fix:优化关系构建频率

This commit is contained in:
SengokuCola
2025-06-16 18:17:19 +08:00
parent 9b7066109d
commit 5ef6be3be2
8 changed files with 409 additions and 214 deletions

View File

@@ -1183,3 +1183,4 @@ def main():
if __name__ == "__main__": if __name__ == "__main__":
main() main()

View File

@@ -341,7 +341,7 @@ class HeartFChatting:
}, },
"observed_messages": "", "observed_messages": "",
}, },
"loop_action_info": {"action_taken": False, "reply_text": "", "command": ""}, "loop_action_info": {"action_taken": False, "reply_text": "", "command": "", "taken_time": time.time()},
} }
self._current_cycle_detail.set_loop_info(error_loop_info) self._current_cycle_detail.set_loop_info(error_loop_info)
self._current_cycle_detail.complete_cycle() self._current_cycle_detail.complete_cycle()
@@ -420,7 +420,7 @@ class HeartFChatting:
}, },
"observed_messages": "", "observed_messages": "",
}, },
"loop_action_info": {"action_taken": False, "reply_text": "", "command": ""}, "loop_action_info": {"action_taken": False, "reply_text": "", "command": "", "taken_time": time.time()},
} }
try: try:
self._current_cycle_detail.set_loop_info(error_loop_info) self._current_cycle_detail.set_loop_info(error_loop_info)
@@ -626,7 +626,7 @@ class HeartFChatting:
"action_result": {"action_type": "error", "action_data": {}, "reasoning": f"处理失败: {e}"}, "action_result": {"action_type": "error", "action_data": {}, "reasoning": f"处理失败: {e}"},
"observed_messages": "", "observed_messages": "",
}, },
"loop_action_info": {"action_taken": False, "reply_text": "", "command": ""}, "loop_action_info": {"action_taken": False, "reply_text": "", "command": "", "taken_time": time.time()},
} }
async def _handle_action( async def _handle_action(

View File

@@ -1,3 +1,4 @@
from reportportal_client import current
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
from src.chat.heart_flow.observation.observation import Observation from src.chat.heart_flow.observation.observation import Observation
from src.llm_models.utils_model import LLMRequest from src.llm_models.utils_model import LLMRequest
@@ -114,7 +115,8 @@ class RelationshipProcessor(BaseProcessor):
self.cache_file_path = os.path.join("data", f"relationship_cache_{self.subheartflow_id}.pkl") self.cache_file_path = os.path.join("data", f"relationship_cache_{self.subheartflow_id}.pkl")
# 最后处理的消息时间,避免重复处理相同消息 # 最后处理的消息时间,避免重复处理相同消息
self.last_processed_message_time = 0.0 current_time = time.time()
self.last_processed_message_time = current_time
# 最后清理时间,用于定期清理老消息段 # 最后清理时间,用于定期清理老消息段
self.last_cleanup_time = 0.0 self.last_cleanup_time = 0.0
@@ -148,16 +150,11 @@ class RelationshipProcessor(BaseProcessor):
try: try:
with open(self.cache_file_path, 'rb') as f: with open(self.cache_file_path, 'rb') as f:
cache_data = pickle.load(f) cache_data = pickle.load(f)
if isinstance(cache_data, dict) and 'person_engaged_cache' in cache_data:
# 新格式:包含额外信息的缓存 # 新格式:包含额外信息的缓存
self.person_engaged_cache = cache_data.get('person_engaged_cache', {}) self.person_engaged_cache = cache_data.get('person_engaged_cache', {})
self.last_processed_message_time = cache_data.get('last_processed_message_time', 0.0) self.last_processed_message_time = cache_data.get('last_processed_message_time', 0.0)
self.last_cleanup_time = cache_data.get('last_cleanup_time', 0.0) self.last_cleanup_time = cache_data.get('last_cleanup_time', 0.0)
else:
# 旧格式仅包含person_engaged_cache
self.person_engaged_cache = cache_data
self.last_processed_message_time = 0.0
self.last_cleanup_time = 0.0
logger.info(f"{self.log_prefix} 成功加载关系缓存,包含 {len(self.person_engaged_cache)} 个用户,最后处理时间:{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(self.last_processed_message_time)) if self.last_processed_message_time > 0 else '未设置'}") logger.info(f"{self.log_prefix} 成功加载关系缓存,包含 {len(self.person_engaged_cache)} 个用户,最后处理时间:{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(self.last_processed_message_time)) if self.last_processed_message_time > 0 else '未设置'}")
except Exception as e: except Exception as e:
logger.error(f"{self.log_prefix} 加载关系缓存失败: {e}") logger.error(f"{self.log_prefix} 加载关系缓存失败: {e}")

View File

@@ -45,9 +45,9 @@ class HFCloopObservation:
action_result = cycle.loop_plan_info.get("action_result", {}) action_result = cycle.loop_plan_info.get("action_result", {})
action_type = action_result.get("action_type", "unknown") action_type = action_result.get("action_type", "unknown")
action_reasoning = action_result.get("reasoning", "未提供理由") action_reasoning = action_result.get("reasoning", "未提供理由")
is_taken = cycle.loop_action_info["action_taken"] is_taken = cycle.loop_action_info.get("action_taken", False)
action_taken_time = cycle.loop_action_info["taken_time"] action_taken_time = cycle.loop_action_info.get("taken_time", 0)
action_taken_time_str = datetime.fromtimestamp(action_taken_time).strftime("%H:%M:%S") action_taken_time_str = datetime.fromtimestamp(action_taken_time).strftime("%H:%M:%S") if action_taken_time > 0 else "未知时间"
# print(action_type) # print(action_type)
# print(action_reasoning) # print(action_reasoning)
# print(is_taken) # print(is_taken)
@@ -61,7 +61,7 @@ class HFCloopObservation:
if action_type == "reply": if action_type == "reply":
consecutive_text_replies += 1 consecutive_text_replies += 1
response_text = cycle.loop_action_info["reply_text"] response_text = cycle.loop_action_info.get("reply_text", "")
responses_for_prompt.append(response_text) responses_for_prompt.append(response_text)
if is_taken: if is_taken:

View File

@@ -3,6 +3,8 @@ import time
import traceback import traceback
from random import random from random import random
from typing import List, Optional, Dict, Any # 导入类型提示 from typing import List, Optional, Dict, Any # 导入类型提示
import os
import pickle
from maim_message import UserInfo, Seg from maim_message import UserInfo, Seg
from src.common.logger import get_logger from src.common.logger import get_logger
from src.chat.heart_flow.utils_chat import get_chat_type_and_target_info from src.chat.heart_flow.utils_chat import get_chat_type_and_target_info
@@ -22,13 +24,21 @@ from src.chat.normal_chat.normal_chat_action_modifier import NormalChatActionMod
from src.chat.normal_chat.normal_chat_expressor import NormalChatExpressor from src.chat.normal_chat.normal_chat_expressor import NormalChatExpressor
from src.chat.focus_chat.replyer.default_replyer import DefaultReplyer from src.chat.focus_chat.replyer.default_replyer import DefaultReplyer
from src.person_info.person_info import PersonInfoManager from src.person_info.person_info import PersonInfoManager
from src.chat.utils.chat_message_builder import get_raw_msg_by_timestamp_with_chat from src.chat.utils.chat_message_builder import get_raw_msg_by_timestamp_with_chat, get_raw_msg_by_timestamp_with_chat_inclusive, get_raw_msg_before_timestamp_with_chat, num_new_messages_since
from src.person_info.relationship_manager import get_relationship_manager from src.person_info.relationship_manager import get_relationship_manager
willing_manager = get_willing_manager() willing_manager = get_willing_manager()
logger = get_logger("normal_chat") logger = get_logger("normal_chat")
# 消息段清理配置
SEGMENT_CLEANUP_CONFIG = {
"enable_cleanup": True, # 是否启用清理
"max_segment_age_days": 7, # 消息段最大保存天数
"max_segments_per_user": 10, # 每用户最大消息段数
"cleanup_interval_hours": 1, # 清理间隔(小时)
}
class NormalChat: class NormalChat:
def __init__(self, chat_stream: ChatStream, interest_dict: dict = None, on_switch_to_focus_callback=None): def __init__(self, chat_stream: ChatStream, interest_dict: dict = None, on_switch_to_focus_callback=None):
@@ -67,16 +77,307 @@ class NormalChat:
self.recent_replies = [] self.recent_replies = []
self.max_replies_history = 20 # 最多保存最近20条回复记录 self.max_replies_history = 20 # 最多保存最近20条回复记录
# 添加engaging_person统计 # 新的消息段缓存结构:
self.engaging_persons = {} # person_id -> {first_time, last_time, receive_count, reply_count, relation_built} # {person_id: [{"start_time": float, "end_time": float, "last_msg_time": float, "message_count": int}, ...]}
self.person_engaged_cache: Dict[str, List[Dict[str, any]]] = {}
# 持久化存储文件路径
self.cache_file_path = os.path.join("data", f"relationship_cache_{self.stream_id}.pkl")
# 最后处理的消息时间,避免重复处理相同消息
self.last_processed_message_time = 0.0
# 最后清理时间,用于定期清理老消息段
self.last_cleanup_time = 0.0
# 添加回调函数用于在满足条件时通知切换到focus_chat模式 # 添加回调函数用于在满足条件时通知切换到focus_chat模式
self.on_switch_to_focus_callback = on_switch_to_focus_callback self.on_switch_to_focus_callback = on_switch_to_focus_callback
self._disabled = False # 增加停用标志 self._disabled = False # 增加停用标志
# 加载持久化的缓存
self._load_cache()
logger.debug(f"[{self.stream_name}] NormalChat 初始化完成 (异步部分)。") logger.debug(f"[{self.stream_name}] NormalChat 初始化完成 (异步部分)。")
# ================================
# 缓存管理模块
# 负责持久化存储、状态管理、缓存读写
# ================================
def _load_cache(self):
"""从文件加载持久化的缓存"""
if os.path.exists(self.cache_file_path):
try:
with open(self.cache_file_path, 'rb') as f:
cache_data = pickle.load(f)
# 新格式:包含额外信息的缓存
self.person_engaged_cache = cache_data.get('person_engaged_cache', {})
self.last_processed_message_time = cache_data.get('last_processed_message_time', 0.0)
self.last_cleanup_time = cache_data.get('last_cleanup_time', 0.0)
logger.info(f"[{self.stream_name}] 成功加载关系缓存,包含 {len(self.person_engaged_cache)} 个用户,最后处理时间:{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(self.last_processed_message_time)) if self.last_processed_message_time > 0 else '未设置'}")
except Exception as e:
logger.error(f"[{self.stream_name}] 加载关系缓存失败: {e}")
self.person_engaged_cache = {}
self.last_processed_message_time = 0.0
else:
logger.info(f"[{self.stream_name}] 关系缓存文件不存在,使用空缓存")
def _save_cache(self):
"""保存缓存到文件"""
try:
os.makedirs(os.path.dirname(self.cache_file_path), exist_ok=True)
cache_data = {
'person_engaged_cache': self.person_engaged_cache,
'last_processed_message_time': self.last_processed_message_time,
'last_cleanup_time': self.last_cleanup_time
}
with open(self.cache_file_path, 'wb') as f:
pickle.dump(cache_data, f)
logger.debug(f"[{self.stream_name}] 成功保存关系缓存")
except Exception as e:
logger.error(f"[{self.stream_name}] 保存关系缓存失败: {e}")
# ================================
# 消息段管理模块
# 负责跟踪用户消息活动、管理消息段、清理过期数据
# ================================
def _update_message_segments(self, person_id: str, message_time: float):
"""更新用户的消息段
Args:
person_id: 用户ID
message_time: 消息时间戳
"""
if person_id not in self.person_engaged_cache:
self.person_engaged_cache[person_id] = []
segments = self.person_engaged_cache[person_id]
current_time = time.time()
# 获取该消息前5条消息的时间作为潜在的开始时间
before_messages = get_raw_msg_before_timestamp_with_chat(self.stream_id, message_time, limit=5)
if before_messages:
# 由于get_raw_msg_before_timestamp_with_chat返回按时间升序排序的消息最后一个是最接近message_time的
# 我们需要第一个消息作为开始时间但应该确保至少包含5条消息或该用户之前的消息
potential_start_time = before_messages[0]['time']
else:
# 如果没有前面的消息,就从当前消息开始
potential_start_time = message_time
# 如果没有现有消息段,创建新的
if not segments:
new_segment = {
"start_time": potential_start_time,
"end_time": message_time,
"last_msg_time": message_time,
"message_count": self._count_messages_in_timerange(potential_start_time, message_time)
}
segments.append(new_segment)
logger.info(f"[{self.stream_name}] 为用户 {person_id} 创建新消息段: 时间范围 {time.strftime('%H:%M:%S', time.localtime(potential_start_time))} - {time.strftime('%H:%M:%S', time.localtime(message_time))}, 消息数: {new_segment['message_count']}")
self._save_cache()
return
# 获取最后一个消息段
last_segment = segments[-1]
# 计算从最后一条消息到当前消息之间的消息数量(不包含边界)
messages_between = self._count_messages_between(last_segment["last_msg_time"], message_time)
if messages_between <= 10:
# 在10条消息内延伸当前消息段
last_segment["end_time"] = message_time
last_segment["last_msg_time"] = message_time
# 重新计算整个消息段的消息数量
last_segment["message_count"] = self._count_messages_in_timerange(
last_segment["start_time"], last_segment["end_time"]
)
logger.debug(f"[{self.stream_name}] 延伸用户 {person_id} 的消息段: {last_segment}")
else:
# 超过10条消息结束当前消息段并创建新的
# 结束当前消息段延伸到原消息段最后一条消息后5条消息的时间
after_messages = get_raw_msg_by_timestamp_with_chat(
self.stream_id, last_segment["last_msg_time"], current_time, limit=5, limit_mode="earliest"
)
if after_messages and len(after_messages) >= 5:
# 如果有足够的后续消息使用第5条消息的时间作为结束时间
last_segment["end_time"] = after_messages[4]['time']
else:
# 如果没有足够的后续消息,保持原有的结束时间
pass
# 重新计算当前消息段的消息数量
last_segment["message_count"] = self._count_messages_in_timerange(
last_segment["start_time"], last_segment["end_time"]
)
# 创建新的消息段
new_segment = {
"start_time": potential_start_time,
"end_time": message_time,
"last_msg_time": message_time,
"message_count": self._count_messages_in_timerange(potential_start_time, message_time)
}
segments.append(new_segment)
logger.info(f"[{self.stream_name}] 为用户 {person_id} 创建新消息段超过10条消息间隔: {new_segment}")
self._save_cache()
def _count_messages_in_timerange(self, start_time: float, end_time: float) -> int:
"""计算指定时间范围内的消息数量(包含边界)"""
messages = get_raw_msg_by_timestamp_with_chat_inclusive(self.stream_id, start_time, end_time)
return len(messages)
def _count_messages_between(self, start_time: float, end_time: float) -> int:
"""计算两个时间点之间的消息数量(不包含边界),用于间隔检查"""
return num_new_messages_since(self.stream_id, start_time, end_time)
def _get_total_message_count(self, person_id: str) -> int:
"""获取用户所有消息段的总消息数量"""
if person_id not in self.person_engaged_cache:
return 0
total_count = 0
for segment in self.person_engaged_cache[person_id]:
total_count += segment["message_count"]
return total_count
def _cleanup_old_segments(self) -> bool:
"""清理老旧的消息段
Returns:
bool: 是否执行了清理操作
"""
if not SEGMENT_CLEANUP_CONFIG["enable_cleanup"]:
return False
current_time = time.time()
# 检查是否需要执行清理(基于时间间隔)
cleanup_interval_seconds = SEGMENT_CLEANUP_CONFIG["cleanup_interval_hours"] * 3600
if current_time - self.last_cleanup_time < cleanup_interval_seconds:
return False
logger.info(f"[{self.stream_name}] 开始执行老消息段清理...")
cleanup_stats = {
"users_cleaned": 0,
"segments_removed": 0,
"total_segments_before": 0,
"total_segments_after": 0
}
max_age_seconds = SEGMENT_CLEANUP_CONFIG["max_segment_age_days"] * 24 * 3600
max_segments_per_user = SEGMENT_CLEANUP_CONFIG["max_segments_per_user"]
users_to_remove = []
for person_id, segments in self.person_engaged_cache.items():
cleanup_stats["total_segments_before"] += len(segments)
original_segment_count = len(segments)
# 1. 按时间清理:移除过期的消息段
segments_after_age_cleanup = []
for segment in segments:
segment_age = current_time - segment["end_time"]
if segment_age <= max_age_seconds:
segments_after_age_cleanup.append(segment)
else:
cleanup_stats["segments_removed"] += 1
logger.debug(f"[{self.stream_name}] 移除用户 {person_id} 的过期消息段: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(segment['start_time']))} - {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(segment['end_time']))}")
# 2. 按数量清理:如果消息段数量仍然过多,保留最新的
if len(segments_after_age_cleanup) > max_segments_per_user:
# 按end_time排序保留最新的
segments_after_age_cleanup.sort(key=lambda x: x["end_time"], reverse=True)
segments_removed_count = len(segments_after_age_cleanup) - max_segments_per_user
cleanup_stats["segments_removed"] += segments_removed_count
segments_after_age_cleanup = segments_after_age_cleanup[:max_segments_per_user]
logger.debug(f"[{self.stream_name}] 用户 {person_id} 消息段数量过多,移除 {segments_removed_count} 个最老的消息段")
# 使用清理后的消息段
# 更新缓存
if len(segments_after_age_cleanup) == 0:
# 如果没有剩余消息段,标记用户为待移除
users_to_remove.append(person_id)
else:
self.person_engaged_cache[person_id] = segments_after_age_cleanup
cleanup_stats["total_segments_after"] += len(segments_after_age_cleanup)
if original_segment_count != len(segments_after_age_cleanup):
cleanup_stats["users_cleaned"] += 1
# 移除没有消息段的用户
for person_id in users_to_remove:
del self.person_engaged_cache[person_id]
logger.debug(f"[{self.stream_name}] 移除用户 {person_id}:没有剩余消息段")
# 更新最后清理时间
self.last_cleanup_time = current_time
# 保存缓存
if cleanup_stats["segments_removed"] > 0 or len(users_to_remove) > 0:
self._save_cache()
logger.info(f"[{self.stream_name}] 清理完成 - 影响用户: {cleanup_stats['users_cleaned']}, 移除消息段: {cleanup_stats['segments_removed']}, 移除用户: {len(users_to_remove)}")
logger.info(f"[{self.stream_name}] 消息段统计 - 清理前: {cleanup_stats['total_segments_before']}, 清理后: {cleanup_stats['total_segments_after']}")
else:
logger.debug(f"[{self.stream_name}] 清理完成 - 无需清理任何内容")
return cleanup_stats["segments_removed"] > 0 or len(users_to_remove) > 0
def get_cache_status(self) -> str:
"""获取缓存状态信息,用于调试和监控"""
if not self.person_engaged_cache:
return f"[{self.stream_name}] 关系缓存为空"
status_lines = [f"[{self.stream_name}] 关系缓存状态:"]
status_lines.append(f"最后处理消息时间:{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(self.last_processed_message_time)) if self.last_processed_message_time > 0 else '未设置'}")
status_lines.append(f"最后清理时间:{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(self.last_cleanup_time)) if self.last_cleanup_time > 0 else '未执行'}")
status_lines.append(f"总用户数:{len(self.person_engaged_cache)}")
status_lines.append(f"清理配置:{'启用' if SEGMENT_CLEANUP_CONFIG['enable_cleanup'] else '禁用'} (最大保存{SEGMENT_CLEANUP_CONFIG['max_segment_age_days']}天, 每用户最多{SEGMENT_CLEANUP_CONFIG['max_segments_per_user']}段)")
status_lines.append("")
for person_id, segments in self.person_engaged_cache.items():
total_count = self._get_total_message_count(person_id)
status_lines.append(f"用户 {person_id}:")
status_lines.append(f" 总消息数:{total_count} ({total_count}/45)")
status_lines.append(f" 消息段数:{len(segments)}")
for i, segment in enumerate(segments):
start_str = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(segment['start_time']))
end_str = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(segment['end_time']))
last_str = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(segment['last_msg_time']))
status_lines.append(f"{i+1}: {start_str} -> {end_str} (最后消息: {last_str}, 消息数: {segment['message_count']})")
status_lines.append("")
return "\n".join(status_lines)
def _update_user_message_segments(self, message: MessageRecv):
"""更新用户消息段信息"""
current_time = time.time()
user_id = message.message_info.user_info.user_id
platform = message.message_info.platform
msg_time = message.message_info.time
# 跳过机器人自己的消息
if user_id == global_config.bot.qq_account:
return
# 只处理新消息(避免重复处理)
if msg_time <= self.last_processed_message_time:
return
person_id = PersonInfoManager.get_person_id(platform, user_id)
self._update_message_segments(person_id, msg_time)
# 更新最后处理时间
self.last_processed_message_time = max(self.last_processed_message_time, msg_time)
logger.debug(f"[{self.stream_name}] 更新用户 {person_id} 的消息段,消息时间:{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(msg_time))}")
# 改为实例方法 # 改为实例方法
async def _create_thinking_message(self, message: MessageRecv, timestamp: Optional[float] = None) -> str: async def _create_thinking_message(self, message: MessageRecv, timestamp: Optional[float] = None) -> str:
"""创建思考消息""" """创建思考消息"""
@@ -282,8 +583,11 @@ class NormalChat:
logger.info(f"[{self.stream_name}] 已停用,忽略 normal_response。") logger.info(f"[{self.stream_name}] 已停用,忽略 normal_response。")
return return
# 更新engaging_persons统计信息 # 执行定期清理
self._update_engaging_person_stats(message, is_reply=False) self._cleanup_old_segments()
# 更新消息段信息
self._update_user_message_segments(message)
# 检查是否有用户满足关系构建条件 # 检查是否有用户满足关系构建条件
asyncio.create_task(self._check_relation_building_conditions()) asyncio.create_task(self._check_relation_building_conditions())
@@ -477,8 +781,7 @@ class NormalChat:
# 检查 first_bot_msg 是否为 None (例如思考消息已被移除的情况) # 检查 first_bot_msg 是否为 None (例如思考消息已被移除的情况)
if first_bot_msg: if first_bot_msg:
# 更新engaging_persons统计信息 - 标记为回复 # 消息段已在接收消息时更新,这里不需要额外处理
self._update_engaging_person_stats(message, is_reply=True)
# 记录回复信息到最近回复列表中 # 记录回复信息到最近回复列表中
reply_info = { reply_info = {
@@ -769,200 +1072,91 @@ class NormalChat:
"""获取动作管理器实例""" """获取动作管理器实例"""
return self.action_manager return self.action_manager
def _update_engaging_person_stats(self, message: MessageRecv, is_reply: bool):
"""更新engaging_persons统计信息"""
# 通过platform和user_id计算person_id
platform = message.message_info.platform
user_id = message.message_info.user_info.user_id
person_id = PersonInfoManager.get_person_id(platform, user_id)
current_time = time.time()
if person_id not in self.engaging_persons:
self.engaging_persons[person_id] = {
"first_time": current_time,
"last_time": current_time,
"receive_count": 0,
"reply_count": 0,
"relation_built": False,
}
if is_reply:
self.engaging_persons[person_id]["reply_count"] += 1
logger.debug(
f"[{self.stream_name}] 用户 {person_id} 回复次数更新: {self.engaging_persons[person_id]['reply_count']}"
)
else:
self.engaging_persons[person_id]["receive_count"] += 1
self.engaging_persons[person_id]["last_time"] = current_time
logger.debug(
f"[{self.stream_name}] 用户 {person_id} 消息次数更新: {self.engaging_persons[person_id]['receive_count']}"
)
async def _check_relation_building_conditions(self): async def _check_relation_building_conditions(self):
"""检查engaging_persons中是否有满足关系构建条件的用户""" """检查person_engaged_cache中是否有满足关系构建条件的用户"""
current_time = time.time() users_to_build_relationship = []
for person_id, stats in list(self.engaging_persons.items()): for person_id, segments in list(self.person_engaged_cache.items()):
# 计算时间差和消息数量 total_message_count = self._get_total_message_count(person_id)
time_elapsed = current_time - stats["first_time"] if total_message_count >= 45:
total_messages = self._get_total_messages_in_timerange(stats["first_time"], stats["last_time"]) users_to_build_relationship.append(person_id)
# print(f"person_id: {person_id}, total_messages: {total_messages}, time_elapsed: {time_elapsed}")
# 检查是否满足关系构建条件
should_build_relation = (
total_messages >= 30 # 30条消息必定满足
or (total_messages >= 15 and time_elapsed >= 600) # 15条且10分钟
or (total_messages >= 10 and time_elapsed >= 900) # 10条且15分钟
or (total_messages >= 5 and time_elapsed >= 1800) # 5条且30
)
if should_build_relation:
logger.info( logger.info(
f"[{self.stream_name}] 用户 {person_id} 满足关系构建条件" f"[{self.stream_name}] 用户 {person_id} 满足关系构建条件,总消息数:{total_message_count},消息段数:{len(segments)}"
f"消息数:{total_messages},时长:{time_elapsed:.0f}秒," )
f"收到消息:{stats['receive_count']},回复次数:{stats['reply_count']}" elif total_message_count > 0:
# 记录进度信息
logger.debug(
f"[{self.stream_name}] 用户 {person_id} 进度:{total_message_count}/45 条消息,{len(segments)} 个消息段"
) )
# 计算构建概率并决定是否构建 # 为满足条件的用户构建关系
await self._evaluate_and_build_relation(person_id, stats, total_messages) for person_id in users_to_build_relationship:
segments = self.person_engaged_cache[person_id]
# 评估完成后移除该用户,重新开始统计 # 异步执行关系构建
del self.engaging_persons[person_id] asyncio.create_task(
logger.info(f"[{self.stream_name}] 用户 {person_id} 评估完成,已移除记录,将重新开始统计") self._build_relation_for_person_segments(person_id, segments)
def _get_total_messages_in_timerange(self, start_time: float, end_time: float) -> int:
"""获取指定时间范围内的总消息数量"""
try:
messages = get_raw_msg_by_timestamp_with_chat(self.stream_id, start_time, end_time)
return len(messages) if messages else 0
except Exception as e:
logger.error(f"[{self.stream_name}] 获取时间范围内消息数量失败: {e}")
return 0
async def _evaluate_and_build_relation(self, person_id: str, stats: dict, total_messages: int):
"""评估并执行关系构建"""
import math
receive_count = stats["receive_count"]
reply_count = stats["reply_count"]
# 计算回复概率reply_count在总消息中的比值
reply_ratio = reply_count / total_messages if total_messages > 0 else 0
# 使用对数函数让低比率时概率上升更快log(1 + ratio * k) / log(1 + k) + base
# k=7时0.05比率对应约0.4概率0.1比率对应约0.6概率0.2比率对应约0.8概率
k_reply = 10 * global_config.relationship.relation_frequency
base_reply_prob = 0.1 # 基础概率10%
reply_build_probability = (
(math.log(1 + reply_ratio * k_reply) / math.log(1 + k_reply)) * 0.9 + base_reply_prob
if reply_ratio > 0
else base_reply_prob
)
# 计算接收概率receive_count的影响
receive_ratio = receive_count / total_messages if total_messages > 0 else 0
# 接收概率使用更温和的对数曲线最大0.5基础0.08
k_receive = 10 * global_config.relationship.relation_frequency
base_receive_prob = 0.08 # 基础概率8%
receive_build_probability = (
(math.log(1 + receive_ratio * k_receive) / math.log(1 + k_receive)) * 0.42 + base_receive_prob
if receive_ratio > 0
else base_receive_prob
)
# 取最高概率
final_probability = max(reply_build_probability, receive_build_probability)
logger.info(
f"[{self.stream_name}] 用户 {person_id} 关系构建概率评估:"
f"回复比例:{reply_ratio:.2f}(对数概率:{reply_build_probability:.2f})"
f",接收比例:{receive_ratio:.2f}(对数概率:{receive_build_probability:.2f})"
f",最终概率:{final_probability:.2f}"
)
# 使用随机数决定是否构建关系
if random() < final_probability:
logger.info(f"[{self.stream_name}] 决定为用户 {person_id} 构建关系")
await self._build_relation_for_person(person_id, stats)
else:
logger.info(f"[{self.stream_name}] 用户 {person_id} 未通过关系构建概率判定")
async def _build_relation_for_person(self, person_id: str, stats: dict):
"""为特定用户构建关系"""
try:
start_time = stats["first_time"]
end_time = stats["last_time"]
# 获取该时间段的所有消息用于关系构建
main_messages = get_raw_msg_by_timestamp_with_chat(self.stream_id, start_time, end_time)
if not main_messages:
logger.warning(f"[{self.stream_name}] 未找到用户 {person_id} 的消息,关系构建跳过")
return
# 获取第一条消息的时间戳然后获取之前的5条消息
first_message_time = main_messages[0]["time"]
before_messages = self._get_messages_before_timestamp(first_message_time, 5)
# 获取最后一条消息的时间戳然后获取之后的5条消息
last_message_time = main_messages[-1]["time"]
after_messages = self._get_messages_after_timestamp(last_message_time, 5)
# 合并所有消息并去重
all_messages = before_messages + main_messages + after_messages
# 根据消息ID去重并按时间排序
seen_ids = set()
unique_messages = []
for msg in all_messages:
msg_id = msg["message_id"]
if msg_id not in seen_ids:
seen_ids.add(msg_id)
unique_messages.append(msg)
# 按时间排序
unique_messages.sort(key=lambda x: x["time"])
logger.info(
f"[{self.stream_name}] 为用户 {person_id} 获取到消息用于关系构建: "
f"原时间段内 {len(main_messages)} 条,之前 {len(before_messages)} 条,"
f"之后 {len(after_messages)} 条,去重后总计 {len(unique_messages)}"
) )
# 移除已处理的用户缓存
del self.person_engaged_cache[person_id]
self._save_cache()
logger.info(f"[{self.stream_name}] 用户 {person_id} 关系构建已启动,缓存已清理")
# 调用关系管理器更新印象 async def _build_relation_for_person_segments(self, person_id: str, segments: List[Dict[str, any]]):
relationship_manager = get_relationship_manager() """基于消息段为特定用户构建关系"""
await relationship_manager.update_person_impression( logger.info(f"[{self.stream_name}] 开始为 {person_id} 基于 {len(segments)} 个消息段更新印象")
person_id=person_id, timestamp=end_time, bot_engaged_messages=unique_messages
)
logger.info(f"[{self.stream_name}] 用户 {person_id} 关系构建完成")
except Exception as e:
logger.error(f"[{self.stream_name}] 为用户 {person_id} 构建关系时出错: {e}")
traceback.print_exc()
def _get_messages_before_timestamp(self, timestamp: float, limit: int = 5) -> List[Dict[str, Any]]:
"""获取指定时间戳之前的指定数量消息"""
try: try:
from src.common.message_repository import find_messages processed_messages = []
for i, segment in enumerate(segments):
start_time = segment["start_time"]
end_time = segment["end_time"]
message_count = segment["message_count"]
start_date = time.strftime('%Y-%m-%d %H:%M', time.localtime(start_time))
# 获取该段的消息(包含边界)
segment_messages = get_raw_msg_by_timestamp_with_chat_inclusive(self.stream_id, start_time, end_time)
logger.info(f"[{self.stream_name}] 消息段 {i+1}: {start_date} - {time.strftime('%Y-%m-%d %H:%M', time.localtime(end_time))}, 消息数: {len(segment_messages)}")
if segment_messages:
# 如果不是第一个消息段,在消息列表前添加间隔标识
if i > 0:
# 创建一个特殊的间隔消息
gap_message = {
"time": start_time - 0.1, # 稍微早于段开始时间
"user_id": "system",
"user_platform": "system",
"user_nickname": "系统",
"user_cardname": "",
"display_message": f"...(中间省略一些消息){start_date} 之后的消息如下...",
"is_action_record": True,
"chat_info_platform": segment_messages[0].get("chat_info_platform", ""),
"chat_id": self.stream_id
}
processed_messages.append(gap_message)
# 添加该段的所有消息
processed_messages.extend(segment_messages)
if processed_messages:
# 按时间排序所有消息(包括间隔标识)
processed_messages.sort(key=lambda x: x['time'])
logger.info(f"[{self.stream_name}] 为 {person_id} 获取到总共 {len(processed_messages)} 条消息(包含间隔标识)用于印象更新")
relationship_manager = get_relationship_manager()
# 调用原有的更新方法
await relationship_manager.update_person_impression(
person_id=person_id,
timestamp=time.time(),
bot_engaged_messages=processed_messages
)
logger.info(f"[{self.stream_name}] 用户 {person_id} 关系构建完成")
else:
logger.warning(f"[{self.stream_name}] 没有找到 {person_id} 的消息段对应的消息,不更新印象")
filter_query = {"chat_id": self.stream_id, "time": {"$lt": timestamp}}
sort_order = [("time", -1)] # 倒序排列,取最近的几条
messages = find_messages(message_filter=filter_query, sort=sort_order, limit=limit)
# 返回时保持正序
return sorted(messages, key=lambda x: x["time"])
except Exception as e: except Exception as e:
logger.error(f"[{self.stream_name}] 获取时间戳之前的消息失败: {e}") logger.error(f"[{self.stream_name}] {person_id} 更新印象时发生错误: {e}")
return [] logger.error(traceback.format_exc())
def _get_messages_after_timestamp(self, timestamp: float, limit: int = 5) -> List[Dict[str, Any]]:
"""获取指定时间戳之后的指定数量消息"""
try:
from src.common.message_repository import find_messages
filter_query = {"chat_id": self.stream_id, "time": {"$gt": timestamp}}
sort_order = [("time", 1)] # 正序排列,取最早的几条
return find_messages(message_filter=filter_query, sort=sort_order, limit=limit)
except Exception as e:
logger.error(f"[{self.stream_name}] 获取时间戳之后的消息失败: {e}")
return []

View File

@@ -37,7 +37,7 @@ def get_file_handler():
# 使用基于时间戳的handler简单的轮转份数限制 # 使用基于时间戳的handler简单的轮转份数限制
_file_handler = TimestampedFileHandler( _file_handler = TimestampedFileHandler(
log_dir=LOG_DIR, log_dir=LOG_DIR,
max_bytes=2 * 1024 * 1024, # 2MB max_bytes=5 * 1024 * 1024, # 5MB
backup_count=30, backup_count=30,
encoding="utf-8", encoding="utf-8",
) )
@@ -61,7 +61,7 @@ def get_console_handler():
class TimestampedFileHandler(logging.Handler): class TimestampedFileHandler(logging.Handler):
"""基于时间戳的文件处理器,简单的轮转份数限制""" """基于时间戳的文件处理器,简单的轮转份数限制"""
def __init__(self, log_dir, max_bytes=2 * 1024 * 1024, backup_count=30, encoding="utf-8"): def __init__(self, log_dir, max_bytes=5 * 1024 * 1024, backup_count=30, encoding="utf-8"):
super().__init__() super().__init__()
self.log_dir = Path(log_dir) self.log_dir = Path(log_dir)
self.log_dir.mkdir(exist_ok=True) self.log_dir.mkdir(exist_ok=True)
@@ -687,7 +687,7 @@ def configure_logging(
level: str = "INFO", level: str = "INFO",
console_level: str = None, console_level: str = None,
file_level: str = None, file_level: str = None,
max_bytes: int = 2 * 1024 * 1024, max_bytes: int = 5 * 1024 * 1024,
backup_count: int = 30, backup_count: int = 30,
log_dir: str = "logs", log_dir: str = "logs",
): ):

View File

@@ -164,7 +164,7 @@ class PersonInfoManager:
logger.debug(f"更新'{field_name}'失败,未在 PersonInfo Peewee 模型中定义的字段。") logger.debug(f"更新'{field_name}'失败,未在 PersonInfo Peewee 模型中定义的字段。")
return return
print(f"更新字段: {field_name},值: {value}") # print(f"更新字段: {field_name},值: {value}")
processed_value = value processed_value = value
if field_name in JSON_SERIALIZED_FIELDS: if field_name in JSON_SERIALIZED_FIELDS:

View File

@@ -468,6 +468,9 @@ class RelationshipManager:
) )
know_times = await person_info_manager.get_value(person_id, "know_times") or 0 know_times = await person_info_manager.get_value(person_id, "know_times") or 0
await person_info_manager.update_one_field(person_id, "know_times", know_times + 1) await person_info_manager.update_one_field(person_id, "know_times", know_times + 1)
know_since = await person_info_manager.get_value(person_id, "know_since") or 0
if know_since == 0:
await person_info_manager.update_one_field(person_id, "know_since", timestamp)
await person_info_manager.update_one_field(person_id, "last_know", timestamp) await person_info_manager.update_one_field(person_id, "last_know", timestamp)
logger.info(f"印象更新完成 for {person_name}") logger.info(f"印象更新完成 for {person_name}")