我要曹飞一切之thinkflow创世纪

This commit is contained in:
SengokuCola
2025-03-24 00:23:17 +08:00
parent 9860ea085e
commit 6da66e74f6
9 changed files with 189 additions and 147 deletions

View File

@@ -18,7 +18,7 @@ from ..memory_system.memory import hippocampus
from .message_sender import message_manager, message_sender
from .storage import MessageStorage
from src.common.logger import get_module_logger
from src.think_flow_demo.current_mind import brain
# from src.think_flow_demo.current_mind import subheartflow
from src.think_flow_demo.outer_world import outer_world
logger = get_module_logger("chat_init")
@@ -46,12 +46,11 @@ scheduler = require("nonebot_plugin_apscheduler").scheduler
async def start_think_flow():
"""启动大脑和外部世界"""
"""启动外部世界"""
try:
brain_task = asyncio.create_task(brain.brain_start_working())
outer_world_task = asyncio.create_task(outer_world.open_eyes())
logger.success("大脑和外部世界启动成功")
return brain_task, outer_world_task
return outer_world_task
except Exception as e:
logger.error(f"启动大脑和外部世界失败: {e}")
raise

View File

@@ -32,7 +32,7 @@ from .utils_user import get_user_nickname, get_user_cardname
from ..willing.willing_manager import willing_manager # 导入意愿管理器
from .message_base import UserInfo, GroupInfo, Seg
from src.think_flow_demo.current_mind import brain
from src.think_flow_demo.heartflow import subheartflow_manager
from src.think_flow_demo.outer_world import outer_world
from src.common.logger import get_module_logger, CHAT_STYLE_CONFIG, LogConfig
@@ -93,6 +93,12 @@ class ChatBot:
group_info=groupinfo, # 我嘞个gourp_info
)
message.update_chat_stream(chat)
#创建 心流 观察
await outer_world.check_and_add_new_observe()
subheartflow_manager.create_subheartflow(chat.stream_id)
await relationship_manager.update_relationship(
chat_stream=chat,
)
@@ -185,7 +191,7 @@ class ChatBot:
stream_id, limit=global_config.MAX_CONTEXT_SIZE, combine=True
)
await brain.do_after_reply(response,chat_talking_prompt)
await subheartflow_manager.get_subheartflow(stream_id).do_after_reply(response,chat_talking_prompt)
# print(f"有response: {response}")
container = message_manager.get_container(chat.stream_id)
thinking_message = None
@@ -308,11 +314,11 @@ class ChatBot:
raw_message = f"[戳了戳]{global_config.BOT_NICKNAME}" # 默认类型
if info := event.model_extra["raw_info"]:
poke_type = info[2].get("txt", "戳了戳") # 戳戳类型,例如拍一拍”、“揉一揉”、“捏一捏
poke_type = info[2].get("txt", "戳了戳") # 戳戳类型,例如"拍一拍"、"揉一揉"、"捏一捏"
custom_poke_message = info[4].get("txt", "") # 自定义戳戳消息,若不存在会为空字符串
raw_message = f"[{poke_type}]{global_config.BOT_NICKNAME}{custom_poke_message}"
raw_message += "(这是一个类似摸摸头的友善行为,而不是恶意行为,请不要作出攻击发言)"
raw_message += ",作为一个类似摸摸头的友善行为"
user_info = UserInfo(
user_id=event.user_id,

View File

@@ -12,7 +12,7 @@ from .chat_stream import chat_manager
from .relationship_manager import relationship_manager
from src.common.logger import get_module_logger
from src.think_flow_demo.current_mind import brain
from src.think_flow_demo.heartflow import subheartflow_manager
from src.think_flow_demo.outer_world import outer_world
logger = get_module_logger("prompt")
@@ -36,8 +36,8 @@ class PromptBuilder:
limit=global_config.MAX_CONTEXT_SIZE,
)
outer_world_info = outer_world.outer_world_info
current_mind_info = brain.current_mind
# outer_world_info = outer_world.outer_world_info
current_mind_info = subheartflow_manager.get_subheartflow(stream_id).current_mind
relation_prompt = ""
for person in who_chat_in_group:
@@ -183,7 +183,7 @@ class PromptBuilder:
prompt_check_if_response = ""
print(prompt)
# print(prompt)
return prompt, prompt_check_if_response

View File

@@ -799,7 +799,7 @@ class Hippocampus:
"""
topics_response = await self.llm_topic_judge.generate_response(self.find_topic_llm(text, 4))
# 使用正则表达式提取<>中的内容
print(f"话题: {topics_response[0]}")
# print(f"话题: {topics_response[0]}")
topics = re.findall(r'<([^>]+)>', topics_response[0])
# 如果没有找到<>包裹的内容,返回['none']
@@ -884,7 +884,7 @@ class Hippocampus:
"""计算输入文本对记忆的激活程度"""
# 识别主题
identified_topics = await self._identify_topics(text)
print(f"识别主题: {identified_topics}")
# print(f"识别主题: {identified_topics}")
if identified_topics[0] == "none":
return 0

View File

@@ -42,8 +42,8 @@ class WillingManager:
interested_rate = interested_rate * config.response_interested_rate_amplifier
if interested_rate > 0.3:
current_willing += interested_rate - 0.2
if interested_rate > 0.4:
current_willing += interested_rate - 0.3
if is_mentioned_bot and current_willing < 1.0:
current_willing += 1

View File

@@ -1,47 +1,60 @@
from .outer_world import outer_world
import asyncio
from .offline_llm import LLMModel
from src.plugins.moods.moods import MoodManager
from src.plugins.models.utils_model import LLM_request
from src.plugins.chat.config import global_config
class CuttentState:
def __init__(self):
self.willing = 0
self.mood = 'TODO'
self.current_state_info = ""
class InnerWorld:
def __init__(self):
self.inner_world_info = ""
self.current_state : CuttentState = CuttentState()
self.mood_manager = MoodManager()
self.mood = self.mood_manager.get_prompt()
def update_current_state_info(self):
self.current_state_info = self.mood_manager.get_current_mood()
class BRain:
class SubHeartflow:
def __init__(self):
self.current_mind = ""
self.past_mind = []
self.inner_world = InnerWorld()
self.llm_model = LLMModel("Pro/Qwen/Qwen2.5-7B-Instruct")
self.current_state : CuttentState = CuttentState()
self.llm_model = LLM_request(model=global_config.llm_topic_judge, temperature=0.7, max_tokens=600, request_type="sub_heart_flow")
self.outer_world = None
self.observe_chat_id = None
if not self.current_mind:
self.current_mind = "是麦麦,曾经是一个学习地质的女大学生,现在学习心理学和脑科学,你会刷贴吧,你现在正在浏览qq群想着qq群里发生的事情人们在谈论什么以及和你有什么关系你应该怎样在qq群中回复和发言。现在请麦麦你继续思考"
self.current_mind = "什么也没想"
def assign_observe(self,stream_id):
self.outer_world = outer_world.get_world_by_stream_id(stream_id)
self.observe_chat_id = stream_id
async def brain_start_working(self):
async def subheartflow_start_working(self):
while True:
await self.do_a_thinking()
await asyncio.sleep(10)
await asyncio.sleep(30)
async def do_a_thinking(self):
print("麦麦脑袋转起来了")
current_thinking = self.current_mind
outer_world_info = self.build_outer_world_info()
inner_world_info = self.build_inner_world_info(self.inner_world)
current_state_info = self.build_current_state_info(self.inner_world.current_state)
print("麦麦脑袋转起来了")
self.current_state.update_current_state_info()
personality_info = open("src/think_flow_demo/personality_info.txt", "r", encoding="utf-8").read()
current_thinking_info = self.current_mind
mood_info = self.current_state.mood
related_memory_info = 'memory'
message_stream_info = self.outer_world.talking_summary
# prompt += f"这是你当前的脑内状态{current_state_info}\n\n"
prompt = f"这是你刚刚接触的内容:{outer_world_info}\n\n"
# prompt += f"这是你当前的脑内状态{inner_world_info}\n\n"
prompt += f"这是你之前的想法{current_thinking}\n\n"
prompt += f"现在你接下去继续思考,产生新的想法,不要分点输出,输出连贯的内心独白,不要太长,注重当前的思考:"
prompt = f""
prompt += f"{personality_info}\n"
prompt += f"现在你正在上网和qq群里的网友们聊天群里正在聊的话题是{message_stream_info}\n"
prompt += f"你想起来{related_memory_info}"
prompt += f"刚刚你的想法是{current_thinking_info}"
prompt += f"现在{mood_info}"
prompt += f"现在你接下去继续思考,产生新的想法,不要分点输出,输出连贯的内心独白,不要太长,但是记得结合上述的消息,要记得你的人设,关注聊天和新内容,不要思考太多:"
reponse, reasoning_content = await self.llm_model.generate_response_async(prompt)
@@ -52,19 +65,25 @@ class BRain:
async def do_after_reply(self,reply_content,chat_talking_prompt):
print("麦麦脑袋转起来了")
current_thinking = self.current_mind
outer_world_info = self.build_outer_world_info()
inner_world_info = self.build_inner_world_info(self.inner_world)
current_state_info = self.build_current_state_info(self.inner_world.current_state)
self.current_state.update_current_state_info()
personality_info = open("src/think_flow_demo/personality_info.txt", "r", encoding="utf-8").read()
current_thinking_info = self.current_mind
mood_info = self.current_state.mood
related_memory_info = 'memory'
message_stream_info = self.outer_world.talking_summary
message_new_info = chat_talking_prompt
reply_info = reply_content
# prompt += f"这是你当前的脑内状态{current_state_info}\n\n"
prompt = f"这是你刚刚接触的内容:{outer_world_info}\n\n"
# prompt += f"这是你当前的脑内状态{inner_world_info}\n\n"
prompt += f"这是你之前想要回复的内容:{chat_talking_prompt}\n\n"
prompt += f"这是你之前的想法{current_thinking}\n\n"
prompt += f"这是你自己刚刚回复的内容{reply_content}\n\n"
prompt += f"现在你接下去继续思考,产生新的想法,不要分点输出,输出连贯的内心独白:"
prompt = f""
prompt += f"{personality_info}\n"
prompt += f"现在你正在上网和qq群里的网友们聊天群里正在聊的话题是{message_stream_info}\n"
prompt += f"你想起来{related_memory_info}"
prompt += f"刚刚你的想法{current_thinking_info}"
prompt += f"你现在看到了网友们发的新消息:{message_new_info}\n"
prompt += f"你刚刚回复了群友们:{reply_info}"
prompt += f"你现在{mood_info}"
prompt += f"现在你接下去继续思考,产生新的想法,记得保留你刚刚的想法,不要分点输出,输出连贯的内心独白,不要太长,但是记得结合上述的消息,要记得你的人设,关注聊天和新内容,以及你回复的内容,不要思考太多:"
reponse, reasoning_content = await self.llm_model.generate_response_async(prompt)
@@ -72,18 +91,7 @@ class BRain:
self.current_mind = reponse
print(f"麦麦的脑内状态:{self.current_mind}")
def update_current_state_from_current_mind(self):
self.inner_world.current_state.willing += 0.01
def build_current_state_info(self,current_state):
current_state_info = current_state.current_state_info
return current_state_info
def build_inner_world_info(self,inner_world):
inner_world_info = inner_world.inner_world_info
return inner_world_info
def build_outer_world_info(self):
outer_world_info = outer_world.outer_world_info
@@ -94,16 +102,5 @@ class BRain:
self.current_mind = reponse
brain = BRain()
async def main():
# 创建两个任务
brain_task = asyncio.create_task(brain.brain_start_working())
outer_world_task = asyncio.create_task(outer_world.open_eyes())
# 等待两个任务
await asyncio.gather(brain_task, outer_world_task)
if __name__ == "__main__":
asyncio.run(main())
# subheartflow = SubHeartflow()

View File

@@ -0,0 +1,21 @@
from .current_mind import SubHeartflow
class SubHeartflowManager:
def __init__(self):
self._subheartflows = {}
def create_subheartflow(self, observe_chat_id):
"""创建一个新的SubHeartflow实例"""
if observe_chat_id not in self._subheartflows:
subheartflow = SubHeartflow()
subheartflow.assign_observe(observe_chat_id)
subheartflow.subheartflow_start_working()
self._subheartflows[observe_chat_id] = subheartflow
return self._subheartflows[observe_chat_id]
def get_subheartflow(self, observe_chat_id):
"""获取指定ID的SubHeartflow实例"""
return self._subheartflows.get(observe_chat_id)
# 创建一个全局的管理器实例
subheartflow_manager = SubHeartflowManager()

View File

@@ -1,8 +1,11 @@
#定义了来自外部世界的信息
import asyncio
from datetime import datetime
from src.plugins.models.utils_model import LLM_request
from src.plugins.chat.config import global_config
import sys
from src.common.database import db
from .offline_llm import LLMModel
#存储一段聊天的大致内容
class Talking_info:
def __init__(self,chat_id):
@@ -10,25 +13,71 @@ class Talking_info:
self.talking_message = []
self.talking_message_str = ""
self.talking_summary = ""
self.last_message_time = None # 记录最新消息的时间
self.last_observe_time = int(datetime.now().timestamp()) #初始化为当前时间
self.observe_times = 0
self.activate = 360
self.llm_summary = LLMModel("Pro/Qwen/Qwen2.5-7B-Instruct")
self.oberve_interval = 3
def update_talking_message(self):
#从数据库取最近30条该聊天流的消息
messages = db.messages.find({"chat_id": self.chat_id}).sort("time", -1).limit(15)
self.talking_message = []
self.talking_message_str = ""
for message in messages:
self.talking_message.append(message)
self.talking_message_str += message["detailed_plain_text"]
async def update_talking_summary(self,new_summary=""):
self.llm_summary = LLM_request(model=global_config.llm_topic_judge, temperature=0.7, max_tokens=300, request_type="outer_world")
async def start_observe(self):
while True:
if self.activate <= 0:
print(f"聊天 {self.chat_id} 活跃度不足,进入休眠状态")
await self.waiting_for_activate()
print(f"聊天 {self.chat_id} 被重新激活")
await self.observe_world()
await asyncio.sleep(self.oberve_interval)
async def waiting_for_activate(self):
while True:
# 检查从上次观察时间之后的新消息数量
new_messages_count = db.messages.count_documents({
"chat_id": self.chat_id,
"time": {"$gt": self.last_observe_time}
})
if new_messages_count > 10:
self.activate = 360*(self.observe_times+1)
return
await asyncio.sleep(10) # 每10秒检查一次
async def observe_world(self):
# 查找新消息
new_messages = list(db.messages.find({
"chat_id": self.chat_id,
"time": {"$gt": self.last_observe_time}
}).sort("time", 1)) # 按时间正序排列
if not new_messages:
self.activate += -1
return
# 将新消息添加到talking_message
self.talking_message.extend(new_messages)
self.translate_message_list_to_str()
self.observe_times += 1
self.last_observe_time = new_messages[-1]["time"]
if self.observe_times > 3:
await self.update_talking_summary()
print(f"更新了聊天总结:{self.talking_summary}")
async def update_talking_summary(self):
#基于已经有的talking_summary和新的talking_message生成一个summary
prompt = f"聊天内容:{self.talking_message_str}\n\n"
prompt += f"以上是群里在进行的聊天,请你对这个聊天内容进行总结,总结内容要包含聊天的大致内容,以及聊天中的一些重要信息,记得不要分点,不要太长,精简的概括成一段文本\n\n"
prompt += f"总结:"
prompt = ""
prompt = f"你正在参与一个qq群聊的讨论这个群之前在聊的内容是{self.talking_summary}\n"
prompt += f"现在群里的群友们产生了新的讨论,有了新的发言,具体内容如下:{self.talking_message_str}\n"
prompt += f"以上是群里在进行的聊天,请你对这个聊天内容进行总结,总结内容要包含聊天的大致内容,以及聊天中的一些重要信息,记得不要分点,不要太长,精简的概括成一段文本\n"
prompt += f"总结概括:"
self.talking_summary, reasoning_content = await self.llm_summary.generate_response_async(prompt)
def translate_message_list_to_str(self):
self.talking_message_str = ""
for message in self.talking_message:
self.talking_message_str += message["detailed_plain_text"]
class SheduleInfo:
def __init__(self):
@@ -38,72 +87,41 @@ class OuterWorld:
def __init__(self):
self.talking_info_list = [] #装的一堆talking_info
self.shedule_info = "无日程"
self.interest_info = "麦麦你好"
# self.interest_info = "麦麦你好"
self.outer_world_info = ""
self.start_time = int(datetime.now().timestamp())
self.llm_summary = LLMModel("Qwen/Qwen2.5-32B-Instruct")
self.llm_summary = LLM_request(model=global_config.llm_topic_judge, temperature=0.7, max_tokens=600, request_type="outer_world_info")
async def check_and_add_new_observe(self):
# 获取所有聊天流
all_streams = db.chat_streams.find({})
# 遍历所有聊天流
for data in all_streams:
stream_id = data.get("stream_id")
# 检查是否已存在该聊天流的观察对象
existing_info = next((info for info in self.talking_info_list if info.chat_id == stream_id), None)
# 如果不存在创建新的Talking_info对象并添加到列表中
if existing_info is None:
print(f"发现新的聊天流: {stream_id}")
new_talking_info = Talking_info(stream_id)
self.talking_info_list.append(new_talking_info)
# 启动新对象的观察任务
asyncio.create_task(new_talking_info.start_observe())
async def open_eyes(self):
while True:
print("检查新的聊天流")
await self.check_and_add_new_observe()
await asyncio.sleep(60)
print("更新所有聊天信息")
await self.update_all_talking_info()
print("更新outer_world_info")
await self.update_outer_world_info()
print(self.outer_world_info)
for talking_info in self.talking_info_list:
# print(talking_info.talking_message_str)
# print(talking_info.talking_summary)
pass
async def update_outer_world_info(self):
print("总结当前outer_world_info")
all_talking_summary = ""
def get_world_by_stream_id(self,stream_id):
for talking_info in self.talking_info_list:
all_talking_summary += talking_info.talking_summary
prompt = f"聊天内容:{all_talking_summary}\n\n"
prompt += f"以上是多个群里在进行的聊天,请你对所有聊天内容进行总结,总结内容要包含聊天的大致内容,以及聊天中的一些重要信息,记得不要分点,不要太长,精简的概括成一段文本\n\n"
prompt += f"总结:"
self.outer_world_info, reasoning_content = await self.llm_summary.generate_response_async(prompt)
async def update_talking_info(self,chat_id):
# 查找现有的talking_info
talking_info = next((info for info in self.talking_info_list if info.chat_id == chat_id), None)
if talking_info is None:
print("新聊天流")
talking_info = Talking_info(chat_id)
talking_info.update_talking_message()
await talking_info.update_talking_summary()
self.talking_info_list.append(talking_info)
else:
print("旧聊天流")
talking_info.update_talking_message()
await talking_info.update_talking_summary()
async def update_all_talking_info(self):
all_streams = db.chat_streams.find({})
update_tasks = []
for data in all_streams:
stream_id = data.get("stream_id")
# print(stream_id)
last_active_time = data.get("last_active_time")
if last_active_time > self.start_time or 1:
update_tasks.append(self.update_talking_info(stream_id))
# 并行执行所有更新任务
if update_tasks:
await asyncio.gather(*update_tasks)
if talking_info.chat_id == stream_id:
return talking_info
return None
outer_world = OuterWorld()

View File

@@ -0,0 +1 @@
你叫麦麦你19岁是一个大二的心理学和脑科女大学生你有一头黑色短发你会刷贴吧