feat:优化表达方式学习,太久没学的会抛弃,提供检查脚本

This commit is contained in:
SengokuCola
2025-06-05 16:15:39 +08:00
parent 16a0717c6e
commit 72d011f699
6 changed files with 316 additions and 42 deletions

View File

@@ -12,6 +12,8 @@ import json
MAX_EXPRESSION_COUNT = 300
DECAY_DAYS = 30 # 30天衰减到0.01
DECAY_MIN = 0.01 # 最小衰减值
logger = get_logger("expressor")
@@ -30,9 +32,10 @@ def init_prompt() -> None:
"xxx"时,可以"xxx", xxx不超过10个字
例如:
"表示十分惊叹"时,使用"我嘞个xxxx"
"表示十分惊叹,有些意外"时,使用"我嘞个xxxx"
"表示讽刺的赞同,不想讲道理"时,使用"对对对"
"想说明某个观点,但懒得明说",使用"懂的都懂"
"想说明某个观点,但懒得明说,或者不便明说",使用"懂的都懂"
"表示意外的夸赞,略带戏谑意味"时,使用"这么强!"
注意不要总结你自己SELF的发言
现在请你概括
@@ -109,16 +112,62 @@ class ExpressionLearner:
"""
学习并存储表达方式,分别学习语言风格和句法特点
"""
learnt_style: Optional[List[Tuple[str, str, str]]] = await self.learn_and_store(type="style", num=15)
if not learnt_style:
return []
for i in range(3):
learnt_style: Optional[List[Tuple[str, str, str]]] = await self.learn_and_store(type="style", num=15)
if not learnt_style:
return []
learnt_grammar: Optional[List[Tuple[str, str, str]]] = await self.learn_and_store(type="grammar", num=15)
if not learnt_grammar:
return []
for i in range(1):
learnt_grammar: Optional[List[Tuple[str, str, str]]] = await self.learn_and_store(type="grammar", num=15)
if not learnt_grammar:
return []
return learnt_style, learnt_grammar
def calculate_decay_factor(self, time_diff_days: float) -> float:
"""
计算衰减因子
当时间差为0天或30天时衰减值为0.01
当时间差为7天时衰减值为1.0
使用二次函数进行曲线插值
"""
if time_diff_days <= 0 or time_diff_days >= DECAY_DAYS:
return DECAY_MIN
# 使用二次函数进行插值
# 将7天作为顶点0天和30天作为两个端点
# 使用顶点式y = a(x-h)^2 + k其中(h,k)为顶点
h = 7.0 # 顶点x坐标
k = 1.0 # 顶点y坐标
# 计算a值使得x=0和x=30时y=0.01
# 0.01 = a(0-7)^2 + 1
# 0.01 = a(30-7)^2 + 1
# 解得a = -0.99/49
a = -0.99 / 49
# 计算衰减因子
decay = a * (time_diff_days - h) ** 2 + k
return max(DECAY_MIN, min(1.0, decay))
def apply_decay_to_expressions(self, expressions: List[Dict[str, Any]], current_time: float) -> List[Dict[str, Any]]:
"""
对表达式列表应用衰减
返回衰减后的表达式列表移除count小于0的项
"""
result = []
for expr in expressions:
last_active = expr.get("last_active_time", current_time)
time_diff_days = (current_time - last_active) / (24 * 3600) # 转换为天
decay_factor = self.calculate_decay_factor(time_diff_days)
expr["count"] = expr.get("count", 1) * decay_factor
if expr["count"] > 0:
result.append(expr)
return result
async def learn_and_store(self, type: str, num: int = 10) -> List[Tuple[str, str, str]]:
"""
选择从当前到最近1小时内的随机num条消息然后学习这些消息的表达方式
@@ -130,7 +179,7 @@ class ExpressionLearner:
type_str = "句法特点"
else:
raise ValueError(f"Invalid type: {type}")
# logger.info(f"开始学习{type_str}...")
res = await self.learn_expression(type, num)
if res is None:
@@ -146,7 +195,6 @@ class ExpressionLearner:
for _chat_id, situation, style in learnt_expressions:
learnt_expressions_str += f"{situation}->{style}\n"
logger.info(f"{group_name} 学习到{type_str}:\n{learnt_expressions_str}")
# learnt_expressions: List[(chat_id, situation, style)]
if not learnt_expressions:
logger.info(f"没有学习到{type_str}")
@@ -158,29 +206,27 @@ class ExpressionLearner:
if chat_id not in chat_dict:
chat_dict[chat_id] = []
chat_dict[chat_id].append({"situation": situation, "style": style})
current_time = time.time()
# 存储到/data/expression/对应chat_id/expressions.json
for chat_id, expr_list in chat_dict.items():
dir_path = os.path.join("data", "expression", f"learnt_{type}", str(chat_id))
os.makedirs(dir_path, exist_ok=True)
file_path = os.path.join(dir_path, "expressions.json")
# 若已存在,先读出合并
old_data: List[Dict[str, Any]] = []
if os.path.exists(file_path):
old_data: List[Dict[str, str, str]] = []
try:
with open(file_path, "r", encoding="utf-8") as f:
old_data = json.load(f)
except Exception:
old_data = []
else:
old_data = []
# 超过最大数量时20%概率移除count=1的项
if len(old_data) >= MAX_EXPRESSION_COUNT:
new_old_data = []
for item in old_data:
if item.get("count", 1) == 1 and random.random() < 0.2:
continue # 20%概率移除
new_old_data.append(item)
old_data = new_old_data
# 应用衰减
old_data = self.apply_decay_to_expressions(old_data, current_time)
# 合并逻辑
for new_expr in expr_list:
found = False
@@ -194,12 +240,16 @@ class ExpressionLearner:
old_expr["situation"] = new_expr["situation"]
old_expr["style"] = new_expr["style"]
old_expr["count"] = old_expr.get("count", 1) + 1
old_expr["last_active_time"] = current_time
break
if not found:
new_expr["count"] = 1
new_expr["last_active_time"] = current_time
old_data.append(new_expr)
with open(file_path, "w", encoding="utf-8") as f:
json.dump(old_data, f, ensure_ascii=False, indent=2)
return learnt_expressions
async def learn_expression(self, type: str, num: int = 10) -> Optional[Tuple[List[Tuple[str, str, str]], str]]:

View File

@@ -49,7 +49,7 @@ class RelationshipProcessor(BaseProcessor):
self.llm_model = LLMRequest(
model=global_config.model.relation,
max_tokens=800,
request_type="focus.processor.self_identify",
request_type="relation",
)
name = chat_manager.get_stream_name(self.subheartflow_id)

View File

@@ -7,15 +7,18 @@ from typing import List, Tuple
import os
import json
from datetime import datetime
from src.individuality.individuality import individuality
logger = get_logger("expressor")
def init_prompt() -> None:
personality_expression_prompt = """
{personality}
你的人物设定:{personality}
请从以上人设中总结出这个角色可能的语言风格,你必须严格根据人设引申,不要输出例子
你说话的表达方式:{expression_style}
请从以上表达方式中总结出这个角色可能的语言风格,你必须严格根据人设引申,不要输出例子
思考回复的特殊内容和情感
思考有没有特殊的梗,一并总结成语言风格
总结成如下格式的规律,总结的内容要详细,但具有概括性:
@@ -80,19 +83,27 @@ class PersonalityExpression:
"""
检查data/expression/personality目录不存在则创建。
用peronality变量作为chat_str调用LLM生成表达风格解析后count=100存储到expressions.json。
如果expression_style发生变化则删除旧的expressions.json并重置计数。
如果expression_style、personality或identity发生变化则删除旧的expressions.json并重置计数。
对于相同的expression_style最多计算self.max_calculations次。
"""
os.makedirs(os.path.dirname(self.expressions_file_path), exist_ok=True)
current_style_text = global_config.expression.expression_style
current_personality = individuality.get_personality_prompt(x_person=2, level=2)
current_identity = individuality.get_identity_prompt(x_person=2, level=2)
meta_data = self._read_meta_data()
last_style_text = meta_data.get("last_style_text")
last_personality = meta_data.get("last_personality")
last_identity = meta_data.get("last_identity")
count = meta_data.get("count", 0)
if current_style_text != last_style_text:
logger.info(f"表达风格已从 '{last_style_text}' 变为 '{current_style_text}'。重置计数。")
# 检查是否有任何变化
if (current_style_text != last_style_text or
current_personality != last_personality or
current_identity != last_identity):
logger.info(f"检测到变化:\n风格: '{last_style_text}' -> '{current_style_text}'\n人格: '{last_personality}' -> '{current_personality}'\n身份: '{last_identity}' -> '{current_identity}'")
count = 0
if os.path.exists(self.expressions_file_path):
try:
@@ -102,11 +113,13 @@ class PersonalityExpression:
logger.error(f"删除旧的表达文件 {self.expressions_file_path} 失败: {e}")
if count >= self.max_calculations:
logger.debug(f"对于风格 '{current_style_text}' 已达到最大计算次数 ({self.max_calculations})。跳过提取。")
# 即使跳过,也更新元数据以反映当前风格已被识别且计数已满
logger.debug(f"对于当前配置已达到最大计算次数 ({self.max_calculations})。跳过提取。")
# 即使跳过,也更新元数据以反映当前配置已被识别且计数已满
self._write_meta_data(
{
"last_style_text": current_style_text,
"last_personality": current_personality,
"last_identity": current_identity,
"count": count,
"last_update_time": meta_data.get("last_update_time"),
}
@@ -116,18 +129,20 @@ class PersonalityExpression:
# 构建prompt
prompt = await global_prompt_manager.format_prompt(
"personality_expression_prompt",
personality=current_style_text,
personality=current_personality,
expression_style=current_style_text,
)
# logger.info(f"个性表达方式提取prompt: {prompt}")
try:
response, _ = await self.express_learn_model.generate_response_async(prompt)
except Exception as e:
logger.error(f"个性表达方式提取失败: {e}")
# 如果提取失败,保存当前的风格和未增加的计数
# 如果提取失败,保存当前的配置和未增加的计数
self._write_meta_data(
{
"last_style_text": current_style_text,
"last_personality": current_personality,
"last_identity": current_identity,
"count": count,
"last_update_time": meta_data.get("last_update_time"),
}
@@ -135,7 +150,6 @@ class PersonalityExpression:
return
logger.info(f"个性表达方式提取response: {response}")
# chat_id用personality
# 转为dict并count=100
if response != "":
@@ -183,9 +197,15 @@ class PersonalityExpression:
count += 1
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
self._write_meta_data(
{"last_style_text": current_style_text, "count": count, "last_update_time": current_time}
{
"last_style_text": current_style_text,
"last_personality": current_personality,
"last_identity": current_identity,
"count": count,
"last_update_time": current_time
}
)
logger.info(f"成功处理。风格 '{current_style_text}' 的计数现在是 {count},最后更新时间:{current_time}")
logger.info(f"成功处理。当前配置的计数现在是 {count},最后更新时间:{current_time}")
else:
logger.warning(f"个性表达方式提取失败,模型返回空内容: {response}")

View File

@@ -17,12 +17,12 @@ class ImpressionUpdateTask(AsyncTask):
super().__init__(
task_name="impression_update",
wait_before_start=5, # 启动后等待10秒
run_interval=10, # 每1分钟运行一次
run_interval=20, # 每1分钟运行一次
)
async def run(self):
try:
if random.random() < 0.5:
if random.random() < 0.1:
# 获取最近10分钟的消息
current_time = int(time.time())
start_time = current_time - 6000 # 10分钟前
@@ -30,7 +30,7 @@ class ImpressionUpdateTask(AsyncTask):
else:
now = int(time.time())
# 30天前的时间戳
month_ago = now - 30 * 24 * 60 * 60
month_ago = now - 90 * 24 * 60 * 60
# 随机选择一个小时的起点
random_start = random.randint(month_ago, now - 3600)
start_time = random_start

View File

@@ -228,7 +228,7 @@ class RelationshipManager:
readable_messages = build_readable_messages(
messages=user_messages,
replace_bot_name=True,
timestamp_mode="relative",
timestamp_mode="normal",
truncate=False)
@@ -263,7 +263,8 @@ class RelationshipManager:
new_impression, _ = await self.relationship_llm.generate_response_async(prompt=prompt)
logger.debug(f"new_impression: {new_impression}")
logger.info(f"prompt: {prompt}")
logger.info(f"new_impression: {new_impression}")
prompt_json = f"""
你的名字是{global_config.bot.nickname},别名是{alias_str}
@@ -274,8 +275,8 @@ class RelationshipManager:
请用json格式总结对{person_name}(昵称:{nickname})的印象,要求:
1.总结出这个人的最核心的性格,可能在这段话里看不出,总结不出来的话,就输出空字符串
2.尝试猜测这个人的性别,如果看不出来,就输出空字符串
3.尝试猜测自己与这个人的关系你与ta的交互还可以思考是积极还是消极,以及具体内容
2.尝试猜测这个人的性别
3.尝试猜测自己与这个人的关系你与ta的交互思考是积极还是消极以及具体内容
4.尝试猜测这个人的身份,比如职业,兴趣爱好,生活状态等
5.尝试总结你与他之间是否有一些独特的梗,如果有,就输出梗的内容,如果没有,就输出空字符串