v0.4.0 支持任意替换的模型,改进配置文件

好好好好好好好好好
This commit is contained in:
SengokuCola
2025-03-02 23:51:47 +08:00
parent 65d983f37f
commit 6462c3b360
16 changed files with 459 additions and 644 deletions

View File

@@ -1,10 +1,10 @@
import datetime
import os
from typing import List, Dict
from .schedule_llm_module import LLMModel
from ...common.database import Database # 使用正确的导入语法
from src.plugins.chat.config import global_config
from nonebot import get_driver
from ..models.utils_model import LLM_request
driver = get_driver()
config = driver.config
@@ -21,22 +21,27 @@ Database.initialize(
class ScheduleGenerator:
def __init__(self):
if global_config.API_USING == "siliconflow":
self.llm_scheduler = LLMModel(model_name=global_config.SILICONFLOW_MODEL_V3)
elif global_config.API_USING == "deepseek":
self.llm_scheduler = LLMModel(model_name=global_config.DEEPSEEK_MODEL_V3)
#根据global_config.llm_normal这一字典配置指定模型
# self.llm_scheduler = LLMModel(model = global_config.llm_normal,temperature=0.9)
self.llm_scheduler = LLM_request(model = global_config.llm_normal,temperature=0.9)
self.db = Database.get_instance()
self.today_schedule_text = ""
self.today_schedule = {}
self.tomorrow_schedule_text = ""
self.tomorrow_schedule = {}
self.yesterday_schedule_text = ""
self.yesterday_schedule = {}
async def initialize(self):
today = datetime.datetime.now()
tomorrow = datetime.datetime.now() + datetime.timedelta(days=1)
yesterday = datetime.datetime.now() - datetime.timedelta(days=1)
self.today_schedule_text, self.today_schedule = self.generate_daily_schedule(target_date=today)
self.tomorrow_schedule_text, self.tomorrow_schedule = self.generate_daily_schedule(target_date=tomorrow,read_only=True)
self.yesterday_schedule_text, self.yesterday_schedule = self.generate_daily_schedule(target_date=yesterday,read_only=True)
self.today_schedule_text, self.today_schedule = await self.generate_daily_schedule(target_date=today)
self.tomorrow_schedule_text, self.tomorrow_schedule = await self.generate_daily_schedule(target_date=tomorrow,read_only=True)
self.yesterday_schedule_text, self.yesterday_schedule = await self.generate_daily_schedule(target_date=yesterday,read_only=True)
def generate_daily_schedule(self, target_date: datetime.datetime = None,read_only:bool = False) -> Dict[str, str]:
async def generate_daily_schedule(self, target_date: datetime.datetime = None,read_only:bool = False) -> Dict[str, str]:
if target_date is None:
target_date = datetime.datetime.now()
@@ -60,7 +65,7 @@ class ScheduleGenerator:
3. 晚上的计划和休息时间
请按照时间顺序列出具体时间点和对应的活动,用一个时间点而不是时间段来表示时间,用逗号,隔开时间与活动,格式为"时间,活动",例如"08:00,起床""""
schedule_text, _ = self.llm_scheduler.generate_response(prompt)
schedule_text, _ = await self.llm_scheduler.generate_response(prompt)
# print(self.schedule_text)
self.db.db.schedule.insert_one({"date": date_str, "schedule": schedule_text})
else:

View File

@@ -1,61 +0,0 @@
import os
import requests
import aiohttp
from typing import Tuple, Union
from nonebot import get_driver
from src.plugins.chat.config import global_config
driver = get_driver()
config = driver.config
class LLMModel:
# def __init__(self, model_name="deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", **kwargs):
def __init__(self, model_name=global_config.SILICONFLOW_MODEL_R1,api_using=None, **kwargs):
if api_using == "deepseek":
self.api_key = config.deep_seek_key
self.base_url = config.deep_seek_base_url
self.model_name = global_config.DEEPSEEK_MODEL_R1
else:
self.api_key = config.siliconflow_key
self.base_url = config.siliconflow_base_url
self.model_name = model_name
self.params = kwargs
def generate_response(self, prompt: str) -> Tuple[str, str]:
"""根据输入的提示生成模型的响应"""
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
# 构建请求体
data = {
"model": self.model_name,
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.9,
**self.params
}
# 发送请求到完整的chat/completions端点
api_url = f"{self.base_url.rstrip('/')}/chat/completions"
try:
response = requests.post(api_url, headers=headers, json=data)
response.raise_for_status() # 检查响应状态
result = response.json()
if "choices" in result and len(result["choices"]) > 0:
content = result["choices"][0]["message"]["content"]
reasoning_content = result["choices"][0]["message"].get("reasoning_content", "")
return content, reasoning_content # 返回内容和推理内容
return "没有返回结果", "" # 返回两个值
except Exception as e:
return f"请求失败: {str(e)}", "" # 返回错误信息和空字符串
# 示例用法
if __name__ == "__main__":
model = LLMModel() # 默认使用 DeepSeek-V3 模型
prompt = "你好,你喜欢我吗?"
result, reasoning = model.generate_response(prompt)
print("回复内容:", result)
print("推理内容:", reasoning)