re-style: 格式化代码

This commit is contained in:
John Richard
2025-10-02 20:26:01 +08:00
parent ecb02cae31
commit 7923eafef3
263 changed files with 3103 additions and 3123 deletions

View File

@@ -1,17 +1,19 @@
import time
import orjson
import hashlib
import time
from pathlib import Path
import numpy as np
from typing import Any
import faiss
from typing import Any, Dict, Optional, Union
from src.common.logger import get_logger
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config, model_config
import numpy as np
import orjson
from src.common.config_helpers import resolve_embedding_dimension
from src.common.database.sqlalchemy_models import CacheEntries
from src.common.database.sqlalchemy_database_api import db_query, db_save
from src.common.database.sqlalchemy_models import CacheEntries
from src.common.logger import get_logger
from src.common.vector_db import vector_db_service
from src.config.config import global_config, model_config
from src.llm_models.utils_model import LLMRequest
logger = get_logger("cache_manager")
@@ -40,14 +42,14 @@ class CacheManager:
self.semantic_cache_collection_name = "semantic_cache"
# L1 缓存 (内存)
self.l1_kv_cache: Dict[str, Dict[str, Any]] = {}
self.l1_kv_cache: dict[str, dict[str, Any]] = {}
embedding_dim = resolve_embedding_dimension(global_config.lpmm_knowledge.embedding_dimension)
if not embedding_dim:
embedding_dim = global_config.lpmm_knowledge.embedding_dimension
self.embedding_dimension = embedding_dim
self.l1_vector_index = faiss.IndexFlatIP(embedding_dim)
self.l1_vector_id_to_key: Dict[int, str] = {}
self.l1_vector_id_to_key: dict[int, str] = {}
# L2 向量缓存 (使用新的服务)
vector_db_service.get_or_create_collection(self.semantic_cache_collection_name)
@@ -59,7 +61,7 @@ class CacheManager:
logger.info("缓存管理器已初始化: L1 (内存+FAISS), L2 (数据库+ChromaDB)")
@staticmethod
def _validate_embedding(embedding_result: Any) -> Optional[np.ndarray]:
def _validate_embedding(embedding_result: Any) -> np.ndarray | None:
"""
验证和标准化嵌入向量格式
"""
@@ -100,7 +102,7 @@ class CacheManager:
return None
@staticmethod
def _generate_key(tool_name: str, function_args: Dict[str, Any], tool_file_path: Union[str, Path]) -> str:
def _generate_key(tool_name: str, function_args: dict[str, Any], tool_file_path: str | Path) -> str:
"""生成确定性的缓存键,包含文件修改时间以实现自动失效。"""
try:
tool_file_path = Path(tool_file_path)
@@ -124,10 +126,10 @@ class CacheManager:
async def get(
self,
tool_name: str,
function_args: Dict[str, Any],
tool_file_path: Union[str, Path],
semantic_query: Optional[str] = None,
) -> Optional[Any]:
function_args: dict[str, Any],
tool_file_path: str | Path,
semantic_query: str | None = None,
) -> Any | None:
"""
从缓存获取结果,查询顺序: L1-KV -> L1-Vector -> L2-KV -> L2-Vector。
"""
@@ -251,11 +253,11 @@ class CacheManager:
async def set(
self,
tool_name: str,
function_args: Dict[str, Any],
tool_file_path: Union[str, Path],
function_args: dict[str, Any],
tool_file_path: str | Path,
data: Any,
ttl: Optional[int] = None,
semantic_query: Optional[str] = None,
ttl: int | None = None,
semantic_query: str | None = None,
):
"""将结果存入所有缓存层。"""
if ttl is None: