Merge pull request #1115 from Windpicker-owo/dev

增加对语音消息的支持
This commit is contained in:
SengokuCola
2025-07-18 13:12:59 +08:00
committed by GitHub
5 changed files with 161 additions and 23 deletions

View File

@@ -9,6 +9,7 @@ from maim_message import Seg, UserInfo, BaseMessageInfo, MessageBase
from src.common.logger import get_logger
from src.chat.utils.utils_image import get_image_manager
from src.chat.utils.utils_voice import get_voice_text
from .chat_stream import ChatStream
install(extra_lines=3)
@@ -106,6 +107,7 @@ class MessageRecv(Message):
self.has_emoji = False
self.is_picid = False
self.has_picid = False
self.is_voice = False
self.is_mentioned = None
self.is_command = False
@@ -153,17 +155,27 @@ class MessageRecv(Message):
self.has_emoji = True
self.is_emoji = True
self.is_picid = False
self.is_voice = False
if isinstance(segment.data, str):
return await get_image_manager().get_emoji_description(segment.data)
return "[发了一个表情包,网卡了加载不出来]"
elif segment.type == "voice":
self.is_picid = False
self.is_emoji = False
self.is_voice = True
if isinstance(segment.data, str):
return await get_voice_text(segment.data)
return "[发了一段语音,网卡了加载不出来]"
elif segment.type == "mention_bot":
self.is_picid = False
self.is_emoji = False
self.is_voice = False
self.is_mentioned = float(segment.data) # type: ignore
return ""
elif segment.type == "priority_info":
self.is_picid = False
self.is_emoji = False
self.is_voice = False
if isinstance(segment.data, dict):
# 处理优先级信息
self.priority_mode = "priority"
@@ -212,10 +224,12 @@ class MessageRecvS4U(MessageRecv):
"""
try:
if segment.type == "text":
self.is_voice = False
self.is_picid = False
self.is_emoji = False
return segment.data # type: ignore
elif segment.type == "image":
self.is_voice = False
# 如果是base64图片数据
if isinstance(segment.data, str):
self.has_picid = True
@@ -233,12 +247,22 @@ class MessageRecvS4U(MessageRecv):
if isinstance(segment.data, str):
return await get_image_manager().get_emoji_description(segment.data)
return "[发了一个表情包,网卡了加载不出来]"
elif segment.type == "voice":
self.has_picid = False
self.is_picid = False
self.is_emoji = False
self.is_voice = True
if isinstance(segment.data, str):
return await get_voice_text(segment.data)
return "[发了一段语音,网卡了加载不出来]"
elif segment.type == "mention_bot":
self.is_voice = False
self.is_picid = False
self.is_emoji = False
self.is_mentioned = float(segment.data) # type: ignore
return ""
elif segment.type == "priority_info":
self.is_voice = False
self.is_picid = False
self.is_emoji = False
if isinstance(segment.data, dict):
@@ -253,6 +277,7 @@ class MessageRecvS4U(MessageRecv):
"""
return ""
elif segment.type == "gift":
self.is_voice = False
self.is_gift = True
# 解析gift_info格式为"名称:数量"
name, count = segment.data.split(":", 1) # type: ignore
@@ -343,6 +368,10 @@ class MessageProcessBase(Message):
if isinstance(seg.data, str):
return await get_image_manager().get_emoji_description(seg.data)
return "[表情,网卡了加载不出来]"
elif seg.type == "voice":
if isinstance(seg.data, str):
return await get_voice_text(seg.data)
return "[发了一段语音,网卡了加载不出来]"
elif seg.type == "at":
return f"[@{seg.data}]"
elif seg.type == "reply":

View File

@@ -0,0 +1,35 @@
import base64
from src.config.config import global_config
from src.llm_models.utils_model import LLMRequest
from src.common.logger import get_logger
from rich.traceback import install
install(extra_lines=3)
logger = get_logger("chat_voice")
async def get_voice_text(voice_base64: str) -> str:
"""获取音频文件描述"""
if not global_config.chat.enable_asr:
logger.warning("语音识别未启用,无法处理语音消息")
return "[语音]"
try:
# 解码base64音频数据
# 确保base64字符串只包含ASCII字符
if isinstance(voice_base64, str):
voice_base64 = voice_base64.encode("ascii", errors="ignore").decode("ascii")
voice_bytes = base64.b64decode(voice_base64)
_llm = LLMRequest(model=global_config.model.voice, request_type="voice")
text = await _llm.generate_response_for_voice(voice_bytes)
if text is None:
logger.warning("未能生成语音文本")
return "[语音(文本生成失败)]"
logger.debug(f"描述是{text}")
return f"[语音:{text}]"
except Exception as e:
logger.error(f"语音转文字失败: {str(e)}")
return "[语音]"

View File

@@ -106,6 +106,9 @@ class ChatConfig(ConfigBase):
focus_value: float = 1.0
"""麦麦的专注思考能力越低越容易专注消耗token也越多"""
enable_asr: bool = False
"""是否启用语音识别"""
def get_current_talk_frequency(self, chat_stream_id: Optional[str] = None) -> float:
"""
根据当前时间和聊天流获取对应的 talk_frequency
@@ -630,6 +633,9 @@ class ModelConfig(ConfigBase):
vlm: dict[str, Any] = field(default_factory=lambda: {})
"""视觉语言模型配置"""
voice: dict[str, Any] = field(default_factory=lambda: {})
"""语音识别模型配置"""
tool_use: dict[str, Any] = field(default_factory=lambda: {})
"""专注工具使用模型配置"""

View File

@@ -216,6 +216,8 @@ class LLMRequest:
prompt: str = None,
image_base64: str = None,
image_format: str = None,
file_bytes: bytes = None,
file_format: str = None,
payload: dict = None,
retry_policy: dict = None,
) -> Dict[str, Any]:
@@ -225,6 +227,8 @@ class LLMRequest:
prompt: prompt文本
image_base64: 图片的base64编码
image_format: 图片格式
file_bytes: 文件的二进制数据
file_format: 文件格式
payload: 请求体数据
retry_policy: 自定义重试策略
request_type: 请求类型
@@ -246,9 +250,12 @@ class LLMRequest:
# 构建请求体
if image_base64:
payload = await self._build_payload(prompt, image_base64, image_format)
elif file_bytes:
payload = await self._build_formdata_payload(file_bytes, file_format)
elif payload is None:
payload = await self._build_payload(prompt)
if not file_bytes:
if stream_mode:
payload["stream"] = stream_mode
@@ -278,6 +285,8 @@ class LLMRequest:
"stream_mode": stream_mode,
"image_base64": image_base64, # 保留必要的exception处理所需的原始数据
"image_format": image_format,
"file_bytes": file_bytes,
"file_format": file_format,
"prompt": prompt,
}
@@ -287,6 +296,8 @@ class LLMRequest:
prompt: str = None,
image_base64: str = None,
image_format: str = None,
file_bytes: bytes = None,
file_format: str = None,
payload: dict = None,
retry_policy: dict = None,
response_handler: callable = None,
@@ -299,6 +310,8 @@ class LLMRequest:
prompt: prompt文本
image_base64: 图片的base64编码
image_format: 图片格式
file_bytes: 文件的二进制数据
file_format: 文件格式
payload: 请求体数据
retry_policy: 自定义重试策略
response_handler: 自定义响应处理器
@@ -307,25 +320,36 @@ class LLMRequest:
"""
# 获取请求配置
request_content = await self._prepare_request(
endpoint, prompt, image_base64, image_format, payload, retry_policy
endpoint, prompt, image_base64, image_format, file_bytes, file_format, payload, retry_policy
)
if request_type is None:
request_type = self.request_type
for retry in range(request_content["policy"]["max_retries"]):
try:
# 使用上下文管理器处理会话
headers = await self._build_headers()
if file_bytes:
headers = await self._build_headers(is_formdata=True)
else:
headers = await self._build_headers(is_formdata=False)
# 似乎是openai流式必须要的东西,不过阿里云的qwq-plus加了这个没有影响
if request_content["stream_mode"]:
headers["Accept"] = "text/event-stream"
async with aiohttp.ClientSession(connector=await get_tcp_connector()) as session:
post_kwargs = {"headers": headers}
#form-data数据上传方式不同
if file_bytes:
post_kwargs["data"] = request_content["payload"]
else:
post_kwargs["json"] = request_content["payload"]
async with session.post(
request_content["api_url"], headers=headers, json=request_content["payload"]
request_content["api_url"], **post_kwargs
) as response:
handled_result = await self._handle_response(
response, request_content, retry, response_handler, user_id, request_type, endpoint
)
return handled_result
except Exception as e:
handled_payload, count_delta = await self._handle_exception(e, retry, request_content)
retry += count_delta # 降级不计入重试次数
@@ -640,6 +664,33 @@ class LLMRequest:
new_params["max_completion_tokens"] = new_params.pop("max_tokens")
return new_params
async def _build_formdata_payload(self, file_bytes: bytes, file_format: str) -> aiohttp.FormData:
"""构建form-data请求体"""
# 目前只适配了音频文件
# 如果后续要支持其他类型的文件,可以在这里添加更多的处理逻辑
data = aiohttp.FormData()
content_type_list = {
"wav": "audio/wav",
"mp3": "audio/mpeg",
"ogg": "audio/ogg",
"flac": "audio/flac",
"aac": "audio/aac",
}
content_type = content_type_list.get(file_format)
if not content_type:
logger.warning(f"暂不支持的文件类型: {file_format}")
data.add_field(
"file",io.BytesIO(file_bytes),
filename=f"file.{file_format}",
content_type=f'{content_type}' # 根据实际文件类型设置
)
data.add_field(
"model", self.model_name
)
return data
async def _build_payload(self, prompt: str, image_base64: str = None, image_format: str = None) -> dict:
"""构建请求体"""
# 复制一份参数,避免直接修改 self.params
@@ -725,7 +776,8 @@ class LLMRequest:
return content, reasoning_content, tool_calls
else:
return content, reasoning_content
elif "text" in result and result["text"]:
return result["text"]
return "没有返回结果", ""
@staticmethod
@@ -739,11 +791,15 @@ class LLMRequest:
reasoning = ""
return content, reasoning
async def _build_headers(self, no_key: bool = False) -> dict:
async def _build_headers(self, no_key: bool = False, is_formdata: bool = False) -> dict:
"""构建请求头"""
if no_key:
if is_formdata:
return {"Authorization": "Bearer **********"}
return {"Authorization": "Bearer **********", "Content-Type": "application/json"}
else:
if is_formdata:
return {"Authorization": f"Bearer {self.api_key}"}
return {"Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json"}
# 防止小朋友们截图自己的key
@@ -761,6 +817,11 @@ class LLMRequest:
content, reasoning_content = response
return content, reasoning_content
async def generate_response_for_voice(self, voice_bytes: bytes) -> Tuple:
"""根据输入的语音文件生成模型的异步响应"""
response = await self._execute_request(endpoint="/audio/transcriptions",file_bytes=voice_bytes, file_format='wav')
return response
async def generate_response_async(self, prompt: str, **kwargs) -> Union[str, Tuple]:
"""异步方式根据输入的提示生成模型的响应"""
# 构建请求体不硬编码max_tokens

View File

@@ -87,6 +87,7 @@ talk_frequency_adjust = [
# - 时间支持跨天,例如 "00:10,0.3" 表示从凌晨0:10开始使用频率0.3
# - 系统会自动将 "platform:id:type" 转换为内部的哈希chat_id进行匹配
enable_asr = false # 是否启用语音识别,启用后麦麦可以通过语音输入进行对话,启用该功能需要配置语音识别模型[model.voice]
[message_receive]
# 以下是消息过滤,可以根据规则过滤特定消息,将不会读取这些消息
@@ -294,6 +295,12 @@ provider = "SILICONFLOW"
pri_in = 0.35
pri_out = 0.35
[model.voice] # 语音识别模型
name = "FunAudioLLM/SenseVoiceSmall"
provider = "SILICONFLOW"
pri_in = 0
pri_out = 0
[model.tool_use] #工具调用模型,需要使用支持工具调用的模型
name = "Qwen/Qwen3-14B"
provider = "SILICONFLOW"