refactor(llm_models): 移除官方Gemini客户端并改用aiohttp实现

官方的 `google-generativeai` 库存在一些问题且似乎已不再积极维护,导致依赖关系和稳定性方面存在风险。

为提高稳定性和可维护性,现已移除基于该官方库的 `gemini_client.py` 实现。相应地,在配置文件模板中,`client_type` 已从 "gemini" 更新为 "aiohttp_gemini",以引导用户使用新的、基于 `aiohttp` 的异步客户端。
This commit is contained in:
minecraft1024a
2025-08-26 21:14:07 +08:00
parent 2db42292d2
commit 5f3329e7c9
2 changed files with 2 additions and 603 deletions

View File

@@ -1,601 +0,0 @@
import asyncio
import io
import base64
from typing import Callable, AsyncIterator, Optional, Coroutine, Any, List, Dict
import google.generativeai as genai
from google.generativeai.types import (
GenerateContentResponse,
HarmCategory,
HarmBlockThreshold,
)
try:
# 尝试从较新的API导入
from google.generativeai.types import SafetySetting, GenerationConfig
except ImportError:
# 回退到基本类型
SafetySetting = Dict
GenerationConfig = Dict
from src.config.api_ada_configs import ModelInfo, APIProvider
from src.common.logger import get_logger
from .base_client import APIResponse, UsageRecord, BaseClient, client_registry
from ..exceptions import (
RespParseException,
NetworkConnectionError,
RespNotOkException,
ReqAbortException,
)
from ..payload_content.message import Message, RoleType
from ..payload_content.resp_format import RespFormat, RespFormatType
from ..payload_content.tool_option import ToolOption, ToolParam, ToolCall
# 定义兼容性类型
ContentDict = Dict
PartDict = Dict
ToolDict = Dict
FunctionDeclaration = Dict
Tool = Dict
ContentListUnion = List[Dict]
ContentUnion = Dict
Content = Dict
Part = Dict
ThinkingConfig = Dict
GenerateContentConfig = Dict
EmbedContentConfig = Dict
EmbedContentResponse = Dict
# 定义异常类型
class ClientError(Exception):
pass
class ServerError(Exception):
pass
class UnknownFunctionCallArgumentError(Exception):
pass
class UnsupportedFunctionError(Exception):
pass
class FunctionInvocationError(Exception):
pass
logger = get_logger("Gemini客户端")
SAFETY_SETTINGS = [
{"category": HarmCategory.HARM_CATEGORY_HATE_SPEECH, "threshold": HarmBlockThreshold.BLOCK_NONE},
{"category": HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT, "threshold": HarmBlockThreshold.BLOCK_NONE},
{"category": HarmCategory.HARM_CATEGORY_HARASSMENT, "threshold": HarmBlockThreshold.BLOCK_NONE},
{"category": HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT, "threshold": HarmBlockThreshold.BLOCK_NONE},
]
def _convert_messages(
messages: list[Message],
) -> tuple[List[Dict], list[str] | None]:
"""
转换消息格式 - 将消息转换为Gemini API所需的格式
:param messages: 消息列表
:return: 转换后的消息列表(和可能存在的system消息)
"""
def _get_correct_mime_type(image_format: str) -> str:
"""
获取正确的MIME类型修复jpg到jpeg的映射问题
:param image_format: 图片格式
:return: 正确的MIME类型
"""
# 标准化格式名称解决jpg/jpeg兼容性问题
format_mapping = {
"jpg": "jpeg",
"jpeg": "jpeg",
"png": "png",
"webp": "webp",
"heic": "heic",
"heif": "heif",
"gif": "gif"
}
normalized_format = format_mapping.get(image_format.lower(), image_format.lower())
return f"image/{normalized_format}"
def _convert_message_item(message: Message) -> Dict:
"""
转换单个消息格式除了system和tool类型的消息
:param message: 消息对象
:return: 转换后的消息字典
"""
# 将openai格式的角色重命名为gemini格式的角色
if message.role == RoleType.Assistant:
role = "model"
elif message.role == RoleType.User:
role = "user"
# 添加Content
if isinstance(message.content, str):
content = [{"text": message.content}]
elif isinstance(message.content, list):
content = []
for item in message.content:
if isinstance(item, tuple):
content.append({
"inline_data": {
"mime_type": _get_correct_mime_type(item[0]),
"data": item[1]
}
})
elif isinstance(item, str):
content.append({"text": item})
else:
raise RuntimeError("无法触及的代码请使用MessageBuilder类构建消息对象")
return {"role": role, "parts": content}
temp_list: List[Dict] = []
system_instructions: list[str] = []
for message in messages:
if message.role == RoleType.System:
if isinstance(message.content, str):
system_instructions.append(message.content)
else:
raise ValueError("你tm怎么往system里面塞图片base64")
elif message.role == RoleType.Tool:
if not message.tool_call_id:
raise ValueError("无法触及的代码请使用MessageBuilder类构建消息对象")
else:
temp_list.append(_convert_message_item(message))
if system_instructions:
# 如果有system消息就把它加上去
ret: tuple = (temp_list, system_instructions)
else:
# 如果没有system消息就直接返回
ret: tuple = (temp_list, None)
return ret
def _convert_tool_options(tool_options: list[ToolOption]) -> list[FunctionDeclaration]:
"""
转换工具选项格式 - 将工具选项转换为Gemini API所需的格式
:param tool_options: 工具选项列表
:return: 转换后的工具对象列表
"""
def _convert_tool_param(tool_option_param: ToolParam) -> dict:
"""
转换单个工具参数格式
:param tool_option_param: 工具参数对象
:return: 转换后的工具参数字典
"""
return_dict: dict[str, Any] = {
"type": tool_option_param.param_type.value,
"description": tool_option_param.description,
}
if tool_option_param.enum_values:
return_dict["enum"] = tool_option_param.enum_values
return return_dict
def _convert_tool_option_item(tool_option: ToolOption) -> FunctionDeclaration:
"""
转换单个工具项格式
:param tool_option: 工具选项对象
:return: 转换后的Gemini工具选项对象
"""
ret: dict[str, Any] = {
"name": tool_option.name,
"description": tool_option.description,
}
if tool_option.params:
ret["parameters"] = {
"type": "object",
"properties": {param.name: _convert_tool_param(param) for param in tool_option.params},
"required": [param.name for param in tool_option.params if param.required],
}
ret1 = FunctionDeclaration(**ret)
return ret1
return [_convert_tool_option_item(tool_option) for tool_option in tool_options]
def _process_delta(
delta: GenerateContentResponse,
fc_delta_buffer: io.StringIO,
tool_calls_buffer: list[tuple[str, str, dict[str, Any]]],
):
if not hasattr(delta, "candidates") or not delta.candidates:
raise RespParseException(delta, "响应解析失败缺失candidates字段")
if delta.text:
fc_delta_buffer.write(delta.text)
if delta.function_calls: # 为什么不用hasattr呢是因为这个属性一定有即使是个空的
for call in delta.function_calls:
try:
if not isinstance(call.args, dict): # gemini返回的function call参数就是dict格式的了
raise RespParseException(delta, "响应解析失败,工具调用参数无法解析为字典类型")
if not call.id or not call.name:
raise RespParseException(delta, "响应解析失败工具调用缺失id或name字段")
tool_calls_buffer.append(
(
call.id,
call.name,
call.args or {}, # 如果args是None则转换为一个空字典
)
)
except Exception as e:
raise RespParseException(delta, "响应解析失败,无法解析工具调用参数") from e
def _build_stream_api_resp(
_fc_delta_buffer: io.StringIO,
_tool_calls_buffer: list[tuple[str, str, dict]],
) -> APIResponse:
# sourcery skip: simplify-len-comparison, use-assigned-variable
resp = APIResponse()
if _fc_delta_buffer.tell() > 0:
# 如果正式内容缓冲区不为空则将其写入APIResponse对象
resp.content = _fc_delta_buffer.getvalue()
_fc_delta_buffer.close()
if len(_tool_calls_buffer) > 0:
# 如果工具调用缓冲区不为空则将其解析为ToolCall对象列表
resp.tool_calls = []
for call_id, function_name, arguments_buffer in _tool_calls_buffer:
if arguments_buffer is not None:
arguments = arguments_buffer
if not isinstance(arguments, dict):
raise RespParseException(
None,
f"响应解析失败,工具调用参数无法解析为字典类型。工具调用参数原始响应:\n{arguments_buffer}",
)
else:
arguments = None
resp.tool_calls.append(ToolCall(call_id, function_name, arguments))
return resp
async def _default_stream_response_handler(
resp_stream: AsyncIterator[GenerateContentResponse],
interrupt_flag: asyncio.Event | None,
) -> tuple[APIResponse, Optional[tuple[int, int, int]]]:
"""
流式响应处理函数 - 处理Gemini API的流式响应
:param resp_stream: 流式响应对象,是一个神秘的iterator我完全不知道这个玩意能不能跑不过遍历一遍之后它就空了如果跑不了一点的话可以考虑改成别的东西
:return: APIResponse对象
"""
_fc_delta_buffer = io.StringIO() # 正式内容缓冲区,用于存储接收到的正式内容
_tool_calls_buffer: list[tuple[str, str, dict]] = [] # 工具调用缓冲区,用于存储接收到的工具调用
_usage_record = None # 使用情况记录
def _insure_buffer_closed():
if _fc_delta_buffer and not _fc_delta_buffer.closed:
_fc_delta_buffer.close()
async for chunk in resp_stream:
# 检查是否有中断量
if interrupt_flag and interrupt_flag.is_set():
# 如果中断量被设置则抛出ReqAbortException
raise ReqAbortException("请求被外部信号中断")
_process_delta(
chunk,
_fc_delta_buffer,
_tool_calls_buffer,
)
if chunk.usage_metadata:
# 如果有使用情况则将其存储在APIResponse对象中
_usage_record = (
chunk.usage_metadata.prompt_token_count or 0,
(chunk.usage_metadata.candidates_token_count or 0) + (chunk.usage_metadata.thoughts_token_count or 0),
chunk.usage_metadata.total_token_count or 0,
)
try:
return _build_stream_api_resp(
_fc_delta_buffer,
_tool_calls_buffer,
), _usage_record
except Exception:
# 确保缓冲区被关闭
_insure_buffer_closed()
raise
def _default_normal_response_parser(
resp: GenerateContentResponse,
) -> tuple[APIResponse, Optional[tuple[int, int, int]]]:
"""
解析对话补全响应 - 将Gemini API响应解析为APIResponse对象
:param resp: 响应对象
:return: APIResponse对象
"""
api_response = APIResponse()
if not hasattr(resp, "candidates") or not resp.candidates:
raise RespParseException(resp, "响应解析失败缺失candidates字段")
try:
if resp.candidates[0].content and resp.candidates[0].content.parts:
for part in resp.candidates[0].content.parts:
if not part.text:
continue
if part.thought:
api_response.reasoning_content = (
api_response.reasoning_content + part.text if api_response.reasoning_content else part.text
)
except Exception as e:
logger.warning(f"解析思考内容时发生错误: {e},跳过解析")
if resp.text:
api_response.content = resp.text
if resp.function_calls:
api_response.tool_calls = []
for call in resp.function_calls:
try:
if not isinstance(call.args, dict):
raise RespParseException(resp, "响应解析失败,工具调用参数无法解析为字典类型")
if not call.name:
raise RespParseException(resp, "响应解析失败工具调用缺失name字段")
api_response.tool_calls.append(ToolCall(call.id or "gemini-tool_call", call.name, call.args or {}))
except Exception as e:
raise RespParseException(resp, "响应解析失败,无法解析工具调用参数") from e
if resp.usage_metadata:
_usage_record = (
resp.usage_metadata.prompt_token_count or 0,
(resp.usage_metadata.candidates_token_count or 0) + (resp.usage_metadata.thoughts_token_count or 0),
resp.usage_metadata.total_token_count or 0,
)
else:
_usage_record = None
api_response.raw_data = resp
return api_response, _usage_record
@client_registry.register_client_class("gemini")
class GeminiClient(BaseClient):
def __init__(self, api_provider: APIProvider):
super().__init__(api_provider)
# 配置 Google Generative AI
genai.configure(api_key=api_provider.api_key)
async def get_response(
self,
model_info: ModelInfo,
message_list: list[Message],
tool_options: list[ToolOption] | None = None,
max_tokens: int = 1024,
temperature: float = 0.4,
response_format: RespFormat | None = None,
stream_response_handler: Optional[
Callable[
[AsyncIterator[GenerateContentResponse], asyncio.Event | None],
Coroutine[Any, Any, tuple[APIResponse, Optional[tuple[int, int, int]]]],
]
] = None,
async_response_parser: Optional[
Callable[[GenerateContentResponse], tuple[APIResponse, Optional[tuple[int, int, int]]]]
] = None,
interrupt_flag: asyncio.Event | None = None,
extra_params: dict[str, Any] | None = None,
) -> APIResponse:
"""
获取对话响应
Args:
model_info: 模型信息
message_list: 对话体
tool_options: 工具选项可选默认为None
max_tokens: 最大token数可选默认为1024
temperature: 温度可选默认为0.7
response_format: 响应格式默认为text/plain,如果是输入的JSON Schema则必须遵守OpenAPI3.0格式,理论上和openai是一样的暂不支持其它相应格式输入
stream_response_handler: 流式响应处理函数可选默认为default_stream_response_handler
async_response_parser: 响应解析函数可选默认为default_response_parser
interrupt_flag: 中断信号量可选默认为None
Returns:
APIResponse对象包含响应内容、推理内容、工具调用等信息
"""
if stream_response_handler is None:
stream_response_handler = _default_stream_response_handler
if async_response_parser is None:
async_response_parser = _default_normal_response_parser
# 将messages构造为Gemini API所需的格式
messages = _convert_messages(message_list)
# 将tool_options转换为Gemini API所需的格式
tools = _convert_tool_options(tool_options) if tool_options else None
# 将response_format转换为Gemini API所需的格式
generation_config_dict = {
"max_output_tokens": max_tokens,
"temperature": temperature,
"response_modalities": ["TEXT"],
"thinking_config": {
"include_thoughts": True,
"thinking_budget": (
extra_params["thinking_budget"]
if extra_params and "thinking_budget" in extra_params
else int(max_tokens / 2) # 默认思考预算为最大token数的一半防止空回复
),
},
"safety_settings": SAFETY_SETTINGS, # 防止空回复问题
}
if tools:
generation_config_dict["tools"] = {"function_declarations": tools}
if messages[1]:
# 如果有system消息则将其添加到配置中
generation_config_dict["system_instructions"] = messages[1]
if response_format and response_format.format_type == RespFormatType.TEXT:
generation_config_dict["response_mime_type"] = "text/plain"
elif response_format and response_format.format_type in (RespFormatType.JSON_OBJ, RespFormatType.JSON_SCHEMA):
generation_config_dict["response_mime_type"] = "application/json"
generation_config_dict["response_schema"] = response_format.to_dict()
generation_config = generation_config_dict
try:
# 创建模型实例
model = genai.GenerativeModel(model_info.model_identifier)
if model_info.force_stream_mode:
req_task = asyncio.create_task(
model.generate_content_async(
contents=messages[0],
generation_config=generation_config,
stream=True
)
)
while not req_task.done():
if interrupt_flag and interrupt_flag.is_set():
# 如果中断量存在且被设置,则取消任务并抛出异常
req_task.cancel()
raise ReqAbortException("请求被外部信号中断")
await asyncio.sleep(0.1) # 等待0.1秒后再次检查任务&中断信号量状态
resp, usage_record = await stream_response_handler(req_task.result(), interrupt_flag)
else:
req_task = asyncio.create_task(
model.generate_content_async(
contents=messages[0],
generation_config=generation_config
)
)
while not req_task.done():
if interrupt_flag and interrupt_flag.is_set():
# 如果中断量存在且被设置,则取消任务并抛出异常
req_task.cancel()
raise ReqAbortException("请求被外部信号中断")
await asyncio.sleep(0.5) # 等待0.5秒后再次检查任务&中断信号量状态
resp, usage_record = async_response_parser(req_task.result())
except Exception as e:
# 处理Google Generative AI异常
if "rate limit" in str(e).lower():
raise RespNotOkException(429, "请求频率过高,请稍后再试") from None
elif "quota" in str(e).lower():
raise RespNotOkException(429, "配额已用完") from None
elif "invalid" in str(e).lower() or "bad request" in str(e).lower():
raise RespNotOkException(400, f"请求无效:{str(e)}") from None
elif "permission" in str(e).lower() or "forbidden" in str(e).lower():
raise RespNotOkException(403, "权限不足") from None
else:
raise NetworkConnectionError() from e
if usage_record:
resp.usage = UsageRecord(
model_name=model_info.name,
provider_name=model_info.api_provider,
prompt_tokens=usage_record[0],
completion_tokens=usage_record[1],
total_tokens=usage_record[2],
)
return resp
async def get_embedding(
self,
model_info: ModelInfo,
embedding_input: str,
extra_params: dict[str, Any] | None = None,
) -> APIResponse:
"""
获取文本嵌入
:param model_info: 模型信息
:param embedding_input: 嵌入输入文本
:return: 嵌入响应
"""
try:
raw_response: EmbedContentResponse = await self.client.aio.models.embed_content(
model=model_info.model_identifier,
contents=embedding_input,
config=EmbedContentConfig(task_type="SEMANTIC_SIMILARITY"),
)
except (ClientError, ServerError) as e:
# 重封装ClientError和ServerError为RespNotOkException
raise RespNotOkException(e.code) from None
except Exception as e:
raise NetworkConnectionError() from e
response = APIResponse()
# 解析嵌入响应和使用情况
if hasattr(raw_response, "embeddings") and raw_response.embeddings:
response.embedding = raw_response.embeddings[0].values
else:
raise RespParseException(raw_response, "响应解析失败缺失embeddings字段")
response.usage = UsageRecord(
model_name=model_info.name,
provider_name=model_info.api_provider,
prompt_tokens=len(embedding_input),
completion_tokens=0,
total_tokens=len(embedding_input),
)
return response
def get_audio_transcriptions(
self, model_info: ModelInfo, audio_base64: str, extra_params: dict[str, Any] | None = None
) -> APIResponse:
"""
获取音频转录
:param model_info: 模型信息
:param audio_base64: 音频文件的Base64编码字符串
:param extra_params: 额外参数(可选)
:return: 转录响应
"""
generation_config_dict = {
"max_output_tokens": 2048,
"response_modalities": ["TEXT"],
"thinking_config": ThinkingConfig(
include_thoughts=True,
thinking_budget=(
extra_params["thinking_budget"] if extra_params and "thinking_budget" in extra_params else 1024
),
),
"safety_settings": SAFETY_SETTINGS,
}
generate_content_config = GenerateContentConfig(**generation_config_dict)
prompt = "Generate a transcript of the speech. The language of the transcript should **match the language of the speech**."
try:
raw_response: GenerateContentResponse = self.client.models.generate_content(
model=model_info.model_identifier,
contents=[
Content(
role="user",
parts=[
Part.from_text(text=prompt),
Part.from_bytes(data=base64.b64decode(audio_base64), mime_type="audio/wav"),
],
)
],
config=generate_content_config,
)
resp, usage_record = _default_normal_response_parser(raw_response)
except (ClientError, ServerError) as e:
# 重封装ClientError和ServerError为RespNotOkException
raise RespNotOkException(e.code) from None
except Exception as e:
raise NetworkConnectionError() from e
if usage_record:
resp.usage = UsageRecord(
model_name=model_info.name,
provider_name=model_info.api_provider,
prompt_tokens=usage_record[0],
completion_tokens=usage_record[1],
total_tokens=usage_record[2],
)
return resp
def get_support_image_formats(self) -> list[str]:
"""
获取支持的图片格式
:return: 支持的图片格式列表
"""
return ["png", "jpg", "jpeg", "webp", "heic", "heif"]

View File

@@ -1,5 +1,5 @@
[inner]
version = "1.2.7"
version = "1.2.8"
# 配置文件版本号迭代规则同bot_config.toml
@@ -25,7 +25,7 @@ retry_interval = 10
name = "Google"
base_url = "https://api.google.com/v1"
api_key = "your-google-api-key-1"
client_type = "gemini"
client_type = "aiohttp_gemini" # 官方的gemini客户端现在已经死了
max_retry = 2
timeout = 30
retry_interval = 10