修复了记忆时间bug,config添加了记忆屏蔽关键词

This commit is contained in:
SengokuCola
2025-03-09 22:45:32 +08:00
parent c6b75c9b5c
commit 6a71ea4f2e
7 changed files with 367 additions and 130 deletions

View File

@@ -88,6 +88,8 @@ class BotConfig:
PERSONALITY_2: float = 0.3 # 第二种人格概率
PERSONALITY_3: float = 0.1 # 第三种人格概率
memory_ban_words: list = field(default_factory=lambda: ['表情包', '图片', '回复', '聊天记录']) # 添加新的配置项默认值
@staticmethod
def get_config_dir() -> str:
"""获取配置文件目录"""
@@ -277,6 +279,10 @@ class BotConfig:
memory_config = parent["memory"]
config.build_memory_interval = memory_config.get("build_memory_interval", config.build_memory_interval)
config.forget_memory_interval = memory_config.get("forget_memory_interval", config.forget_memory_interval)
# 在版本 >= 0.0.4 时才处理新增的配置项
if config.INNER_VERSION in SpecifierSet(">=0.0.4"):
config.memory_ban_words = set(memory_config.get("memory_ban_words", []))
def mood(parent: dict):
mood_config = parent["mood"]
@@ -344,7 +350,8 @@ class BotConfig:
},
"memory": {
"func": memory,
"support": ">=0.0.0"
"support": ">=0.0.0",
"necessary": False
},
"mood": {
"func": mood,

View File

@@ -157,46 +157,88 @@ class Hippocampus:
nodes = sorted([source, target])
return hash(f"{nodes[0]}:{nodes[1]}")
def get_memory_sample(self,chat_size=20,time_frequency:dict={'near':2,'mid':4,'far':3}):
def get_memory_sample(self, chat_size=20, time_frequency:dict={'near':2,'mid':4,'far':3}):
"""获取记忆样本
Returns:
list: 消息记录列表,每个元素是一个消息记录字典列表
"""
current_timestamp = datetime.datetime.now().timestamp()
chat_text = []
#短期1h 中期4h 长期24h
for _ in range(time_frequency.get('near')): # 循环10次
random_time = current_timestamp - random.randint(1, 3600) # 随机时间
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
chat_text.append(chat_)
for _ in range(time_frequency.get('mid')): # 循环10次
random_time = current_timestamp - random.randint(3600, 3600*4) # 随机时间
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
chat_text.append(chat_)
for _ in range(time_frequency.get('far')): # 循环10次
random_time = current_timestamp - random.randint(3600*4, 3600*24) # 随机时间
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
chat_text.append(chat_)
return [text for text in chat_text if text]
async def memory_compress(self, input_text, compress_rate=0.1):
chat_samples = []
# 短期1h 中期4h 长期24h
for _ in range(time_frequency.get('near')):
random_time = current_timestamp - random.randint(1, 3600)
messages = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
if messages:
chat_samples.append(messages)
for _ in range(time_frequency.get('mid')):
random_time = current_timestamp - random.randint(3600, 3600*4)
messages = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
if messages:
chat_samples.append(messages)
for _ in range(time_frequency.get('far')):
random_time = current_timestamp - random.randint(3600*4, 3600*24)
messages = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
if messages:
chat_samples.append(messages)
return chat_samples
async def memory_compress(self, messages: list, compress_rate=0.1):
"""压缩消息记录为记忆
Args:
messages: 消息记录字典列表每个字典包含text和time字段
compress_rate: 压缩率
Returns:
set: (话题, 记忆) 元组集合
"""
if not messages:
return set()
# 合并消息文本,同时保留时间信息
input_text = ""
time_info = ""
# 计算最早和最晚时间
earliest_time = min(msg['time'] for msg in messages)
latest_time = max(msg['time'] for msg in messages)
earliest_dt = datetime.datetime.fromtimestamp(earliest_time)
latest_dt = datetime.datetime.fromtimestamp(latest_time)
# 如果是同一年
if earliest_dt.year == latest_dt.year:
earliest_str = earliest_dt.strftime("%m-%d %H:%M:%S")
latest_str = latest_dt.strftime("%m-%d %H:%M:%S")
time_info += f"是在{earliest_dt.year}年,{earliest_str}{latest_str} 的对话:\n"
else:
earliest_str = earliest_dt.strftime("%Y-%m-%d %H:%M:%S")
latest_str = latest_dt.strftime("%Y-%m-%d %H:%M:%S")
time_info += f"是从 {earliest_str}{latest_str} 的对话:\n"
for msg in messages:
input_text += f"{msg['text']}\n"
print(input_text)
#获取topics
topic_num = self.calculate_topic_num(input_text, compress_rate)
topics_response = await self.llm_topic_judge.generate_response(self.find_topic_llm(input_text, topic_num))
# 修改话题处理逻辑
# 定义需要过滤的关键词
filter_keywords = ['表情包', '图片', '回复', '聊天记录']
# 过滤topics
filter_keywords = global_config.memory_ban_words
topics = [topic.strip() for topic in topics_response[0].replace("", ",").replace("", ",").replace(" ", ",").split(",") if topic.strip()]
filtered_topics = [topic for topic in topics if not any(keyword in topic for keyword in filter_keywords)]
# print(f"原始话题: {topics}")
print(f"过滤后话题: {filtered_topics}")
# 使用过滤后的话题继续处理
# 创建所有话题的请求任务
tasks = []
for topic in filtered_topics:
topic_what_prompt = self.topic_what(input_text, topic)
# 创建异步任务
topic_what_prompt = self.topic_what(input_text, topic, time_info)
task = self.llm_summary_by_topic.generate_response_async(topic_what_prompt)
tasks.append((topic.strip(), task))
@@ -440,7 +482,7 @@ class Hippocampus:
print(f"选择的记忆:\n{merged_text}")
# 使用memory_compress生成新的压缩记忆
compressed_memories = await self.memory_compress(merged_text, 0.1)
compressed_memories = await self.memory_compress(selected_memories, 0.1)
# 从原记忆列表中移除被选中的记忆
for memory in selected_memories:
@@ -494,8 +536,8 @@ class Hippocampus:
prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个关键的概念,可以是名词,动词,或者特定人物,帮我列出来,用逗号,隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要有序号,不要告诉我其他内容。'
return prompt
def topic_what(self,text, topic):
prompt = f'这是一段文字:{text}。我想让你基于这段文字来概括"{topic}"这个概念,帮我总结成一句自然的话,可以包含时间和人物,以及具体的观点。只输出这句话就好'
def topic_what(self,text, topic, time_info):
prompt = f'这是一段文字{time_info}{text}。我想让你基于这段文字来概括"{topic}"这个概念,帮我总结成一句自然的话,可以包含时间和人物,以及具体的观点。只输出这句话就好'
return prompt
async def _identify_topics(self, text: str) -> list:

View File

@@ -13,6 +13,7 @@ import networkx as nx
import pymongo
from dotenv import load_dotenv
from loguru import logger
import jieba
# from chat.config import global_config
sys.path.append("C:/GitHub/MaiMBot") # 添加项目根目录到 Python 路径
@@ -86,23 +87,26 @@ def calculate_information_content(text):
return entropy
def get_cloest_chat_from_db(db, length: int, timestamp: str):
"""从数据库中获取最接近指定时间戳的聊天记录,并记录读取次数"""
chat_text = ''
"""从数据库中获取最接近指定时间戳的聊天记录,并记录读取次数
Returns:
list: 消息记录字典列表,每个字典包含消息内容和时间信息
"""
chat_records = []
closest_record = db.db.messages.find_one({"time": {"$lte": timestamp}}, sort=[('time', -1)])
if closest_record and closest_record.get('memorized', 0) < 4:
closest_time = closest_record['time']
group_id = closest_record['group_id'] # 获取groupid
group_id = closest_record['group_id']
# 获取该时间戳之后的length条消息且groupid相同
chat_records = list(db.db.messages.find(
records = list(db.db.messages.find(
{"time": {"$gt": closest_time}, "group_id": group_id}
).sort('time', 1).limit(length))
# 更新每条消息的memorized属性
for record in chat_records:
# 检查当前记录的memorized值
for record in records:
current_memorized = record.get('memorized', 0)
if current_memorized > 3:
if current_memorized > 3:
print("消息已读取3次跳过")
return ''
@@ -112,11 +116,14 @@ def get_cloest_chat_from_db(db, length: int, timestamp: str):
{"$set": {"memorized": current_memorized + 1}}
)
chat_text += record["detailed_plain_text"]
# 添加到记录列表中
chat_records.append({
'text': record["detailed_plain_text"],
'time': record["time"],
'group_id': record["group_id"]
})
return chat_text
print("消息已读取3次跳过")
return ''
return chat_records
class Memory_graph:
def __init__(self):
@@ -205,22 +212,34 @@ class Hippocampus:
self.llm_model_summary = LLMModel(model_name="Qwen/Qwen2.5-32B-Instruct")
def get_memory_sample(self, chat_size=20, time_frequency:dict={'near':2,'mid':4,'far':3}):
"""获取记忆样本
Returns:
list: 消息记录列表,每个元素是一个消息记录字典列表
"""
current_timestamp = datetime.datetime.now().timestamp()
chat_text = []
#短期1h 中期4h 长期24h
for _ in range(time_frequency.get('near')): # 循环10次
random_time = current_timestamp - random.randint(1, 3600*4) # 随机时间
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
chat_text.append(chat_)
for _ in range(time_frequency.get('mid')): # 循环10次
random_time = current_timestamp - random.randint(3600*4, 3600*24) # 随机时间
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
chat_text.append(chat_)
for _ in range(time_frequency.get('far')): # 循环10次
random_time = current_timestamp - random.randint(3600*24, 3600*24*7) # 随机时间
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
chat_text.append(chat_)
return [chat for chat in chat_text if chat]
chat_samples = []
# 短期1h 中期4h 长期24h
for _ in range(time_frequency.get('near')):
random_time = current_timestamp - random.randint(1, 3600*4)
messages = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
if messages:
chat_samples.append(messages)
for _ in range(time_frequency.get('mid')):
random_time = current_timestamp - random.randint(3600*4, 3600*24)
messages = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
if messages:
chat_samples.append(messages)
for _ in range(time_frequency.get('far')):
random_time = current_timestamp - random.randint(3600*24, 3600*24*7)
messages = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
if messages:
chat_samples.append(messages)
return chat_samples
def calculate_topic_num(self,text, compress_rate):
"""计算文本的话题数量"""
@@ -231,16 +250,49 @@ class Hippocampus:
print(f"topic_by_length: {topic_by_length}, topic_by_information_content: {topic_by_information_content}, topic_num: {topic_num}")
return topic_num
async def memory_compress(self, input_text, compress_rate=0.1):
async def memory_compress(self, messages: list, compress_rate=0.1):
"""压缩消息记录为记忆
Args:
messages: 消息记录字典列表每个字典包含text和time字段
compress_rate: 压缩率
Returns:
set: (话题, 记忆) 元组集合
"""
if not messages:
return set()
# 合并消息文本,同时保留时间信息
input_text = ""
time_info = ""
# 计算最早和最晚时间
earliest_time = min(msg['time'] for msg in messages)
latest_time = max(msg['time'] for msg in messages)
earliest_dt = datetime.datetime.fromtimestamp(earliest_time)
latest_dt = datetime.datetime.fromtimestamp(latest_time)
# 如果是同一年
if earliest_dt.year == latest_dt.year:
earliest_str = earliest_dt.strftime("%m-%d %H:%M:%S")
latest_str = latest_dt.strftime("%m-%d %H:%M:%S")
time_info += f"是在{earliest_dt.year}年,{earliest_str}{latest_str} 的对话:\n"
else:
earliest_str = earliest_dt.strftime("%Y-%m-%d %H:%M:%S")
latest_str = latest_dt.strftime("%Y-%m-%d %H:%M:%S")
time_info += f"是从 {earliest_str}{latest_str} 的对话:\n"
for msg in messages:
input_text += f"{msg['text']}\n"
print(input_text)
topic_num = self.calculate_topic_num(input_text, compress_rate)
topics_response = self.llm_model_get_topic.generate_response(self.find_topic_llm(input_text, topic_num))
# 修改话题处理逻辑
# 定义需要过滤的关键词
filter_keywords = ['表情包', '图片', '回复', '聊天记录']
# 过滤topics
filter_keywords = ['表情包', '图片', '回复', '聊天记录']
topics = [topic.strip() for topic in topics_response[0].replace("", ",").replace("", ",").replace(" ", ",").split(",") if topic.strip()]
filtered_topics = [topic for topic in topics if not any(keyword in topic for keyword in filter_keywords)]
@@ -250,7 +302,7 @@ class Hippocampus:
# 创建所有话题的请求任务
tasks = []
for topic in filtered_topics:
topic_what_prompt = self.topic_what(input_text, topic)
topic_what_prompt = self.topic_what(input_text, topic , time_info)
# 创建异步任务
task = self.llm_model_small.generate_response_async(topic_what_prompt)
tasks.append((topic.strip(), task))
@@ -267,37 +319,35 @@ class Hippocampus:
async def operation_build_memory(self, chat_size=12):
# 最近消息获取频率
time_frequency = {'near': 3, 'mid': 8, 'far': 5}
memory_sample = self.get_memory_sample(chat_size, time_frequency)
memory_samples = self.get_memory_sample(chat_size, time_frequency)
all_topics = [] # 用于存储所有话题
for i, input_text in enumerate(memory_sample, 1):
for i, messages in enumerate(memory_samples, 1):
# 加载进度可视化
all_topics = []
progress = (i / len(memory_sample)) * 100
progress = (i / len(memory_samples)) * 100
bar_length = 30
filled_length = int(bar_length * i // len(memory_sample))
filled_length = int(bar_length * i // len(memory_samples))
bar = '' * filled_length + '-' * (bar_length - filled_length)
print(f"\n进度: [{bar}] {progress:.1f}% ({i}/{len(memory_sample)})")
print(f"\n进度: [{bar}] {progress:.1f}% ({i}/{len(memory_samples)})")
# 生成压缩后记忆 ,表现为 (话题,记忆) 的元组
compressed_memory = set()
# 生成压缩后记忆
compress_rate = 0.1
compressed_memory = await self.memory_compress(input_text, compress_rate)
compressed_memory = await self.memory_compress(messages, compress_rate)
print(f"\033[1;33m压缩后记忆数量\033[0m: {len(compressed_memory)}")
# 将记忆加入到图谱中
for topic, memory in compressed_memory:
print(f"\033[1;32m添加节点\033[0m: {topic}")
self.memory_graph.add_dot(topic, memory)
all_topics.append(topic) # 收集所有话题
all_topics.append(topic)
# 连接相关话题
for i in range(len(all_topics)):
for j in range(i + 1, len(all_topics)):
print(f"\033[1;32m连接节点\033[0m: {all_topics[i]}{all_topics[j]}")
self.memory_graph.connect_dot(all_topics[i], all_topics[j])
self.sync_memory_to_db()
@@ -375,7 +425,7 @@ class Hippocampus:
if concept not in db_nodes_dict:
# 数据库中缺少的节点,添加
logger.info(f"添加新节点: {concept}")
# logger.info(f"添加新节点: {concept}")
node_data = {
'concept': concept,
'memory_items': memory_items,
@@ -389,7 +439,7 @@ class Hippocampus:
# 如果特征值不同,则更新节点
if db_hash != memory_hash:
logger.info(f"更新节点内容: {concept}")
# logger.info(f"更新节点内容: {concept}")
self.memory_graph.db.db.graph_data.nodes.update_one(
{'concept': concept},
{'$set': {
@@ -402,7 +452,7 @@ class Hippocampus:
memory_concepts = set(node[0] for node in memory_nodes)
for db_node in db_nodes:
if db_node['concept'] not in memory_concepts:
logger.info(f"删除多余节点: {db_node['concept']}")
# logger.info(f"删除多余节点: {db_node['concept']}")
self.memory_graph.db.db.graph_data.nodes.delete_one({'concept': db_node['concept']})
# 处理边的信息
@@ -460,9 +510,10 @@ class Hippocampus:
prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个关键的概念,可以是名词,动词,或者特定人物,帮我列出来,用逗号,隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要有序号,不要告诉我其他内容。'
return prompt
def topic_what(self,text, topic):
def topic_what(self,text, topic, time_info):
# prompt = f'这是一段文字:{text}。我想知道这段文字里有什么关于{topic}的话题,帮我总结成一句自然的话,可以包含时间和人物,以及具体的观点。只输出这句话就好'
prompt = f'这是一段文字:{text}。我想让你基于这段文字来概括"{topic}"这个概念,帮我总结成一句自然的话,可以包含时间和人物,以及具体的观点。只输出这句话就好'
# 获取当前时间
prompt = f'这是一段文字,{time_info}{text}。我想让你基于这段文字来概括"{topic}"这个概念,帮我总结成一句自然的话,可以包含时间和人物,以及具体的观点。只输出这句话就好'
return prompt
def remove_node_from_db(self, topic):
@@ -597,7 +648,7 @@ class Hippocampus:
print(f"选择的记忆:\n{merged_text}")
# 使用memory_compress生成新的压缩记忆
compressed_memories = await self.memory_compress(merged_text, 0.1)
compressed_memories = await self.memory_compress(selected_memories, 0.1)
# 从原记忆列表中移除被选中的记忆
for memory in selected_memories:
@@ -647,6 +698,164 @@ class Hippocampus:
else:
print("\n本次检查没有需要合并的节点")
async def _identify_topics(self, text: str) -> list:
"""从文本中识别可能的主题"""
topics_response = self.llm_model_get_topic.generate_response(self.find_topic_llm(text, 5))
topics = [topic.strip() for topic in topics_response[0].replace("", ",").replace("", ",").replace(" ", ",").split(",") if topic.strip()]
return topics
def _find_similar_topics(self, topics: list, similarity_threshold: float = 0.4, debug_info: str = "") -> list:
"""查找与给定主题相似的记忆主题"""
all_memory_topics = list(self.memory_graph.G.nodes())
all_similar_topics = []
for topic in topics:
if debug_info:
pass
topic_vector = text_to_vector(topic)
has_similar_topic = False
for memory_topic in all_memory_topics:
memory_vector = text_to_vector(memory_topic)
all_words = set(topic_vector.keys()) | set(memory_vector.keys())
v1 = [topic_vector.get(word, 0) for word in all_words]
v2 = [memory_vector.get(word, 0) for word in all_words]
similarity = cosine_similarity(v1, v2)
if similarity >= similarity_threshold:
has_similar_topic = True
all_similar_topics.append((memory_topic, similarity))
return all_similar_topics
def _get_top_topics(self, similar_topics: list, max_topics: int = 5) -> list:
"""获取相似度最高的主题"""
seen_topics = set()
top_topics = []
for topic, score in sorted(similar_topics, key=lambda x: x[1], reverse=True):
if topic not in seen_topics and len(top_topics) < max_topics:
seen_topics.add(topic)
top_topics.append((topic, score))
return top_topics
async def memory_activate_value(self, text: str, max_topics: int = 5, similarity_threshold: float = 0.3) -> int:
"""计算输入文本对记忆的激活程度"""
print(f"\033[1;32m[记忆激活]\033[0m 识别主题: {await self._identify_topics(text)}")
identified_topics = await self._identify_topics(text)
if not identified_topics:
return 0
all_similar_topics = self._find_similar_topics(
identified_topics,
similarity_threshold=similarity_threshold,
debug_info="记忆激活"
)
if not all_similar_topics:
return 0
top_topics = self._get_top_topics(all_similar_topics, max_topics)
if len(top_topics) == 1:
topic, score = top_topics[0]
memory_items = self.memory_graph.G.nodes[topic].get('memory_items', [])
if not isinstance(memory_items, list):
memory_items = [memory_items] if memory_items else []
content_count = len(memory_items)
penalty = 1.0 / (1 + math.log(content_count + 1))
activation = int(score * 50 * penalty)
print(f"\033[1;32m[记忆激活]\033[0m 单主题「{topic}」- 相似度: {score:.3f}, 内容数: {content_count}, 激活值: {activation}")
return activation
matched_topics = set()
topic_similarities = {}
for memory_topic, similarity in top_topics:
memory_items = self.memory_graph.G.nodes[memory_topic].get('memory_items', [])
if not isinstance(memory_items, list):
memory_items = [memory_items] if memory_items else []
content_count = len(memory_items)
penalty = 1.0 / (1 + math.log(content_count + 1))
for input_topic in identified_topics:
topic_vector = text_to_vector(input_topic)
memory_vector = text_to_vector(memory_topic)
all_words = set(topic_vector.keys()) | set(memory_vector.keys())
v1 = [topic_vector.get(word, 0) for word in all_words]
v2 = [memory_vector.get(word, 0) for word in all_words]
sim = cosine_similarity(v1, v2)
if sim >= similarity_threshold:
matched_topics.add(input_topic)
adjusted_sim = sim * penalty
topic_similarities[input_topic] = max(topic_similarities.get(input_topic, 0), adjusted_sim)
print(f"\033[1;32m[记忆激活]\033[0m 主题「{input_topic}」-> 「{memory_topic}」(内容数: {content_count}, 相似度: {adjusted_sim:.3f})")
topic_match = len(matched_topics) / len(identified_topics)
average_similarities = sum(topic_similarities.values()) / len(topic_similarities) if topic_similarities else 0
activation = int((topic_match + average_similarities) / 2 * 100)
print(f"\033[1;32m[记忆激活]\033[0m 匹配率: {topic_match:.3f}, 平均相似度: {average_similarities:.3f}, 激活值: {activation}")
return activation
async def get_relevant_memories(self, text: str, max_topics: int = 5, similarity_threshold: float = 0.4, max_memory_num: int = 5) -> list:
"""根据输入文本获取相关的记忆内容"""
identified_topics = await self._identify_topics(text)
all_similar_topics = self._find_similar_topics(
identified_topics,
similarity_threshold=similarity_threshold,
debug_info="记忆检索"
)
relevant_topics = self._get_top_topics(all_similar_topics, max_topics)
relevant_memories = []
for topic, score in relevant_topics:
first_layer, _ = self.memory_graph.get_related_item(topic, depth=1)
if first_layer:
if len(first_layer) > max_memory_num/2:
first_layer = random.sample(first_layer, max_memory_num//2)
for memory in first_layer:
relevant_memories.append({
'topic': topic,
'similarity': score,
'content': memory
})
relevant_memories.sort(key=lambda x: x['similarity'], reverse=True)
if len(relevant_memories) > max_memory_num:
relevant_memories = random.sample(relevant_memories, max_memory_num)
return relevant_memories
def segment_text(text):
"""使用jieba进行文本分词"""
seg_text = list(jieba.cut(text))
return seg_text
def text_to_vector(text):
"""将文本转换为词频向量"""
words = segment_text(text)
vector = {}
for word in words:
vector[word] = vector.get(word, 0) + 1
return vector
def cosine_similarity(v1, v2):
"""计算两个向量的余弦相似度"""
dot_product = sum(a * b for a, b in zip(v1, v2))
norm1 = math.sqrt(sum(a * a for a in v1))
norm2 = math.sqrt(sum(b * b for b in v2))
if norm1 == 0 or norm2 == 0:
return 0
return dot_product / (norm1 * norm2)
def visualize_graph_lite(memory_graph: Memory_graph, color_by_memory: bool = False):
# 设置中文字体