refactor(chat): 异步化聊天系统并重构兴趣值计算机制

将同步调用改为异步调用以提升性能,重构兴趣值计算流程以支持更灵活的组件化架构。主要改进包括:

- 异步化ChatManager相关方法,避免阻塞主线程
- 重构兴趣值计算系统,从插件内部计算改为通过兴趣管理器统一处理
- 新增should_act字段支持更细粒度的动作决策
- 优化初始化逻辑,避免构造函数中的异步操作
- 扩展插件系统支持兴趣计算器组件注册
- 更新数据库模型以支持新的兴趣值相关字段

这些改进提升了系统的响应性能和可扩展性,同时保持了API的向后兼容性。
This commit is contained in:
Windpicker-owo
2025-10-05 01:25:52 +08:00
parent 49025a4973
commit 624298e1b8
38 changed files with 1493 additions and 259 deletions

View File

@@ -229,11 +229,21 @@ class DefaultReplyer:
):
self.express_model = LLMRequest(model_set=model_config.model_task_config.replyer, request_type=request_type)
self.chat_stream = chat_stream
self.is_group_chat, self.chat_target_info = get_chat_type_and_target_info(self.chat_stream.stream_id)
# 这些将在异步初始化中设置
self.is_group_chat = False
self.chat_target_info = None
self._chat_info_initialized = False
self.heart_fc_sender = HeartFCSender()
# 使用新的增强记忆系统
# from src.chat.memory_system.enhanced_memory_activator import EnhancedMemoryActivator
self._chat_info_initialized = False
async def _initialize_chat_info(self):
"""异步初始化聊天信息"""
if not self._chat_info_initialized:
self.is_group_chat, self.chat_target_info = await get_chat_type_and_target_info(self.chat_stream.stream_id)
self._chat_info_initialized = True
# self.memory_activator = EnhancedMemoryActivator()
self.memory_activator = None # 暂时禁用记忆激活器
# 旧的即时记忆系统已被移除,现在使用增强记忆系统
@@ -267,6 +277,9 @@ class DefaultReplyer:
Returns:
Tuple[bool, Optional[Dict[str, Any]], Optional[str]]: (是否成功, 生成的回复, 使用的prompt)
"""
# 初始化聊天信息
await self._initialize_chat_info()
prompt = None
if available_actions is None:
available_actions = {}
@@ -810,7 +823,7 @@ class DefaultReplyer:
from src.plugin_system.apis.chat_api import get_chat_manager
chat_manager = get_chat_manager()
chat_stream = chat_manager.get_stream(chat_id)
chat_stream = await chat_manager.get_stream(chat_id)
if chat_stream:
stream_context = chat_stream.context_manager
# 使用真正的已读和未读消息
@@ -1000,47 +1013,24 @@ class DefaultReplyer:
return read_history_prompt, unread_history_prompt
async def _get_interest_scores_for_messages(self, messages: list[dict]) -> dict[str, float]:
"""为消息获取兴趣度评分"""
"""为消息获取兴趣度评分(使用预计算的兴趣值)"""
interest_scores = {}
try:
from src.common.data_models.database_data_model import DatabaseMessages
from src.plugins.built_in.affinity_flow_chatter.interest_scoring import (
chatter_interest_scoring_system as interest_scoring_system,
)
# 转换消息格式
db_messages = []
# 直接使用消息中的预计算兴趣值
for msg_dict in messages:
try:
db_msg = DatabaseMessages(
message_id=msg_dict.get("message_id", ""),
time=msg_dict.get("time", time.time()),
chat_id=msg_dict.get("chat_id", ""),
processed_plain_text=msg_dict.get("processed_plain_text", ""),
user_id=msg_dict.get("user_id", ""),
user_nickname=msg_dict.get("user_nickname", ""),
user_platform=msg_dict.get("platform", "qq"),
chat_info_group_id=msg_dict.get("group_id", ""),
chat_info_group_name=msg_dict.get("group_name", ""),
chat_info_group_platform=msg_dict.get("platform", "qq"),
)
db_messages.append(db_msg)
except Exception as e:
logger.warning(f"转换消息格式失败: {e}")
continue
message_id = msg_dict.get("message_id", "")
interest_value = msg_dict.get("interest_value")
# 计算兴趣度评分
if db_messages:
bot_nickname = global_config.bot.nickname or "麦麦"
scores = await interest_scoring_system.calculate_interest_scores(db_messages, bot_nickname)
# 构建兴趣度字典
for score in scores:
interest_scores[score.message_id] = score.total_score
if interest_value is not None:
interest_scores[message_id] = float(interest_value)
logger.debug(f"使用预计算兴趣度 - 消息 {message_id}: {interest_value:.3f}")
else:
interest_scores[message_id] = 0.5 # 默认值
logger.debug(f"消息 {message_id} 无预计算兴趣值,使用默认值 0.5")
except Exception as e:
logger.warning(f"获取兴趣度评分失败: {e}")
logger.warning(f"处理预计算兴趣值失败: {e}")
return interest_scores