feat(tool_system): implement declarative caching for tools

This commit refactors the tool caching system to be more robust, configurable, and easier to use. The caching logic is centralized within the `wrap_tool_executor`, removing the need for boilerplate code within individual tool implementations.

Key changes:
- Adds `enable_cache`, `cache_ttl`, and `semantic_cache_query_key` attributes to `BaseTool` for declarative cache configuration.
- Moves caching logic from a simple history-based lookup and individual tools into a unified handling process in `wrap_tool_executor`.
- The new system leverages the central `tool_cache` manager for both exact and semantic caching based on tool configuration.
- Refactors `WebSurfingTool` and `URLParserTool` to utilize the new declarative caching mechanism, simplifying their code.
This commit is contained in:
minecraft1024a
2025-08-27 18:45:59 +08:00
committed by Windpicker-owo
parent 12bcde800e
commit 6b53560a7e
5 changed files with 208 additions and 70 deletions

View File

@@ -4,9 +4,11 @@ from datetime import datetime
from typing import Any, Dict, List, Optional, Union
import json
from pathlib import Path
import inspect
from .logger import get_logger
from src.config.config import global_config
from src.common.cache_manager import tool_cache
logger = get_logger("tool_history")
@@ -113,34 +115,6 @@ class ToolHistoryManager:
except Exception as e:
logger.error(f"记录工具调用时发生错误: {e}")
def find_cached_result(self, tool_name: str, args: Dict[str, Any]) -> Optional[Dict[str, Any]]:
"""查找匹配的缓存记录
Args:
tool_name: 工具名称
args: 工具调用参数
Returns:
Optional[Dict[str, Any]]: 如果找到匹配的缓存记录则返回结果否则返回None
"""
# 检查是否启用历史记录
if not global_config.tool.history.enable_history:
return None
# 清理输入参数中的敏感信息以便比较
sanitized_input_args = self._sanitize_args(args)
# 按时间倒序遍历历史记录
for record in reversed(self._history):
if (record["tool_name"] == tool_name and
record["status"] == "completed" and
record["ttl_count"] < record.get("ttl", 5)):
# 比较参数是否匹配
if self._sanitize_args(record["arguments"]) == sanitized_input_args:
logger.info(f"工具 {tool_name} 命中缓存记录")
return record["result"]
return None
def _sanitize_args(self, args: Dict[str, Any]) -> Dict[str, Any]:
"""清理参数中的敏感信息"""
sensitive_keys = ['api_key', 'token', 'password', 'secret']
@@ -327,27 +301,78 @@ class ToolHistoryManager:
def wrap_tool_executor():
"""
包装工具执行器以添加历史记录功能
包装工具执行器以添加历史记录和缓存功能
这个函数应该在系统启动时被调用一次
"""
from src.plugin_system.core.tool_use import ToolExecutor
from src.plugin_system.apis.tool_api import get_tool_instance
original_execute = ToolExecutor.execute_tool_call
history_manager = ToolHistoryManager()
async def wrapped_execute_tool_call(self, tool_call, tool_instance=None):
start_time = time.time()
# 确保我们有 tool_instance
if not tool_instance:
tool_instance = get_tool_instance(tool_call.func_name)
# 首先检查缓存
if cached_result := history_manager.find_cached_result(tool_call.func_name, tool_call.args):
logger.info(f"{self.log_prefix}使用缓存结果,跳过工具 {tool_call.func_name} 执行")
return cached_result
# 如果没有 tool_instance就无法进行缓存检查直接执行
if not tool_instance:
result = await original_execute(self, tool_call, None)
execution_time = time.time() - start_time
history_manager.record_tool_call(
tool_name=tool_call.func_name,
args=tool_call.args,
result=result,
execution_time=execution_time,
status="completed",
chat_id=getattr(self, 'chat_id', None),
ttl=5 # Default TTL
)
return result
# 新的缓存逻辑
if tool_instance.enable_cache:
try:
tool_file_path = inspect.getfile(tool_instance.__class__)
semantic_query = None
if tool_instance.semantic_cache_query_key:
semantic_query = tool_call.args.get(tool_instance.semantic_cache_query_key)
cached_result = await tool_cache.get(
tool_name=tool_call.func_name,
function_args=tool_call.args,
tool_file_path=tool_file_path,
semantic_query=semantic_query
)
if cached_result:
logger.info(f"{self.log_prefix}使用缓存结果,跳过工具 {tool_call.func_name} 执行")
return cached_result
except Exception as e:
logger.error(f"{self.log_prefix}检查工具缓存时出错: {e}")
try:
result = await original_execute(self, tool_call, tool_instance)
execution_time = time.time() - start_time
# 获取工具的ttl值
ttl = getattr(tool_instance, 'history_ttl', 5) if tool_instance else 5
# 缓存结果
if tool_instance.enable_cache:
try:
tool_file_path = inspect.getfile(tool_instance.__class__)
semantic_query = None
if tool_instance.semantic_cache_query_key:
semantic_query = tool_call.args.get(tool_instance.semantic_cache_query_key)
await tool_cache.set(
tool_name=tool_call.func_name,
function_args=tool_call.args,
tool_file_path=tool_file_path,
data=result,
ttl=tool_instance.cache_ttl,
semantic_query=semantic_query
)
except Exception as e:
logger.error(f"{self.log_prefix}设置工具缓存时出错: {e}")
# 记录成功的调用
history_manager.record_tool_call(
@@ -357,16 +382,13 @@ def wrap_tool_executor():
execution_time=execution_time,
status="completed",
chat_id=getattr(self, 'chat_id', None),
ttl=ttl
ttl=tool_instance.history_ttl
)
return result
except Exception as e:
execution_time = time.time() - start_time
# 获取工具的ttl值
ttl = getattr(tool_instance, 'history_ttl', 5) if tool_instance else 5
# 记录失败的调用
history_manager.record_tool_call(
tool_name=tool_call.func_name,
@@ -375,7 +397,7 @@ def wrap_tool_executor():
execution_time=execution_time,
status="error",
chat_id=getattr(self, 'chat_id', None),
ttl=ttl
ttl=tool_instance.history_ttl
)
raise

View File

@@ -31,6 +31,13 @@ class BaseTool(ABC):
history_ttl: int = 5
"""工具调用历史记录的TTL值默认为5。设为0表示不记录历史"""
enable_cache: bool = False
"""是否为该工具启用缓存"""
cache_ttl: int = 3600
"""缓存的TTL值默认为3600秒1小时"""
semantic_cache_query_key: Optional[str] = None
"""用于语义缓存的查询参数键名。如果设置,将使用此参数的值进行语义相似度搜索"""
def __init__(self, plugin_config: Optional[dict] = None):
self.plugin_config = plugin_config or {} # 直接存储插件配置字典

View File

@@ -30,6 +30,12 @@ class URLParserTool(BaseTool):
parameters = [
("urls", ToolParamType.STRING, "要理解的网站", True, None),
]
# --- 新的缓存配置 ---
enable_cache: bool = True
cache_ttl: int = 86400 # 缓存24小时
semantic_cache_query_key: str = "urls"
# --------------------
def __init__(self, plugin_config=None):
super().__init__(plugin_config)
@@ -42,10 +48,11 @@ class URLParserTool(BaseTool):
if exa_api_keys is None:
# 从插件配置文件读取
exa_api_keys = self.get_config("exa.api_keys", [])
# 创建API密钥管理器
from typing import cast, List
self.api_manager = create_api_key_manager_from_config(
exa_api_keys,
cast(List[str], exa_api_keys),
lambda key: Exa(api_key=key),
"Exa URL Parser"
)
@@ -135,16 +142,6 @@ class URLParserTool(BaseTool):
"""
执行URL内容提取和总结。优先使用Exa失败后尝试本地解析。
"""
# 获取当前文件路径用于缓存键
import os
current_file_path = os.path.abspath(__file__)
# 检查缓存
cached_result = await tool_cache.get(self.name, function_args, current_file_path)
if cached_result:
logger.info(f"缓存命中: {self.name} -> {function_args}")
return cached_result
urls_input = function_args.get("urls")
if not urls_input:
return {"error": "URL列表不能为空。"}
@@ -235,8 +232,4 @@ class URLParserTool(BaseTool):
"errors": error_messages
}
# 保存到缓存
if "error" not in result:
await tool_cache.set(self.name, function_args, current_file_path, result)
return result

View File

@@ -31,6 +31,12 @@ class WebSurfingTool(BaseTool):
("time_range", ToolParamType.STRING, "指定搜索的时间范围,可以是 'any', 'week', 'month'。默认为 'any'", False, ["any", "week", "month"])
] # type: ignore
# --- 新的缓存配置 ---
enable_cache: bool = True
cache_ttl: int = 7200 # 缓存2小时
semantic_cache_query_key: str = "query"
# --------------------
def __init__(self, plugin_config=None):
super().__init__(plugin_config)
# 初始化搜索引擎
@@ -46,16 +52,6 @@ class WebSurfingTool(BaseTool):
if not query:
return {"error": "搜索查询不能为空。"}
# 获取当前文件路径用于缓存键
import os
current_file_path = os.path.abspath(__file__)
# 检查缓存
cached_result = await tool_cache.get(self.name, function_args, current_file_path, semantic_query=query)
if cached_result:
logger.info(f"缓存命中: {self.name} -> {function_args}")
return cached_result
# 读取搜索配置
enabled_engines = config_api.get_global_config("web_search.enabled_engines", ["ddg"])
search_strategy = config_api.get_global_config("web_search.search_strategy", "single")
@@ -69,10 +65,6 @@ class WebSurfingTool(BaseTool):
result = await self._execute_fallback_search(function_args, enabled_engines)
else: # single
result = await self._execute_single_search(function_args, enabled_engines)
# 保存到缓存
if "error" not in result:
await tool_cache.set(self.name, function_args, current_file_path, result, semantic_query=query)
return result