llm_api_doc
This commit is contained in:
@@ -6,239 +6,34 @@ LLM API模块提供与大语言模型交互的功能,让插件能够使用系
|
||||
|
||||
```python
|
||||
from src.plugin_system.apis import llm_api
|
||||
# 或者
|
||||
from src.plugin_system import llm_api
|
||||
```
|
||||
|
||||
## 主要功能
|
||||
|
||||
### 1. 模型管理
|
||||
|
||||
#### `get_available_models() -> Dict[str, Any]`
|
||||
获取所有可用的模型配置
|
||||
|
||||
**返回:**
|
||||
- `Dict[str, Any]`:模型配置字典,key为模型名称,value为模型配置
|
||||
|
||||
**示例:**
|
||||
### 1. 查询可用模型
|
||||
```python
|
||||
models = llm_api.get_available_models()
|
||||
for model_name, model_config in models.items():
|
||||
print(f"模型: {model_name}")
|
||||
print(f"配置: {model_config}")
|
||||
def get_available_models() -> Dict[str, Any]:
|
||||
```
|
||||
获取所有可用的模型配置。
|
||||
|
||||
### 2. 内容生成
|
||||
**Return:**
|
||||
- `Dict[str, Any]`:模型配置字典,key为模型名称,value为模型配置。
|
||||
|
||||
#### `generate_with_model(prompt, model_config, request_type="plugin.generate", **kwargs)`
|
||||
使用指定模型生成内容
|
||||
|
||||
**参数:**
|
||||
- `prompt`:提示词
|
||||
- `model_config`:模型配置(从 get_available_models 获取)
|
||||
- `request_type`:请求类型标识
|
||||
- `**kwargs`:其他模型特定参数,如temperature、max_tokens等
|
||||
|
||||
**返回:**
|
||||
- `Tuple[bool, str, str, str]`:(是否成功, 生成的内容, 推理过程, 模型名称)
|
||||
|
||||
**示例:**
|
||||
### 2. 使用模型生成内容
|
||||
```python
|
||||
models = llm_api.get_available_models()
|
||||
default_model = models.get("default")
|
||||
|
||||
if default_model:
|
||||
success, response, reasoning, model_name = await llm_api.generate_with_model(
|
||||
prompt="请写一首关于春天的诗",
|
||||
model_config=default_model,
|
||||
temperature=0.7,
|
||||
max_tokens=200
|
||||
)
|
||||
|
||||
if success:
|
||||
print(f"生成内容: {response}")
|
||||
print(f"使用模型: {model_name}")
|
||||
async def generate_with_model(
|
||||
prompt: str, model_config: Dict[str, Any], request_type: str = "plugin.generate", **kwargs
|
||||
) -> Tuple[bool, str]:
|
||||
```
|
||||
使用指定模型生成内容。
|
||||
|
||||
## 使用示例
|
||||
**Args:**
|
||||
- `prompt`:提示词。
|
||||
- `model_config`:模型配置(从 `get_available_models` 获取)。
|
||||
- `request_type`:请求类型标识,默认为 `"plugin.generate"`。
|
||||
- `**kwargs`:其他模型特定参数,如 `temperature`、`max_tokens` 等。
|
||||
|
||||
### 1. 基础文本生成
|
||||
|
||||
```python
|
||||
from src.plugin_system.apis import llm_api
|
||||
|
||||
async def generate_story(topic: str):
|
||||
"""生成故事"""
|
||||
models = llm_api.get_available_models()
|
||||
model = models.get("default")
|
||||
|
||||
if not model:
|
||||
return "未找到可用模型"
|
||||
|
||||
prompt = f"请写一个关于{topic}的短故事,大约100字左右。"
|
||||
|
||||
success, story, reasoning, model_name = await llm_api.generate_with_model(
|
||||
prompt=prompt,
|
||||
model_config=model,
|
||||
request_type="story.generate",
|
||||
temperature=0.8,
|
||||
max_tokens=150
|
||||
)
|
||||
|
||||
return story if success else "故事生成失败"
|
||||
```
|
||||
|
||||
### 2. 在Action中使用LLM
|
||||
|
||||
```python
|
||||
from src.plugin_system.base import BaseAction
|
||||
|
||||
class LLMAction(BaseAction):
|
||||
async def execute(self, action_data, chat_stream):
|
||||
# 获取用户输入
|
||||
user_input = action_data.get("user_message", "")
|
||||
intent = action_data.get("intent", "chat")
|
||||
|
||||
# 获取模型配置
|
||||
models = llm_api.get_available_models()
|
||||
model = models.get("default")
|
||||
|
||||
if not model:
|
||||
return {"success": False, "error": "未配置LLM模型"}
|
||||
|
||||
# 构建提示词
|
||||
prompt = self.build_prompt(user_input, intent)
|
||||
|
||||
# 生成回复
|
||||
success, response, reasoning, model_name = await llm_api.generate_with_model(
|
||||
prompt=prompt,
|
||||
model_config=model,
|
||||
request_type=f"plugin.{self.plugin_name}",
|
||||
temperature=0.7
|
||||
)
|
||||
|
||||
if success:
|
||||
return {
|
||||
"success": True,
|
||||
"response": response,
|
||||
"model_used": model_name,
|
||||
"reasoning": reasoning
|
||||
}
|
||||
|
||||
return {"success": False, "error": response}
|
||||
|
||||
def build_prompt(self, user_input: str, intent: str) -> str:
|
||||
"""构建提示词"""
|
||||
base_prompt = "你是一个友善的AI助手。"
|
||||
|
||||
if intent == "question":
|
||||
return f"{base_prompt}\n\n用户问题:{user_input}\n\n请提供准确、有用的回答:"
|
||||
elif intent == "chat":
|
||||
return f"{base_prompt}\n\n用户说:{user_input}\n\n请进行自然的对话:"
|
||||
else:
|
||||
return f"{base_prompt}\n\n用户输入:{user_input}\n\n请回复:"
|
||||
```
|
||||
|
||||
### 3. 多模型对比
|
||||
|
||||
```python
|
||||
async def compare_models(prompt: str):
|
||||
"""使用多个模型生成内容并对比"""
|
||||
models = llm_api.get_available_models()
|
||||
results = {}
|
||||
|
||||
for model_name, model_config in models.items():
|
||||
success, response, reasoning, actual_model = await llm_api.generate_with_model(
|
||||
prompt=prompt,
|
||||
model_config=model_config,
|
||||
request_type="comparison.test"
|
||||
)
|
||||
|
||||
results[model_name] = {
|
||||
"success": success,
|
||||
"response": response,
|
||||
"model": actual_model,
|
||||
"reasoning": reasoning
|
||||
}
|
||||
|
||||
return results
|
||||
```
|
||||
|
||||
### 4. 智能对话插件
|
||||
|
||||
```python
|
||||
class ChatbotPlugin(BasePlugin):
|
||||
async def handle_action(self, action_data, chat_stream):
|
||||
user_message = action_data.get("message", "")
|
||||
|
||||
# 获取历史对话上下文
|
||||
context = self.get_conversation_context(chat_stream)
|
||||
|
||||
# 构建对话提示词
|
||||
prompt = self.build_conversation_prompt(user_message, context)
|
||||
|
||||
# 获取模型配置
|
||||
models = llm_api.get_available_models()
|
||||
chat_model = models.get("chat", models.get("default"))
|
||||
|
||||
if not chat_model:
|
||||
return {"success": False, "message": "聊天模型未配置"}
|
||||
|
||||
# 生成回复
|
||||
success, response, reasoning, model_name = await llm_api.generate_with_model(
|
||||
prompt=prompt,
|
||||
model_config=chat_model,
|
||||
request_type="chat.conversation",
|
||||
temperature=0.8,
|
||||
max_tokens=500
|
||||
)
|
||||
|
||||
if success:
|
||||
# 保存对话历史
|
||||
self.save_conversation(chat_stream, user_message, response)
|
||||
|
||||
return {
|
||||
"success": True,
|
||||
"reply": response,
|
||||
"model": model_name
|
||||
}
|
||||
|
||||
return {"success": False, "message": "回复生成失败"}
|
||||
|
||||
def build_conversation_prompt(self, user_message: str, context: list) -> str:
|
||||
"""构建对话提示词"""
|
||||
prompt = "你是一个有趣、友善的聊天机器人。请自然地回复用户的消息。\n\n"
|
||||
|
||||
# 添加历史对话
|
||||
if context:
|
||||
prompt += "对话历史:\n"
|
||||
for msg in context[-5:]: # 只保留最近5条
|
||||
prompt += f"用户: {msg['user']}\n机器人: {msg['bot']}\n"
|
||||
prompt += "\n"
|
||||
|
||||
prompt += f"用户: {user_message}\n机器人: "
|
||||
return prompt
|
||||
```
|
||||
|
||||
## 模型配置说明
|
||||
|
||||
### 常用模型类型
|
||||
- `default`:默认模型
|
||||
- `chat`:聊天专用模型
|
||||
- `creative`:创意生成模型
|
||||
- `code`:代码生成模型
|
||||
|
||||
### 配置参数
|
||||
LLM模型支持的常用参数:
|
||||
- `temperature`:控制输出随机性(0.0-1.0)
|
||||
- `max_tokens`:最大生成长度
|
||||
- `top_p`:核采样参数
|
||||
- `frequency_penalty`:频率惩罚
|
||||
- `presence_penalty`:存在惩罚
|
||||
|
||||
## 注意事项
|
||||
|
||||
1. **异步操作**:LLM生成是异步的,必须使用`await`
|
||||
2. **错误处理**:生成失败时返回False和错误信息
|
||||
3. **配置依赖**:需要正确配置模型才能使用
|
||||
4. **请求类型**:建议为不同用途设置不同的request_type
|
||||
5. **性能考虑**:LLM调用可能较慢,考虑超时和缓存
|
||||
6. **成本控制**:注意控制max_tokens以控制成本
|
||||
**Return:**
|
||||
- `Tuple[bool, str]`:返回一个元组,第一个元素表示是否成功,第二个元素为生成的内容或错误信息。
|
||||
Reference in New Issue
Block a user