Add ToolCache class for tool result caching

Introduces a ToolCache class to manage caching of tool invocation results with support for both exact and approximate (similarity-based) query matching. Includes methods for cache retrieval, storage, expiration, cleanup, and statistics. This helps improve efficiency by reusing previous results and reducing redundant tool executions.

Co-Authored-By: tt-P607 <68868379+tt-P607@users.noreply.github.com>
This commit is contained in:
雅诺狐
2025-08-17 21:06:25 +08:00
parent 3155c4713f
commit 74ae472005

344
src/common/cache_manager.py Normal file
View File

@@ -0,0 +1,344 @@
import json
import hashlib
import re
from typing import Any, Dict, Optional
from datetime import datetime, timedelta
from pathlib import Path
from difflib import SequenceMatcher
from src.common.logger import get_logger
logger = get_logger("cache_manager")
class ToolCache:
"""工具缓存管理器,用于缓存工具调用结果,支持近似匹配"""
def __init__(
self,
cache_dir: str = "data/tool_cache",
max_age_hours: int = 24,
similarity_threshold: float = 0.65,
):
"""
初始化缓存管理器
Args:
cache_dir: 缓存目录路径
max_age_hours: 缓存最大存活时间(小时)
similarity_threshold: 近似匹配的相似度阈值 (0-1)
"""
self.cache_dir = Path(cache_dir)
self.max_age = timedelta(hours=max_age_hours)
self.max_age_seconds = max_age_hours * 3600
self.similarity_threshold = similarity_threshold
self.cache_dir.mkdir(parents=True, exist_ok=True)
@staticmethod
def _normalize_query(query: str) -> str:
"""
标准化查询文本,用于相似度比较
Args:
query: 原始查询文本
Returns:
标准化后的查询文本
"""
if not query:
return ""
# 纯 Python 实现
normalized = query.lower()
normalized = re.sub(r"[^\w\s]", " ", normalized)
normalized = " ".join(normalized.split())
return normalized
def _calculate_similarity(self, text1: str, text2: str) -> float:
"""
计算两个文本的相似度
Args:
text1: 文本1
text2: 文本2
Returns:
相似度分数 (0-1)
"""
if not text1 or not text2:
return 0.0
# 纯 Python 实现
norm_text1 = self._normalize_query(text1)
norm_text2 = self._normalize_query(text2)
if norm_text1 == norm_text2:
return 1.0
return SequenceMatcher(None, norm_text1, norm_text2).ratio()
@staticmethod
def _generate_cache_key(tool_name: str, function_args: Dict[str, Any]) -> str:
"""
生成缓存键
Args:
tool_name: 工具名称
function_args: 函数参数
Returns:
缓存键字符串
"""
# 将参数排序后序列化,确保相同参数产生相同的键
sorted_args = json.dumps(function_args, sort_keys=True, ensure_ascii=False)
# 纯 Python 实现
cache_string = f"{tool_name}:{sorted_args}"
return hashlib.md5(cache_string.encode("utf-8")).hexdigest()
def _get_cache_file_path(self, cache_key: str) -> Path:
"""获取缓存文件路径"""
return self.cache_dir / f"{cache_key}.json"
def _is_cache_expired(self, cached_time: datetime) -> bool:
"""检查缓存是否过期"""
return datetime.now() - cached_time > self.max_age
def _find_similar_cache(
self, tool_name: str, function_args: Dict[str, Any]
) -> Optional[Dict[str, Any]]:
"""
查找相似的缓存条目
Args:
tool_name: 工具名称
function_args: 函数参数
Returns:
相似的缓存结果如果不存在则返回None
"""
query = function_args.get("query", "")
if not query:
return None
candidates = []
cache_data_list = []
# 遍历所有缓存文件,收集候选项
for cache_file in self.cache_dir.glob("*.json"):
try:
with open(cache_file, "r", encoding="utf-8") as f:
cache_data = json.load(f)
# 检查是否是同一个工具
if cache_data.get("tool_name") != tool_name:
continue
# 检查缓存是否过期
cached_time = datetime.fromisoformat(cache_data["timestamp"])
if self._is_cache_expired(cached_time):
continue
# 检查其他参数是否匹配除了query
cached_args = cache_data.get("function_args", {})
args_match = True
for key, value in function_args.items():
if key != "query" and cached_args.get(key) != value:
args_match = False
break
if not args_match:
continue
# 收集候选项
cached_query = cached_args.get("query", "")
candidates.append((cached_query, len(cache_data_list)))
cache_data_list.append(cache_data)
except Exception as e:
logger.warning(f"检查缓存文件时出错: {cache_file}, 错误: {e}")
continue
if not candidates:
logger.debug(
f"未找到相似缓存: {tool_name}, 查询: '{query}',相似度阈值: {self.similarity_threshold}"
)
return None
# 纯 Python 实现
best_match = None
best_similarity = 0.0
for cached_query, index in candidates:
similarity = self._calculate_similarity(query, cached_query)
if similarity > best_similarity and similarity >= self.similarity_threshold:
best_similarity = similarity
best_match = cache_data_list[index]
if best_match is not None:
cached_query = best_match["function_args"].get("query", "")
logger.info(
f"相似缓存命中,相似度: {best_similarity:.2f}, 原查询: '{cached_query}', 当前查询: '{query}'"
)
return best_match["result"]
logger.debug(
f"未找到相似缓存: {tool_name}, 查询: '{query}',相似度阈值: {self.similarity_threshold}"
)
return None
def get(
self, tool_name: str, function_args: Dict[str, Any]
) -> Optional[Dict[str, Any]]:
"""
从缓存获取结果,支持精确匹配和近似匹配
Args:
tool_name: 工具名称
function_args: 函数参数
Returns:
缓存的结果如果不存在或已过期则返回None
"""
# 首先尝试精确匹配
cache_key = self._generate_cache_key(tool_name, function_args)
cache_file = self._get_cache_file_path(cache_key)
if cache_file.exists():
try:
with open(cache_file, "r", encoding="utf-8") as f:
cache_data = json.load(f)
# 检查缓存是否过期
cached_time = datetime.fromisoformat(cache_data["timestamp"])
if self._is_cache_expired(cached_time):
logger.debug(f"缓存已过期: {cache_key}")
cache_file.unlink() # 删除过期缓存
else:
logger.debug(f"精确匹配缓存: {tool_name}")
return cache_data["result"]
except (json.JSONDecodeError, KeyError, ValueError) as e:
logger.warning(f"读取缓存文件失败: {cache_file}, 错误: {e}")
# 删除损坏的缓存文件
if cache_file.exists():
cache_file.unlink()
# 如果精确匹配失败,尝试近似匹配
return self._find_similar_cache(tool_name, function_args)
def set(
self, tool_name: str, function_args: Dict[str, Any], result: Dict[str, Any]
) -> None:
"""
将结果保存到缓存
Args:
tool_name: 工具名称
function_args: 函数参数
result: 缓存结果
"""
cache_key = self._generate_cache_key(tool_name, function_args)
cache_file = self._get_cache_file_path(cache_key)
cache_data = {
"tool_name": tool_name,
"function_args": function_args,
"result": result,
"timestamp": datetime.now().isoformat(),
}
try:
with open(cache_file, "w", encoding="utf-8") as f:
json.dump(cache_data, f, ensure_ascii=False, indent=2)
logger.debug(f"缓存已保存: {tool_name} -> {cache_key}")
except Exception as e:
logger.error(f"保存缓存失败: {cache_file}, 错误: {e}")
def clear_expired(self) -> int:
"""
清理过期缓存
Returns:
删除的文件数量
"""
removed_count = 0
for cache_file in self.cache_dir.glob("*.json"):
try:
with open(cache_file, "r", encoding="utf-8") as f:
cache_data = json.load(f)
cached_time = datetime.fromisoformat(cache_data["timestamp"])
if self._is_cache_expired(cached_time):
cache_file.unlink()
removed_count += 1
logger.debug(f"删除过期缓存: {cache_file}")
except Exception as e:
logger.warning(f"清理缓存文件时出错: {cache_file}, 错误: {e}")
# 删除损坏的文件
try:
cache_file.unlink()
removed_count += 1
except (OSError, json.JSONDecodeError, KeyError, ValueError):
logger.warning(f"删除损坏的缓存文件失败: {cache_file}, 错误: {e}")
logger.info(f"清理完成,删除了 {removed_count} 个过期缓存文件")
return removed_count
def clear_all(self) -> int:
"""
清空所有缓存
Returns:
删除的文件数量
"""
removed_count = 0
for cache_file in self.cache_dir.glob("*.json"):
try:
cache_file.unlink()
removed_count += 1
except Exception as e:
logger.warning(f"删除缓存文件失败: {cache_file}, 错误: {e}")
logger.info(f"清空缓存完成,删除了 {removed_count} 个文件")
return removed_count
def get_stats(self) -> Dict[str, Any]:
"""
获取缓存统计信息
Returns:
缓存统计信息字典
"""
total_files = 0
expired_files = 0
total_size = 0
for cache_file in self.cache_dir.glob("*.json"):
try:
total_files += 1
total_size += cache_file.stat().st_size
with open(cache_file, "r", encoding="utf-8") as f:
cache_data = json.load(f)
cached_time = datetime.fromisoformat(cache_data["timestamp"])
if self._is_cache_expired(cached_time):
expired_files += 1
except (OSError, json.JSONDecodeError, KeyError, ValueError):
expired_files += 1 # 损坏的文件也算作过期
return {
"total_files": total_files,
"expired_files": expired_files,
"total_size_bytes": total_size,
"cache_dir": str(self.cache_dir),
"max_age_hours": self.max_age.total_seconds() / 3600,
"similarity_threshold": self.similarity_threshold,
}
tool_cache = ToolCache()