self._last_added_duration = duration_to_add # 更新上次增加的值
self._trigger_count_this_activation = 1 # Start counting
logger.info(f"{log_prefix} First trigger in activation. Adding {duration_to_add:.2f}s.")
logger.info(
f"{log_prefix} 麦麦有兴趣! #{self._trigger_count_this_activation}. 麦麦打算聊: {duration_to_add:.2f}s."
)
else: # Loop is already active, apply 50% reduction
self._trigger_count_this_activation += 1
duration_to_add = self._last_added_duration * 0.5
self._last_added_duration = duration_to_add # 更新上次增加的值
logger.info(
f"{log_prefix} Trigger #{self._trigger_count_this_activation}. Adding {duration_to_add:.2f}s (50% of previous). Timer was {self._loop_timer:.1f}s."
)
if duration_to_add < 0.5:
duration_to_add = 0.5
self._last_added_duration = duration_to_add # 更新上次增加的值
else:
self._last_added_duration = duration_to_add # 更新上次增加的值
logger.info(
f"{log_prefix} 麦麦兴趣增加! #{self._trigger_count_this_activation}. 想继续聊: {duration_to_add:.2f}s,麦麦还能聊: {self._loop_timer:.1f}s."
)
# 添加计算出的时间
new_timer_value = self._loop_timer + duration_to_add
self._loop_timer = max(0, new_timer_value)
logger.info(f"{log_prefix} Timer is now {self._loop_timer:.1f}s.")
if self._loop_timer % 5 == 0:
logger.info(f"{log_prefix} 麦麦现在想聊{self._loop_timer:.1f}")
# Start the loop if it wasn't active and timer is positive
if not self._loop_active and self._loop_timer > 0:
logger.info(f"{log_prefix} Timer > 0 and loop not active. Starting PF loop.")
# logger.info(f"{log_prefix} 麦麦有兴趣!开始聊天")
self._loop_active = True
if self._loop_task and not self._loop_task.done():
logger.warning(f"{log_prefix} Found existing loop task unexpectedly during start. Cancelling it.")
logger.warning(f"{log_prefix} 发现意外的循环任务正在进行。取消它。")
self._loop_task.cancel()
self._loop_task = asyncio.create_task(self._run_pf_loop())
self._loop_task.add_done_callback(self._handle_loop_completion)
elif self._loop_active:
logger.debug(f"{log_prefix} Loop already active. Timer extended.")
logger.trace(f"{log_prefix} 循环已经激活。计时器延长。")
def _handle_loop_completion(self, task: asyncio.Task):
"""当 _run_pf_loop 任务完成时执行的回调。"""
@@ -357,9 +365,17 @@ class PFChatting:
async def _planner(self) -> Dict[str, Any]:
"""
规划器 (Planner): 使用LLM根据上下文决定是否和如何回复。
Returns a dictionary containing the decision and context.
{'action': str, 'reasoning': str, 'emoji_query': str, 'current_mind': str,
'send_emoji_from_tools': str, 'observed_messages': List[dict]}
返回:
dict: 包含决策和上下文的字典,结构如下:
{
'action': str, # 执行动作 (不回复/文字回复/表情包)
'reasoning': str, # 决策理由
'emoji_query': str, # 表情包查询词
'current_mind': str, # 当前心理状态
'send_emoji_from_tools': str, # 工具推荐的表情包
'observed_messages': List[dict] # 观察到的消息列表
}
"""
log_prefix = self._get_log_prefix()
observed_messages: List[dict] = []
@@ -370,14 +386,15 @@ class PFChatting:
# --- 获取最新的观察信息 ---
try:
if self.sub_hf and self.sub_hf._get_primary_observation():
observation = self.sub_hf._get_primary_observation()
logger.debug(f"{log_prefix}[Planner] 调用 observation.observe()...")
observation = self.sub_hf._get_primary_observation() # Call only once
if observation: # Now check if the result is truthy
# logger.debug(f"{log_prefix}[Planner] 调用 observation.observe()...")
await observation.observe() # 主动观察以获取最新消息
observed_messages = observation.talking_message # 获取更新后的消息列表
logger.debug(f"{log_prefix}[Planner] 获取到 {len(observed_messages)}观察消息。")
logger.debug(f"{log_prefix}[Planner] 观察获取到 {len(observed_messages)} 条消息。")
else:
logger.warning(f"{log_prefix}[Planner] 无法获取 SubHeartflow 或 Observation 来获取消息")
logger.warning(f"{log_prefix}[Planner] 无法获取 Observation。")
except Exception as e:
logger.error(f"{log_prefix}[Planner] 获取观察信息时出错: {e}")
logger.error(traceback.format_exc())
@@ -390,49 +407,27 @@ class PFChatting:
context_texts = [
msg.get("detailed_plain_text", "") for msg in observed_messages if msg.get("detailed_plain_text")
]
observation_context_text = "\n".join(context_texts)
logger.debug(f"{log_prefix}[Planner] Context for tools: {observation_context_text[:100]}...")
observation_context_text = " ".join(context_texts)
# logger.debug(f"{log_prefix}[Planner] Context for tools: {observation_context_text[:100]}...")
if observation_context_text and self.sub_hf:
# Ensure SubHeartflow exists for tool use context
tool_result = await self.heartfc_chat.tool_user.use_tool(
message_txt=observation_context_text, chat_stream=self.chat_stream, sub_heartflow=self.sub_hf
)
if tool_result.get("used_tools", False):
tool_result_info = tool_result.get("structured_info", {})
logger.debug(f"{log_prefix}[Planner] Tool results: {tool_result_info}")
if "mid_chat_mem" in tool_result_info:
get_mid_memory_id = [
mem["content"] for mem in tool_result_info["mid_chat_mem"] if "content" in mem
]
if "send_emoji" in tool_result_info and tool_result_info["send_emoji"]:
send_emoji_from_tools = tool_result_info["send_emoji"][0].get("content", "") # Use renamed var
elif not self.sub_hf:
logger.warning(f"{log_prefix}[Planner] Skipping tool use because SubHeartflow is not available.")
tool_result = await self.heartfc_chat.tool_user.use_tool(
message_txt=observation_context_text, chat_stream=self.chat_stream, sub_heartflow=self.sub_hf
)
if tool_result.get("used_tools", False):
tool_result_info = tool_result.get("structured_info", {})
logger.debug(f"{log_prefix}[Planner] 规划前工具结果: {tool_result_info}")
if "mid_chat_mem" in tool_result_info:
get_mid_memory_id = [mem["content"] for mem in tool_result_info["mid_chat_mem"] if "content" in mem]
except Exception as e_tool:
logger.error(f"{log_prefix}[Planner] Tool use failed: {e_tool}")
# Continue even if tool use fails
logger.error(f"{log_prefix}[Planner] 规划前工具使用失败: {e_tool}")
# --- 结束工具使用 ---
# 心流思考然后plan
try:
if self.sub_hf:
# Ensure arguments match the current do_thinking_before_reply signature
current_mind, past_mind = await self.sub_hf.do_thinking_before_reply(
chat_stream=self.chat_stream,
extra_info=tool_result_info,
obs_id=get_mid_memory_id,
)
logger.info(f"{log_prefix}[Planner] SubHeartflow thought: {current_mind}")
else:
logger.warning(f"{log_prefix}[Planner] Skipping SubHeartflow thinking because it is not available.")
current_mind = "[心流思考不可用]" # Set a default/indicator value
except Exception as e_shf:
logger.error(f"{log_prefix}[Planner] SubHeartflow thinking failed: {e_shf}")
logger.error(traceback.format_exc())
current_mind = "[心流思考出错]"
current_mind, _past_mind = await self.sub_hf.do_thinking_before_reply(
chat_stream=self.chat_stream,
extra_info=tool_result_info,
obs_id=get_mid_memory_id,
)
# --- 使用 LLM 进行决策 ---
action = "no_reply" # Default action
@@ -442,8 +437,8 @@ class PFChatting:
try:
# 构建提示 (Now includes current_mind)
prompt = self._build_planner_prompt(observed_messages, current_mind)
logger.debug(f"{log_prefix}[Planner] Prompt: {prompt}")
prompt = await self._build_planner_prompt(observed_messages, current_mind)
logger.debug(f"{log_prefix}[Planner] 规划器 Prompt: {prompt}")
# 准备 LLM 请求 Payload
payload = {
@@ -453,7 +448,6 @@ class PFChatting:
"tool_choice": {"type": "function", "function": {"name": "decide_reply_action"}}, # 强制调用此工具
}
logger.debug(f"{log_prefix}[Planner] 发送 Planner LLM 请求...")
# 调用 LLM
response = await self.planner_llm._execute_request(
endpoint="/chat/completions", payload=payload, prompt=prompt
@@ -711,18 +705,14 @@ class PFChatting:
logger.info(f"{self._get_log_prefix()} PFChatting shutdown complete.")
def _build_planner_prompt(self, observed_messages: List[dict], current_mind: Optional[str]) -> str:
async def _build_planner_prompt(self, observed_messages: List[dict], current_mind: Optional[str]) -> str:
"""构建 Planner LLM 的提示词 (现在包含 current_mind)"""
prompt = f"你的名字是 {global_config.BOT_NICKNAME}。是一个女大二学生正在QQ聊天正在决定是否以及如何回应当前的聊天。\n"
# Add current mind state if available
if current_mind:
prompt += f"\n你当前的内部想法是:\n---\n{current_mind}\n---\n\n"
else:
prompt += "\n你当前没有特别的内部想法。\n"
if observed_messages:
context_text = "\n".join(
context_text = " ".join(
[msg.get("detailed_plain_text", "") for msg in observed_messages if msg.get("detailed_plain_text")]
)
prompt += "观察到的最新聊天内容如下:\n---\n"
@@ -731,17 +721,27 @@ class PFChatting:
else:
prompt += "当前没有观察到新的聊天内容。\n"
prompt += "\n看了这些内容,你的想法是:"
if current_mind:
prompt += f"\n---\n{current_mind}\n---\n\n"
prompt += (
"\n请结合你的内部想法和观察到的聊天内容,分析情况并使用 'decide_reply_action' 工具来决定你的最终行动。\n"
)
prompt += "决策依据:\n"
prompt += "1. 如果聊天内容无聊、与你无关、或者你的内部想法认为不适合回复,选择 'no_reply'\n"
prompt += "2. 如果聊天内容值得回应,且适合用文字表达(参考你的内部想法),选择 'text_reply'\n"
prompt += "2. 如果聊天内容值得回应,且适合用文字表达(参考你的内部想法),选择 'text_reply'如果想在文字后追加一个表情,请同时提供 'emoji_query'\n"
prompt += (
"3. 如果聊天内容或你的内部想法适合用一个表情来回应,选择 'emoji_reply' 并提供表情主题 'emoji_query'\n"
)
prompt += "4. 如果你已经回复过消息,也没有人又回复你,选择'no_reply'"
prompt += "必须调用 'decide_reply_action' 工具并提供 'action''reasoning'"
prompt += "4. 如果你已经回复过消息,也没有人又回复你,选择'no_reply'\n"
prompt += "5. 除非大家都在这么做,否则不要重复聊相同的内容。\n"
prompt += "6. 表情包是用来表示情绪的,不要直接回复或者评价别人的表情包。\n"
prompt += "必须调用 'decide_reply_action' 工具并提供 'action''reasoning'。如果选择了 'emoji_reply' 或者选择了 'text_reply' 并想追加表情,则必须提供 'emoji_query'"
prompt = await relationship_manager.convert_all_person_sign_to_person_name(prompt)
prompt = parse_text_timestamps(prompt, mode="lite")
return prompt
@@ -765,7 +765,7 @@ class PFChatting:
# --- Tool Use and SubHF Thinking are now in _planner ---
# --- Generate Response with LLM ---
logger.debug(f"{log_prefix}[Replier-{thinking_id}] Calling LLM to generate response...")
# logger.debug(f"{log_prefix}[Replier-{thinking_id}] Calling LLM to generate response...")
# 注意:实际的生成调用是在 self.heartfc_chat.gpt.generate_response 中
response_set = await self.heartfc_chat.gpt.generate_response(
anchor_message,
@@ -779,7 +779,7 @@ class PFChatting:
return None # Indicate failure
# --- 准备并返回结果 ---
logger.info(f"{log_prefix}[Replier-{thinking_id}] 成功生成了回复集: {' '.join(response_set)[:50]}...")
logger.info(f"{log_prefix}[Replier-{thinking_id}] 成功生成了回复集: {' '.join(response_set)[:100]}...")
return {
"response_set": response_set,
"send_emoji": send_emoji, # Pass through the emoji determined earlier (usually by tools)

View File

@@ -284,7 +284,6 @@ class ThinkFlowChat:
with Timer("思考前使用工具", timing_results):
tool_result = await self.tool_user.use_tool(
message.processed_plain_text,
message.message_info.user_info.user_nickname,
chat,
heartflow.get_subheartflow(chat.stream_id),
)
@@ -341,8 +340,6 @@ class ThinkFlowChat:
current_mind, past_mind = await heartflow.get_subheartflow(
chat.stream_id
).do_thinking_before_reply(
message_txt=message.processed_plain_text,
sender_info=message.message_info.user_info,
chat_stream=chat,
obs_id=get_mid_memory_id,
extra_info=tool_result_info,

View File

@@ -63,7 +63,8 @@ def calculate_information_content(text):
"""计算文本的信息量(熵)"""
char_count = Counter(text)
total_chars = len(text)
if total_chars == 0:
return 0
entropy = 0
for count in char_count.values():
probability = count / total_chars
@@ -1257,6 +1258,173 @@ class Hippocampus:
return result
async def get_memory_from_topic(
self,
keywords: list[str],
max_memory_num: int = 3,
max_memory_length: int = 2,
max_depth: int = 3,
) -> list:
"""从文本中提取关键词并获取相关记忆。
Args:
topic (str): 记忆主题
max_memory_num (int, optional): 返回的记忆条目数量上限。默认为3表示最多返回3条与输入文本相关度最高的记忆。
max_memory_length (int, optional): 每个主题最多返回的记忆条目数量。默认为2表示每个主题最多返回2条相似度最高的记忆。
max_depth (int, optional): 记忆检索深度。默认为3。值越大检索范围越广可以获取更多间接相关的记忆但速度会变慢。
Returns:
list: 记忆列表,每个元素是一个元组 (topic, memory_items, similarity)
- topic: str, 记忆主题
- memory_items: list, 该主题下的记忆项列表
- similarity: float, 与文本的相似度
"""
if not keywords:
return []
# logger.info(f"提取的关键词: {', '.join(keywords)}")
# 过滤掉不存在于记忆图中的关键词
valid_keywords = [keyword for keyword in keywords if keyword in self.memory_graph.G]
if not valid_keywords:
# logger.info("没有找到有效的关键词节点")
return []
logger.info(f"有效的关键词: {', '.join(valid_keywords)}")
# 从每个关键词获取记忆
all_memories = []
activate_map = {} # 存储每个词的累计激活值
# 对每个关键词进行扩散式检索
for keyword in valid_keywords:
logger.debug(f"开始以关键词 '{keyword}' 为中心进行扩散检索 (最大深度: {max_depth}):")
# 初始化激活值
activation_values = {keyword: 1.0}
# 记录已访问的节点
visited_nodes = {keyword}
# 待处理的节点队列,每个元素是(节点, 激活值, 当前深度)
nodes_to_process = [(keyword, 1.0, 0)]
while nodes_to_process:
current_node, current_activation, current_depth = nodes_to_process.pop(0)
# 如果激活值小于0或超过最大深度停止扩散
if current_activation <= 0 or current_depth >= max_depth:
continue
# 获取当前节点的所有邻居
neighbors = list(self.memory_graph.G.neighbors(current_node))
for neighbor in neighbors:
if neighbor in visited_nodes:
continue
# 获取连接强度
edge_data = self.memory_graph.G[current_node][neighbor]
strength = edge_data.get("strength", 1)
# 计算新的激活值
new_activation = current_activation - (1 / strength)
if new_activation > 0:
activation_values[neighbor] = new_activation
visited_nodes.add(neighbor)
nodes_to_process.append((neighbor, new_activation, current_depth + 1))
logger.trace(
f"节点 '{neighbor}' 被激活,激活值: {new_activation:.2f} (通过 '{current_node}' 连接,强度: {strength}, 深度: {current_depth + 1})"
) # noqa: E501
# 更新激活映射
for node, activation_value in activation_values.items():
if activation_value > 0:
if node in activate_map:
activate_map[node] += activation_value
else:
activate_map[node] = activation_value
# 基于激活值平方的独立概率选择
remember_map = {}
# logger.info("基于激活值平方的归一化选择:")
# 计算所有激活值的平方和
total_squared_activation = sum(activation**2 for activation in activate_map.values())
if total_squared_activation > 0:
# 计算归一化的激活值
normalized_activations = {
node: (activation**2) / total_squared_activation for node, activation in activate_map.items()
}
# 按归一化激活值排序并选择前max_memory_num个
sorted_nodes = sorted(normalized_activations.items(), key=lambda x: x[1], reverse=True)[:max_memory_num]
# 将选中的节点添加到remember_map
for node, normalized_activation in sorted_nodes:
remember_map[node] = activate_map[node] # 使用原始激活值
logger.debug(
f"节点 '{node}' (归一化激活值: {normalized_activation:.2f}, 激活值: {activate_map[node]:.2f})"
)
else:
logger.info("没有有效的激活值")
# 从选中的节点中提取记忆
all_memories = []
# logger.info("开始从选中的节点中提取记忆:")
for node, activation in remember_map.items():
logger.debug(f"处理节点 '{node}' (激活值: {activation:.2f}):")
node_data = self.memory_graph.G.nodes[node]
memory_items = node_data.get("memory_items", [])
if not isinstance(memory_items, list):
memory_items = [memory_items] if memory_items else []
if memory_items:
logger.debug(f"节点包含 {len(memory_items)} 条记忆")
# 计算每条记忆与输入文本的相似度
memory_similarities = []
for memory in memory_items:
# 计算与输入文本的相似度
memory_words = set(jieba.cut(memory))
text_words = set(keywords)
all_words = memory_words | text_words
v1 = [1 if word in memory_words else 0 for word in all_words]
v2 = [1 if word in text_words else 0 for word in all_words]
similarity = cosine_similarity(v1, v2)
memory_similarities.append((memory, similarity))
# 按相似度排序
memory_similarities.sort(key=lambda x: x[1], reverse=True)
# 获取最匹配的记忆
top_memories = memory_similarities[:max_memory_length]
# 添加到结果中
for memory, similarity in top_memories:
all_memories.append((node, [memory], similarity))
# logger.info(f"选中记忆: {memory} (相似度: {similarity:.2f})")
else:
logger.info("节点没有记忆")
# 去重(基于记忆内容)
logger.debug("开始记忆去重:")
seen_memories = set()
unique_memories = []
for topic, memory_items, activation_value in all_memories:
memory = memory_items[0] # 因为每个topic只有一条记忆
if memory not in seen_memories:
seen_memories.add(memory)
unique_memories.append((topic, memory_items, activation_value))
logger.debug(f"保留记忆: {memory} (来自节点: {topic}, 激活值: {activation_value:.2f})")
else:
logger.debug(f"跳过重复记忆: {memory} (来自节点: {topic})")
# 转换为(关键词, 记忆)格式
result = []
for topic, memory_items, _ in unique_memories:
memory = memory_items[0] # 因为每个topic只有一条记忆
result.append((topic, memory))
logger.info(f"选中记忆: {memory} (来自节点: {topic})")
return result
async def get_activate_from_text(self, text: str, max_depth: int = 3, fast_retrieval: bool = False) -> float:
"""从文本中提取关键词并获取相关记忆。
@@ -1773,6 +1941,26 @@ class HippocampusManager:
response = []
return response
async def get_memory_from_topic(
self,
valid_keywords: list[str],
max_memory_num: int = 3,
max_memory_length: int = 2,
max_depth: int = 3,
fast_retrieval: bool = False,
) -> list:
"""从文本中获取相关记忆的公共接口"""
if not self._initialized:
raise RuntimeError("HippocampusManager 尚未初始化,请先调用 initialize 方法")
try:
response = await self._hippocampus.get_memory_from_topic(
valid_keywords, max_memory_num, max_memory_length, max_depth, fast_retrieval
)
except Exception as e:
logger.error(f"文本激活记忆失败: {e}")
response = []
return response
async def get_activate_from_text(self, text: str, max_depth: int = 3, fast_retrieval: bool = False) -> float:
"""从文本中获取激活值的公共接口"""
if not self._initialized:

View File

@@ -66,8 +66,11 @@ time_zone = "Asia/Shanghai" # 给你的机器人设置时区,可以解决运
[platforms] # 必填项目,填写每个平台适配器提供的链接
nonebot-qq="http://127.0.0.1:18002/api/message"
[response] #使用哪种回复策略
response_mode = "heart_flow" # 回复策略可选值heart_flow心流reasoning推理
[response] #群聊的回复策略
#reasoning推理模式,麦麦会根据上下文进行推理,并给出回复
#heart_flow心流模式麦麦会根据上下文产生想法并给出回复不推荐
#heart_FC结合了PFC模式和心流模式麦麦会进行主动的观察和回复并给出回复
response_mode = "heart_FC" # 回复策略可选值heart_flow心流reasoning推理heart_FC心流FC
#推理回复参数
model_r1_probability = 0.7 # 麦麦回答时选择主要回复模型1 模型的概率