feat: 添加任务类型和能力字段至模型配置,增强模型初始化逻辑
This commit is contained in:
@@ -85,7 +85,7 @@ class APIProvider:
|
||||
# 如果所有key都不可用,返回当前key(让上层处理)
|
||||
return api_key
|
||||
|
||||
def reset_key_failures(self, api_key: str = None):
|
||||
def reset_key_failures(self, api_key: str | None = None):
|
||||
"""重置失败计数(成功调用后调用)"""
|
||||
with self._lock:
|
||||
if api_key and api_key in self.api_keys:
|
||||
@@ -125,6 +125,10 @@ class ModelInfo:
|
||||
|
||||
force_stream_mode: bool = False # 是否强制使用流式输出模式
|
||||
|
||||
# 新增:任务类型和能力字段
|
||||
task_type: str = "" # 任务类型:llm_normal, llm_reasoning, vision, embedding, speech
|
||||
capabilities: List[str] = field(default_factory=list) # 模型能力:text, vision, embedding, speech, tool_calling, reasoning
|
||||
|
||||
|
||||
@dataclass
|
||||
class RequestConfig:
|
||||
|
||||
@@ -162,6 +162,8 @@ def _models(parent: Dict, config: ModuleConfig):
|
||||
price_in = model.get("price_in", 0.0)
|
||||
price_out = model.get("price_out", 0.0)
|
||||
force_stream_mode = model.get("force_stream_mode", False)
|
||||
task_type = model.get("task_type", "")
|
||||
capabilities = model.get("capabilities", [])
|
||||
|
||||
if name in config.models: # 查重
|
||||
logger.error(f"重复的模型名称: {name},请检查配置文件。")
|
||||
@@ -181,6 +183,8 @@ def _models(parent: Dict, config: ModuleConfig):
|
||||
price_in=price_in,
|
||||
price_out=price_out,
|
||||
force_stream_mode=force_stream_mode,
|
||||
task_type=task_type,
|
||||
capabilities=capabilities,
|
||||
)
|
||||
else:
|
||||
logger.error(f"模型 '{name}' 的配置不完整,请检查配置文件。")
|
||||
|
||||
@@ -131,12 +131,24 @@ class LLMRequest:
|
||||
**kwargs: 额外参数
|
||||
"""
|
||||
logger.debug(f"🔍 [模型初始化] 开始初始化模型: {model.get('model_name', model.get('name', 'Unknown'))}")
|
||||
logger.debug(f"🔍 [模型初始化] 模型配置: {model}")
|
||||
logger.debug(f"🔍 [模型初始化] 输入的模型配置: {model}")
|
||||
logger.debug(f"🔍 [模型初始化] 额外参数: {kwargs}")
|
||||
|
||||
# 兼容新旧模型配置格式
|
||||
# 新格式使用 model_name,旧格式使用 name
|
||||
self.model_name: str = model.get("model_name", model.get("name", ""))
|
||||
|
||||
# 如果传入的配置不完整,自动从全局配置中获取完整配置
|
||||
if not all(key in model for key in ["task_type", "capabilities"]):
|
||||
logger.debug("🔍 [模型初始化] 检测到不完整的模型配置,尝试获取完整配置")
|
||||
if (full_model_config := self._get_full_model_config(self.model_name)):
|
||||
logger.debug("🔍 [模型初始化] 成功获取完整模型配置,合并配置信息")
|
||||
# 合并配置:运行时参数优先,但添加缺失的配置字段
|
||||
model = {**full_model_config, **model}
|
||||
logger.debug(f"🔍 [模型初始化] 合并后的模型配置: {model}")
|
||||
else:
|
||||
logger.warning(f"⚠️ [模型初始化] 无法获取模型 {self.model_name} 的完整配置,使用原始配置")
|
||||
|
||||
# 在新架构中,provider信息从model_config.toml自动获取,不需要在这里设置
|
||||
self.provider = model.get("provider", "") # 保留兼容性,但在新架构中不使用
|
||||
|
||||
@@ -235,6 +247,13 @@ class LLMRequest:
|
||||
Returns:
|
||||
任务名称
|
||||
"""
|
||||
# 调试信息:打印模型配置字典的所有键
|
||||
logger.debug(f"🔍 [任务确定] 模型配置字典的所有键: {list(model.keys())}")
|
||||
logger.debug(f"🔍 [任务确定] 模型配置字典内容: {model}")
|
||||
|
||||
# 获取模型名称
|
||||
model_name = model.get("model_name", model.get("name", ""))
|
||||
|
||||
# 方法1: 优先使用配置文件中明确定义的 task_type 字段
|
||||
if "task_type" in model:
|
||||
task_type = model["task_type"]
|
||||
@@ -262,7 +281,6 @@ class LLMRequest:
|
||||
return task
|
||||
|
||||
# 方法3: 向后兼容 - 基于模型名称的关键字推断(不推荐但保留兼容性)
|
||||
model_name = model.get("model_name", model.get("name", ""))
|
||||
logger.warning(f"⚠️ [任务确定] 配置中未找到 task_type 或 capabilities,回退到基于模型名称的推断: {model_name}")
|
||||
logger.warning("⚠️ [建议] 请在 model_config.toml 中为模型添加明确的 task_type 或 capabilities 字段")
|
||||
|
||||
@@ -282,6 +300,76 @@ class LLMRequest:
|
||||
logger.debug(f"🎯 [任务确定] 从 request_type {self.request_type} 推断为: {task}")
|
||||
return task
|
||||
|
||||
def _get_full_model_config(self, model_name: str) -> dict | None:
|
||||
"""
|
||||
根据模型名称从全局配置中获取完整的模型配置
|
||||
现在直接使用已解析的ModelInfo对象,不再读取TOML文件
|
||||
|
||||
Args:
|
||||
model_name: 模型名称
|
||||
Returns:
|
||||
完整的模型配置字典,如果找不到则返回None
|
||||
"""
|
||||
try:
|
||||
from src.config.config import model_config
|
||||
return self._get_model_config_from_parsed(model_name, model_config)
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"⚠️ [配置查找] 获取模型配置时出错: {str(e)}")
|
||||
return None
|
||||
|
||||
def _get_model_config_from_parsed(self, model_name: str, model_config) -> dict | None:
|
||||
"""
|
||||
从已解析的配置对象中获取模型配置
|
||||
使用扩展后的ModelInfo类,包含task_type和capabilities字段
|
||||
"""
|
||||
try:
|
||||
# 直接通过模型名称查找
|
||||
if model_name in model_config.models:
|
||||
model_info = model_config.models[model_name]
|
||||
logger.debug(f"🔍 [配置查找] 找到模型 {model_name} 的配置对象: {model_info}")
|
||||
|
||||
# 将ModelInfo对象转换为字典
|
||||
model_dict = {
|
||||
"model_identifier": model_info.model_identifier,
|
||||
"name": model_info.name,
|
||||
"api_provider": model_info.api_provider,
|
||||
"price_in": model_info.price_in,
|
||||
"price_out": model_info.price_out,
|
||||
"force_stream_mode": model_info.force_stream_mode,
|
||||
"task_type": model_info.task_type,
|
||||
"capabilities": model_info.capabilities,
|
||||
}
|
||||
|
||||
logger.debug(f"🔍 [配置查找] 转换后的模型配置字典: {model_dict}")
|
||||
return model_dict
|
||||
|
||||
# 如果直接查找失败,尝试通过model_identifier查找
|
||||
for name, model_info in model_config.models.items():
|
||||
if (model_info.model_identifier == model_name or
|
||||
hasattr(model_info, 'model_name') and model_info.model_name == model_name):
|
||||
|
||||
logger.debug(f"🔍 [配置查找] 通过标识符找到模型 {model_name} (配置名称: {name})")
|
||||
# 同样转换为字典
|
||||
model_dict = {
|
||||
"model_identifier": model_info.model_identifier,
|
||||
"name": model_info.name,
|
||||
"api_provider": model_info.api_provider,
|
||||
"price_in": model_info.price_in,
|
||||
"price_out": model_info.price_out,
|
||||
"force_stream_mode": model_info.force_stream_mode,
|
||||
"task_type": model_info.task_type,
|
||||
"capabilities": model_info.capabilities,
|
||||
}
|
||||
|
||||
return model_dict
|
||||
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"⚠️ [配置查找] 从已解析配置获取模型配置时出错: {str(e)}")
|
||||
return None
|
||||
|
||||
@staticmethod
|
||||
def _init_database():
|
||||
"""初始化数据库集合"""
|
||||
|
||||
@@ -1,7 +1,45 @@
|
||||
[inner]
|
||||
version = "0.1.1"
|
||||
version = "0.2.1"
|
||||
|
||||
# 配置文件版本号迭代规则同bot_config.toml
|
||||
#
|
||||
# === 多API Key支持 ===
|
||||
# 本配置文件支持为每个API服务商配置多个API Key,实现以下功能:
|
||||
# 1. 错误自动切换:当某个API Key失败时,自动切换到下一个可用的Key
|
||||
# 2. 负载均衡:在多个可用的API Key之间循环使用,避免单个Key的频率限制
|
||||
# 3. 向后兼容:仍然支持单个key字段的配置方式
|
||||
#
|
||||
# 配置方式:
|
||||
# - 多Key配置:使用 api_keys = ["key1", "key2", "key3"] 数组格式
|
||||
# - 单Key配置:使用 key = "your-key" 字符串格式(向后兼容)
|
||||
#
|
||||
# 错误处理机制:
|
||||
# - 401/403认证错误:立即切换到下一个API Key
|
||||
# - 429频率限制:等待后重试,如果持续失败则切换Key
|
||||
# - 网络错误:短暂等待后重试,失败则切换Key
|
||||
# - 其他错误:按照正常重试机制处理
|
||||
#
|
||||
# === 任务类型和模型能力配置 ===
|
||||
# 为了提高任务分配的准确性和可维护性,现在支持明确配置模型的任务类型和能力:
|
||||
#
|
||||
# task_type(推荐配置):
|
||||
# - 明确指定模型主要用于什么任务
|
||||
# - 可选值:llm_normal, llm_reasoning, vision, embedding, speech
|
||||
# - 如果不配置,系统会根据capabilities或模型名称自动推断(不推荐)
|
||||
#
|
||||
# capabilities(推荐配置):
|
||||
# - 描述模型支持的所有能力
|
||||
# - 可选值:text, vision, embedding, speech, tool_calling, reasoning
|
||||
# - 支持多个能力的组合,如:["text", "vision"]
|
||||
#
|
||||
# 配置优先级:
|
||||
# 1. task_type(最高优先级,直接指定任务类型)
|
||||
# 2. capabilities(中等优先级,根据能力推断任务类型)
|
||||
# 3. 模型名称关键字(最低优先级,不推荐依赖)
|
||||
#
|
||||
# 向后兼容:
|
||||
# - 仍然支持 model_flags 字段,但建议迁移到 capabilities
|
||||
# - 未配置新字段时会自动回退到基于模型名称的推断
|
||||
|
||||
[request_conf] # 请求配置(此配置项数值均为默认值,如想修改,请取消对应条目的注释)
|
||||
#max_retry = 2 # 最大重试次数(单个模型API调用失败,最多重试的次数)
|
||||
@@ -13,20 +51,32 @@ version = "0.1.1"
|
||||
|
||||
[[api_providers]] # API服务提供商(可以配置多个)
|
||||
name = "DeepSeek" # API服务商名称(可随意命名,在models的api-provider中需使用这个命名)
|
||||
base_url = "https://api.deepseek.cn" # API服务商的BaseURL
|
||||
key = "******" # API Key (可选,默认为None)
|
||||
client_type = "openai" # 请求客户端(可选,默认值为"openai",使用gimini等Google系模型时请配置为"google")
|
||||
base_url = "https://api.deepseek.cn/v1" # API服务商的BaseURL
|
||||
# 支持多个API Key,实现自动切换和负载均衡
|
||||
api_keys = [ # API Key列表(多个key支持错误自动切换和负载均衡)
|
||||
"sk-your-first-key-here",
|
||||
"sk-your-second-key-here",
|
||||
"sk-your-third-key-here"
|
||||
]
|
||||
# 向后兼容:如果只有一个key,也可以使用单个key字段
|
||||
#key = "******" # API Key (可选,默认为None)
|
||||
client_type = "openai" # 请求客户端(可选,默认值为"openai",使用gimini等Google系模型时请配置为"gemini")
|
||||
|
||||
#[[api_providers]] # 特殊:Google的Gimini使用特殊API,与OpenAI格式不兼容,需要配置client为"google"
|
||||
#name = "Google"
|
||||
#base_url = "https://api.google.com"
|
||||
#key = "******"
|
||||
#client_type = "google"
|
||||
#
|
||||
#[[api_providers]]
|
||||
#name = "SiliconFlow"
|
||||
#base_url = "https://api.siliconflow.cn"
|
||||
#key = "******"
|
||||
[[api_providers]] # 特殊:Google的Gimini使用特殊API,与OpenAI格式不兼容,需要配置client为"gemini"
|
||||
name = "Google"
|
||||
base_url = "https://api.google.com/v1"
|
||||
# Google API同样支持多key配置
|
||||
api_keys = [
|
||||
"your-google-api-key-1",
|
||||
"your-google-api-key-2"
|
||||
]
|
||||
client_type = "gemini"
|
||||
|
||||
[[api_providers]]
|
||||
name = "SiliconFlow"
|
||||
base_url = "https://api.siliconflow.cn/v1"
|
||||
# 单个key的示例(向后兼容)
|
||||
key = "******"
|
||||
#
|
||||
#[[api_providers]]
|
||||
#name = "LocalHost"
|
||||
@@ -42,6 +92,13 @@ model_identifier = "deepseek-chat"
|
||||
name = "deepseek-v3"
|
||||
# API服务商名称(对应在api_providers中配置的服务商名称)
|
||||
api_provider = "DeepSeek"
|
||||
# 任务类型(推荐配置,明确指定模型主要用于什么任务)
|
||||
# 可选值:llm_normal, llm_reasoning, vision, embedding, speech
|
||||
# 如果不配置,系统会根据capabilities或模型名称自动推断
|
||||
task_type = "llm_normal"
|
||||
# 模型能力列表(推荐配置,描述模型支持的能力)
|
||||
# 可选值:text, vision, embedding, speech, tool_calling, reasoning
|
||||
capabilities = ["text", "tool_calling"]
|
||||
# 输入价格(用于API调用统计,单位:元/兆token)(可选,若无该字段,默认值为0)
|
||||
price_in = 2.0
|
||||
# 输出价格(用于API调用统计,单位:元/兆token)(可选,若无该字段,默认值为0)
|
||||
@@ -54,6 +111,10 @@ price_out = 8.0
|
||||
model_identifier = "deepseek-reasoner"
|
||||
name = "deepseek-r1"
|
||||
api_provider = "DeepSeek"
|
||||
# 推理模型的配置示例
|
||||
task_type = "llm_reasoning"
|
||||
capabilities = ["text", "tool_calling", "reasoning"]
|
||||
# 保留向后兼容的model_flags字段(已废弃,建议使用capabilities)
|
||||
model_flags = [ "text", "tool_calling", "reasoning",]
|
||||
price_in = 4.0
|
||||
price_out = 16.0
|
||||
@@ -62,6 +123,8 @@ price_out = 16.0
|
||||
model_identifier = "Pro/deepseek-ai/DeepSeek-V3"
|
||||
name = "siliconflow-deepseek-v3"
|
||||
api_provider = "SiliconFlow"
|
||||
task_type = "llm_normal"
|
||||
capabilities = ["text", "tool_calling"]
|
||||
price_in = 2.0
|
||||
price_out = 8.0
|
||||
|
||||
@@ -69,6 +132,8 @@ price_out = 8.0
|
||||
model_identifier = "Pro/deepseek-ai/DeepSeek-R1"
|
||||
name = "siliconflow-deepseek-r1"
|
||||
api_provider = "SiliconFlow"
|
||||
task_type = "llm_reasoning"
|
||||
capabilities = ["text", "tool_calling", "reasoning"]
|
||||
price_in = 4.0
|
||||
price_out = 16.0
|
||||
|
||||
@@ -76,6 +141,8 @@ price_out = 16.0
|
||||
model_identifier = "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
|
||||
name = "deepseek-r1-distill-qwen-32b"
|
||||
api_provider = "SiliconFlow"
|
||||
task_type = "llm_reasoning"
|
||||
capabilities = ["text", "tool_calling", "reasoning"]
|
||||
price_in = 4.0
|
||||
price_out = 16.0
|
||||
|
||||
@@ -83,6 +150,8 @@ price_out = 16.0
|
||||
model_identifier = "Qwen/Qwen3-8B"
|
||||
name = "qwen3-8b"
|
||||
api_provider = "SiliconFlow"
|
||||
task_type = "llm_normal"
|
||||
capabilities = ["text"]
|
||||
price_in = 0
|
||||
price_out = 0
|
||||
|
||||
@@ -90,6 +159,8 @@ price_out = 0
|
||||
model_identifier = "Qwen/Qwen3-14B"
|
||||
name = "qwen3-14b"
|
||||
api_provider = "SiliconFlow"
|
||||
task_type = "llm_normal"
|
||||
capabilities = ["text", "tool_calling"]
|
||||
price_in = 0.5
|
||||
price_out = 2.0
|
||||
|
||||
@@ -97,6 +168,8 @@ price_out = 2.0
|
||||
model_identifier = "Qwen/Qwen3-30B-A3B"
|
||||
name = "qwen3-30b"
|
||||
api_provider = "SiliconFlow"
|
||||
task_type = "llm_normal"
|
||||
capabilities = ["text", "tool_calling"]
|
||||
price_in = 0.7
|
||||
price_out = 2.8
|
||||
|
||||
@@ -104,6 +177,10 @@ price_out = 2.8
|
||||
model_identifier = "Qwen/Qwen2.5-VL-72B-Instruct"
|
||||
name = "qwen2.5-vl-72b"
|
||||
api_provider = "SiliconFlow"
|
||||
# 视觉模型的配置示例
|
||||
task_type = "vision"
|
||||
capabilities = ["vision", "text"]
|
||||
# 保留向后兼容的model_flags字段(已废弃,建议使用capabilities)
|
||||
model_flags = [ "vision", "text",]
|
||||
price_in = 4.13
|
||||
price_out = 4.13
|
||||
@@ -112,6 +189,10 @@ price_out = 4.13
|
||||
model_identifier = "FunAudioLLM/SenseVoiceSmall"
|
||||
name = "sensevoice-small"
|
||||
api_provider = "SiliconFlow"
|
||||
# 语音模型的配置示例
|
||||
task_type = "speech"
|
||||
capabilities = ["speech"]
|
||||
# 保留向后兼容的model_flags字段(已废弃,建议使用capabilities)
|
||||
model_flags = [ "audio",]
|
||||
price_in = 0
|
||||
price_out = 0
|
||||
@@ -120,15 +201,19 @@ price_out = 0
|
||||
model_identifier = "BAAI/bge-m3"
|
||||
name = "bge-m3"
|
||||
api_provider = "SiliconFlow"
|
||||
# 嵌入模型的配置示例
|
||||
task_type = "embedding"
|
||||
capabilities = ["text", "embedding"]
|
||||
# 保留向后兼容的model_flags字段(已废弃,建议使用capabilities)
|
||||
model_flags = [ "text", "embedding",]
|
||||
price_in = 0
|
||||
price_out = 0
|
||||
|
||||
|
||||
[task_model_usage]
|
||||
#llm_reasoning = {model="deepseek-r1", temperature=0.8, max_tokens=1024, max_retry=0}
|
||||
#llm_normal = {model="deepseek-r1", max_tokens=1024, max_retry=0}
|
||||
#embedding = "siliconflow-bge-m3"
|
||||
llm_reasoning = {model="deepseek-r1", temperature=0.8, max_tokens=1024, max_retry=0}
|
||||
llm_normal = {model="deepseek-r1", max_tokens=1024, max_retry=0}
|
||||
embedding = "siliconflow-bge-m3"
|
||||
#schedule = [
|
||||
# "deepseek-v3",
|
||||
# "deepseek-r1",
|
||||
|
||||
Reference in New Issue
Block a user