v0.3.1的更新,增加了主动回复和记忆系统(海马体),修复一些小bug,改了config位置

v0.3.1的更新,增加了主动回复和记忆系统(海马体),修复一些小bug,改了config位置
This commit is contained in:
SengokuCola
2025-03-02 00:19:29 +08:00
committed by GitHub
22 changed files with 1473 additions and 349 deletions

2
.gitignore vendored
View File

@@ -3,7 +3,7 @@ mongodb/
NapCat.Framework.Windows.Once/
log/
src/plugins/memory
src/plugins/chat/bot_config.toml
config/bot_config.toml
/test
message_queue_content.txt
message_queue_content.bat

View File

@@ -4,7 +4,7 @@
<div align="center">
![Python Version](https://img.shields.io/badge/Python-3.8-blue)
![Python Version](https://img.shields.io/badge/Python-3.x-blue)
![License](https://img.shields.io/github/license/SengokuCola/MaiMBot)
![Status](https://img.shields.io/badge/状态-开发中-yellow)
@@ -16,11 +16,19 @@
基于llm、napcat、nonebot和mongodb的专注于群聊天的qqbot
<div align="center">
<a href="https://www.bilibili.com/video/BV1amAneGE3P" target="_blank">
<img src="https://i0.hdslb.com/bfs/archive/7d9fa0a88e8a1aa01b92b8a5a743a2671c0e1798.jpg" width="500" alt="麦麦演示视频">
<br>
👆 点击观看麦麦演示视频 👆
</a>
</div>
> ⚠️ **警告**:代码可能随时更改,目前版本不一定是稳定版本
> ⚠️ **警告**请自行了解qqbot的风险麦麦有时候一天被腾讯肘七八次
> ⚠️ **警告**由于麦麦一直在迭代所以可能存在一些bug请自行测试包括胡言乱语
关于麦麦的开发和部署相关的讨论群(不建议发布无关消息)这里不会有麦麦发言!
关于麦麦的开发和建议相关的讨论群(不建议发布无关消息)这里不会有麦麦发言!
## 开发计划TODOLIST
@@ -29,6 +37,10 @@
- 对思考链长度限制
- 修复已知bug
- 完善文档
- 修复转发
- config自动生成和检测
- log别用print
- 给发送消息写专门的类
<div align="center">
@@ -52,11 +64,9 @@ NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker compose restart
#### 手动运行
1. **创建Python环境**
推荐使用conda或其他环境管理来管理你的python环境
推荐使用conda或其他虚拟环境进行依赖安装,防止出现依赖版本冲突问题
```bash
# 安装requirements(还没检查好,可能有包漏了)
conda activate 你的环境
cd 对应路径
# 安装requirements
pip install -r requirements.txt
```
2. **MongoDB设置**
@@ -68,8 +78,8 @@ NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker compose restart
- 在Napcat的网络设置中添加ws反向代理:ws://localhost:8080/onebot/v11/ws
4. **配置文件设置**
- 把env.example改成.env填上你的apikey硅基流动或deepseekapi
- 把bot_config_toml改名为bot_config.toml并填写相关内容不然无法正常运行
- 将.env文件打开填上你的apikey硅基流动或deepseekapi
- bot_config.toml文件打开,并填写相关内容,不然无法正常运行
#### .env 文件配置说明
```ini
@@ -92,14 +102,10 @@ NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker compose restart
MONGODB_PASSWORD="" # MongoDB密码可选
MONGODB_AUTH_SOURCE="" # MongoDB认证源可选
# API密钥配置
CHAT_ANY_WHERE_KEY= # ChatAnyWhere API密钥
SILICONFLOW_KEY= # 硅基流动 API密钥必填
DEEP_SEEK_KEY= # DeepSeek API密钥必填
# API地址配置
CHAT_ANY_WHERE_BASE_URL=https://api.chatanywhere.tech/v1
#api配置项建议siliconflow必填识图需要这个
SILICONFLOW_KEY=
SILICONFLOW_BASE_URL=https://api.siliconflow.cn/v1/
DEEP_SEEK_KEY=
DEEP_SEEK_BASE_URL=https://api.deepseek.com/v1
```
@@ -158,9 +164,8 @@ NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker compose restart
```
5. **运行麦麦**
在含有bot.py程序的目录下运行如果使用了虚拟环境需要先进入虚拟环境
```bash
conda activate 你的环境
cd 对应路径
nb run
```
6. **运行其他组件**
@@ -205,3 +210,13 @@ NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker compose restart
纯编程外行面向cursor编程很多代码史一样多多包涵
> ⚠️ **警告**:本应用生成内容来自人工智能模型,由 AI 生成请仔细甄别请勿用于违反法律的用途AI生成内容不代表本人观点和立场。
## 致谢
[nonebot2](https://github.com/nonebot/nonebot2): 跨平台 Python 异步聊天机器人框架
[NapCat](https://github.com/NapNeko/NapCatQQ): 现代化的基于 NTQQ 的 Bot 协议端实现
### 贡献者
感谢各位大佬!
[![Contributors](https://contributors-img.web.app/image?repo=SengokuCola/MaiMBot)](https://github.com/SengokuCola/MaiMBot/graphs/contributors)

View File

@@ -7,8 +7,8 @@ password = "" # 默认空值
auth_source = "" # 默认空值
[bot]
qq = #填入你的机器人QQ
nickname = "麦麦"
qq = 123456 #填入你的机器人QQ
nickname = "麦麦" #你希望bot被称呼的名字
[message]
min_text_length = 2 # 与麦麦聊天时麦麦只会回答文本大于等于此数的消息
@@ -24,11 +24,16 @@ enable_pic_translate = false
[response]
api_using = "siliconflow" # 选择大模型API
api_using = "siliconflow" # 选择大模型API可选值为siliconflow,deepseek建议使用siliconflow因为识图api目前只支持siliconflow的deepseek-vl2模型
model_r1_probability = 0.8 # 麦麦回答时选择R1模型的概率
model_v3_probability = 0.1 # 麦麦回答时选择V3模型的概率
model_r1_distill_probability = 0.1 # 麦麦回答时选择R1蒸馏模型的概率
[memory]
build_memory_interval = 300 # 记忆构建间隔
[others]
enable_advance_output = true # 开启后输出更多日志,false关闭true开启
@@ -36,13 +41,13 @@ enable_advance_output = true # 开启后输出更多日志,false关闭true开启
[groups]
talk_allowed = [
#可以回复消息的群
]
123456,12345678
] #可以回复消息的群
talk_frequency_down = [
#降低回复频率的群
]
123456,12345678
] #降低回复频率的群
ban_user_id = [
#禁止回复消息的QQ号
]
123456,12345678
] #禁止回复消息的QQ号

View File

@@ -15,10 +15,8 @@ MONGODB_USERNAME = "" # 默认空值
MONGODB_PASSWORD = "" # 默认空值
MONGODB_AUTH_SOURCE = "" # 默认空值
#key and url
CHAT_ANY_WHERE_KEY=
#api配置项
SILICONFLOW_KEY=
CHAT_ANY_WHERE_BASE_URL=https://api.chatanywhere.tech/v1
SILICONFLOW_BASE_URL=https://api.siliconflow.cn/v1/
DEEP_SEEK_KEY=
DEEP_SEEK_BASE_URL=https://api.deepseek.com/v1

View File

@@ -1,5 +0,0 @@
call conda activate niuniu
cd "C:\GitHub\MegMeg-bot"
REM 执行nb run命令
nb run

View File

@@ -1,3 +1,4 @@
from loguru import logger
from nonebot import on_message, on_command, require, get_driver
from nonebot.adapters.onebot.v11 import Bot, GroupMessageEvent, Message, MessageSegment
from nonebot.typing import T_State
@@ -10,7 +11,6 @@ from .relationship_manager import relationship_manager
from ..schedule.schedule_generator import bot_schedule
from .willing_manager import willing_manager
# 获取驱动器
driver = get_driver()
@@ -19,8 +19,7 @@ Database.initialize(
global_config.MONGODB_PORT,
global_config.DATABASE_NAME
)
print("\033[1;32m[初始化配置和数据库完成]\033[0m")
print("\033[1;32m[初始化数据库完成]\033[0m")
# 导入其他模块
@@ -28,6 +27,7 @@ from .bot import ChatBot
from .emoji_manager import emoji_manager
from .message_send_control import message_sender
from .relationship_manager import relationship_manager
from ..memory_system.memory import memory_graph,hippocampus
# 初始化表情管理器
emoji_manager.initialize()
@@ -35,22 +35,27 @@ emoji_manager.initialize()
print(f"\033[1;32m正在唤醒{global_config.BOT_NICKNAME}......\033[0m")
# 创建机器人实例
chat_bot = ChatBot(global_config)
# 注册消息处理器
group_msg = on_message()
# 创建定时任务
scheduler = require("nonebot_plugin_apscheduler").scheduler
# 启动后台任务
@driver.on_startup
async def start_background_tasks():
"""启动后台任务"""
# 只启动表情包管理任务
asyncio.create_task(emoji_manager.start_periodic_check(interval_MINS=global_config.EMOJI_CHECK_INTERVAL))
bot_schedule.print_schedule()
@driver.on_startup
async def init_relationships():
"""在 NoneBot2 启动时初始化关系管理器"""
print("\033[1;32m[初始化]\033[0m 正在加载用户关系数据...")
await relationship_manager.load_all_relationships()
asyncio.create_task(relationship_manager._start_relationship_manager())
@driver.on_bot_connect
async def _(bot: Bot):
"""Bot连接成功时的处理"""
@@ -64,19 +69,23 @@ async def _(bot: Bot):
print("\033[1;38;5;208m-----------开始偷表情包!-----------\033[0m")
# 启动消息发送控制任务
@driver.on_startup
async def init_relationships():
"""在 NoneBot2 启动时初始化关系管理器"""
print("\033[1;32m[初始化]\033[0m 正在加载用户关系数据...")
await relationship_manager.load_all_relationships()
asyncio.create_task(relationship_manager._start_relationship_manager())
@group_msg.handle()
async def _(bot: Bot, event: GroupMessageEvent, state: T_State):
await chat_bot.handle_message(event, bot)
'''
@scheduler.scheduled_job("interval", seconds=300000, id="monitor_relationships")
async def monitor_relationships():
"""每15秒打印一次关系数据"""
relationship_manager.print_all_relationships()
'''
# 添加build_memory定时任务
@scheduler.scheduled_job("interval", seconds=global_config.build_memory_interval, id="build_memory")
async def build_memory_task():
"""每30秒执行一次记忆构建"""
print("\033[1;32m[记忆构建]\033[0m 开始构建记忆...")
hippocampus.build_memory(chat_size=12)
print("\033[1;32m[记忆构建]\033[0m 记忆构建完成")

View File

@@ -5,7 +5,7 @@ from .storage import MessageStorage
from .llm_generator import LLMResponseGenerator
from .message_stream import MessageStream, MessageStreamContainer
from .topic_identifier import topic_identifier
from random import random
from random import random, choice
from .emoji_manager import emoji_manager # 导入表情包管理器
import time
import os
@@ -15,6 +15,7 @@ from .message import Message_Thinking # 导入 Message_Thinking 类
from .relationship_manager import relationship_manager
from .willing_manager import willing_manager # 导入意愿管理器
from .utils import is_mentioned_bot_in_txt, calculate_typing_time
from ..memory_system.memory import memory_graph
class ChatBot:
def __init__(self, config: BotConfig):
@@ -82,7 +83,7 @@ class ChatBot:
await relationship_manager.update_relationship(user_id = event.user_id, data = sender_info)
await relationship_manager.update_relationship_value(user_id = event.user_id, relationship_value = 0.5)
print(f"\033[1;32m[关系管理]\033[0m 更新关系值: {relationship_manager.get_relationship(event.user_id).relationship_value}")
# print(f"\033[1;32m[关系管理]\033[0m 更新关系值: {relationship_manager.get_relationship(event.user_id).relationship_value}")
message = Message(
@@ -99,11 +100,21 @@ class ChatBot:
topic = topic_identifier.identify_topic_jieba(message.processed_plain_text)
print(f"\033[1;32m[主题识别]\033[0m 主题: {topic}")
all_num = 0
interested_num = 0
if topic:
for current_topic in topic:
all_num += 1
first_layer_items, second_layer_items = memory_graph.get_related_item(current_topic, depth=2)
if first_layer_items:
interested_num += 1
print(f"\033[1;32m[前额叶]\033[0m 对|{current_topic}|有印象")
interested_rate = interested_num / all_num if all_num > 0 else 0
await self.storage.store_message(message, topic[0] if topic else None)
is_mentioned = is_mentioned_bot_in_txt(message.processed_plain_text)
reply_probability = willing_manager.change_reply_willing_received(
event.group_id,
@@ -111,7 +122,8 @@ class ChatBot:
is_mentioned,
self.config,
event.user_id,
message.is_emoji
message.is_emoji,
interested_rate
)
current_willing = willing_manager.get_willing(event.group_id)
@@ -182,7 +194,8 @@ class ChatBot:
user_nickname=global_config.BOT_NICKNAME,
group_name=message.group_name,
time=bot_response_time,
is_emoji=True
is_emoji=True,
translate_cq=False
)
message_sender.send_temp_container.add_message(bot_message)

View File

@@ -5,6 +5,9 @@ from nonebot.log import logger, default_format
import logging
import configparser
import tomli
import sys
from loguru import logger
from dotenv import load_dotenv
@@ -20,7 +23,7 @@ class BotConfig:
MONGODB_PASSWORD: Optional[str] = None # 默认空值
MONGODB_AUTH_SOURCE: Optional[str] = None # 默认空值
BOT_QQ: Optional[int] = None
BOT_QQ: Optional[int] = 1
BOT_NICKNAME: Optional[str] = None
# 消息处理相关配置
@@ -34,6 +37,7 @@ class BotConfig:
talk_frequency_down_groups = set()
ban_user_id = set()
build_memory_interval: int = 60 # 记忆构建间隔(秒)
EMOJI_CHECK_INTERVAL: int = 120 # 表情包检查间隔(分钟)
EMOJI_REGISTER_INTERVAL: int = 10 # 表情包注册间隔(分钟)
@@ -44,9 +48,21 @@ class BotConfig:
enable_advance_output: bool = False # 是否启用高级输出
@staticmethod
def get_default_config_path() -> str:
"""获取默认配置文件路径"""
current_dir = os.path.dirname(os.path.abspath(__file__))
root_dir = os.path.abspath(os.path.join(current_dir, '..', '..', '..'))
config_dir = os.path.join(root_dir, 'config')
return os.path.join(config_dir, 'bot_config.toml')
@classmethod
def load_config(cls, config_path: str = "bot_config.toml") -> "BotConfig":
def load_config(cls, config_path: str = None) -> "BotConfig":
"""从TOML配置文件加载配置"""
if config_path is None:
config_path = cls.get_default_config_path()
logger.info(f"使用默认配置文件路径: {config_path}")
config = cls()
if os.path.exists(config_path):
with open(config_path, "rb") as f:
@@ -92,6 +108,10 @@ class BotConfig:
config.MAX_CONTEXT_SIZE = msg_config.get("max_context_size", config.MAX_CONTEXT_SIZE)
config.emoji_chance = msg_config.get("emoji_chance", config.emoji_chance)
if "memory" in toml_dict:
memory_config = toml_dict["memory"]
config.build_memory_interval = memory_config.get("build_memory_interval", config.build_memory_interval)
# 群组配置
if "groups" in toml_dict:
groups_config = toml_dict["groups"]
@@ -103,16 +123,26 @@ class BotConfig:
others_config = toml_dict["others"]
config.enable_advance_output = others_config.get("enable_advance_output", config.enable_advance_output)
print(f"\033[1;32m成功加载配置文件: {config_path}\033[0m")
logger.success(f"成功加载配置文件: {config_path}")
return config
global_config = BotConfig.load_config("./src/plugins/chat/bot_config.toml")
# 获取配置文件路径
bot_config_path = BotConfig.get_default_config_path()
config_dir = os.path.dirname(bot_config_path)
env_path = os.path.join(config_dir, '.env')
from dotenv import load_dotenv
current_dir = os.path.dirname(os.path.abspath(__file__))
root_dir = os.path.abspath(os.path.join(current_dir, '..', '..', '..'))
load_dotenv(os.path.join(root_dir, '.env'))
logger.info(f"尝试从 {bot_config_path} 加载机器人配置")
global_config = BotConfig.load_config(config_path=bot_config_path)
# 加载环境变量
logger.info(f"尝试从 {env_path} 加载环境变量配置")
if os.path.exists(env_path):
load_dotenv(env_path)
logger.success("成功加载环境变量配置")
else:
logger.error(f"环境变量配置文件不存在: {env_path}")
@dataclass
class LLMConfig:
@@ -131,10 +161,5 @@ llm_config.DEEP_SEEK_BASE_URL = os.getenv('DEEP_SEEK_BASE_URL')
if not global_config.enable_advance_output:
logger.remove()
logging.getLogger('nonebot').handlers.clear()
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.WARNING) # 只输出 WARNING 及以上级别
logging.getLogger('nonebot').addHandler(console_handler)
logging.getLogger('nonebot').setLevel(logging.WARNING)
# logger.remove()
pass

View File

@@ -4,7 +4,7 @@ import asyncio
import requests
from functools import partial
from .message import Message
from .config import BotConfig
from .config import BotConfig, global_config
from ...common.database import Database
import random
import time
@@ -255,4 +255,4 @@ class LLMResponseGenerator:
return processed_response, emotion_tags
# 创建全局实例
llm_response = LLMResponseGenerator(config=BotConfig())
llm_response = LLMResponseGenerator(global_config)

View File

@@ -6,17 +6,13 @@ import os
from datetime import datetime
from ...common.database import Database
from PIL import Image
from .config import BotConfig, global_config
from .config import global_config
import urllib3
from .utils_user import get_user_nickname
from .utils_cq import parse_cq_code
from .cq_code import cq_code_tool,CQCode
Message = ForwardRef('Message') # 添加这行
# 加载配置
bot_config = BotConfig.load_config()
# 禁用SSL警告
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
@@ -49,6 +45,8 @@ class Message:
is_emoji: bool = False # 是否是表情包
has_emoji: bool = False # 是否包含表情包
translate_cq: bool = True # 是否翻译cq码
reply_benefits: float = 0.0
@@ -99,7 +97,7 @@ class Message:
- cq_code_list:分割出的聊天对象包括文本和CQ码
- trans_list:翻译后的对象列表
"""
print(f"\033[1;34m[调试信息]\033[0m 正在处理消息: {message}")
# print(f"\033[1;34m[调试信息]\033[0m 正在处理消息: {message}")
cq_code_dict_list = []
trans_list = []

View File

@@ -184,7 +184,7 @@ class MessageSendControl:
message.update_thinking_time()
thinking_time = message.thinking_time
if thinking_time < 90: # 最少思考2秒
if int(thinking_time) % 10 == 0:
if int(thinking_time) % 15 == 0:
print(f"\033[1;34m[调试]\033[0m 消息正在思考中,已思考{thinking_time:.1f}")
return
else:
@@ -208,7 +208,15 @@ class MessageSendControl:
print(f"\033[1;34m[调试]\033[0m 消息发送时间: {cost_time}")
current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(message.time))
print(f"\033[1;32m群 {group_id} 消息, 用户 {global_config.BOT_NICKNAME}, 时间: {current_time}:\033[0m {str(message.processed_plain_text)}")
await self.storage.store_message(message, None)
if message.is_emoji:
message.processed_plain_text = "[表情包]"
await self.storage.store_message(message, None)
else:
await self.storage.store_message(message, None)
queue.update_send_time()
if queue.has_messages():
await asyncio.sleep(

View File

@@ -6,6 +6,9 @@ import os
from .utils import get_embedding, combine_messages, get_recent_group_detailed_plain_text
from ...common.database import Database
from .config import global_config
from .topic_identifier import topic_identifier
from ..memory_system.memory import memory_graph
from random import choice
# 获取当前文件的绝对路径
current_dir = os.path.dirname(os.path.abspath(__file__))
@@ -35,6 +38,59 @@ class PromptBuilder:
Returns:
str: 构建好的prompt
"""
memory_prompt = ''
start_time = time.time() # 记录开始时间
topic = topic_identifier.identify_topic_jieba(message_txt)
# print(f"\033[1;32m[pb主题识别]\033[0m 主题: {topic}")
all_first_layer_items = [] # 存储所有第一层记忆
all_second_layer_items = {} # 用字典存储每个topic的第二层记忆
overlapping_second_layer = set() # 存储重叠的第二层记忆
if topic:
# 遍历所有topic
for current_topic in topic:
first_layer_items, second_layer_items = memory_graph.get_related_item(current_topic, depth=2)
# if first_layer_items:
# print(f"\033[1;32m[前额叶]\033[0m 主题 '{current_topic}' 的第一层记忆: {first_layer_items}")
# 记录第一层数据
all_first_layer_items.extend(first_layer_items)
# 记录第二层数据
all_second_layer_items[current_topic] = second_layer_items
# 检查是否有重叠的第二层数据
for other_topic, other_second_layer in all_second_layer_items.items():
if other_topic != current_topic:
# 找到重叠的记忆
overlap = set(second_layer_items) & set(other_second_layer)
if overlap:
# print(f"\033[1;32m[前额叶]\033[0m 发现主题 '{current_topic}' 和 '{other_topic}' 有共同的第二层记忆: {overlap}")
overlapping_second_layer.update(overlap)
# 合并所有需要的记忆
if all_first_layer_items:
print(f"\033[1;32m[前额叶]\033[0m 合并所有需要的记忆1: {all_first_layer_items}")
if overlapping_second_layer:
print(f"\033[1;32m[前额叶]\033[0m 合并所有需要的记忆2: {list(overlapping_second_layer)}")
all_memories = all_first_layer_items + list(overlapping_second_layer)
if all_memories: # 只在列表非空时选择随机项
random_item = choice(all_memories)
memory_prompt = f"看到这些聊天,你想起来{random_item}\n"
else:
memory_prompt = "" # 如果没有记忆,则返回空字符串
end_time = time.time() # 记录结束时间
print(f"\033[1;32m[回忆耗时]\033[0m 耗时: {(end_time - start_time):.3f}") # 输出耗时
#先禁用关系
if 0 > 30:
relation_prompt = "关系特别特别好,你很喜欢喜欢他"
@@ -54,26 +110,33 @@ class PromptBuilder:
bot_schedule_now_time,bot_schedule_now_activity = bot_schedule.get_current_task()
prompt_date = f'''今天是{current_date},现在是{current_time},你今天的日程是:\n{bot_schedule.today_schedule}\n你现在正在{bot_schedule_now_activity}\n'''
#知识构建(暂时禁用,因为知识库太少了)
#知识构建
start_time = time.time()
prompt_info = ''
promt_info_prompt = ''
prompt_info = self.get_prompt_info(message_txt)
prompt_info = self.get_prompt_info(message_txt,threshold=0.5)
if prompt_info:
prompt_info = f'''\n----------------------------------------------------\n你有以下这些[知识]
\n{prompt_info}\n
请你记住上面的[知识],之后可能会用到\n----------------------------------------------------\n'''
prompt_info = f'''\n----------------------------------------------------\n你有以下这些[知识]\n{prompt_info}\n请你记住上面的[知识],之后可能会用到\n----------------------------------------------------\n'''
promt_info_prompt = '你有一些[知识],在上面可以参考。'
print(f"\033[1;34m[调试信息]\033[0m 正在构建聊天上下文")
end_time = time.time()
print(f"\033[1;32m[知识检索]\033[0m 耗时: {(end_time - start_time):.3f}")
# print(f"\033[1;34m[调试]\033[0m 获取知识库内容结果: {prompt_info}")
# print(f"\033[1;34m[调试信息]\033[0m 正在构建聊天上下文")
chat_talking_prompt = ''
if group_id:
chat_talking_prompt = get_recent_group_detailed_plain_text(self.db, group_id, limit=global_config.MAX_CONTEXT_SIZE,combine = True)
print(f"\033[1;34m[调试]\033[0m 已从数据库获取群 {group_id} 的消息记录:{chat_talking_prompt}")
chat_talking_prompt = f"以下是群里正在聊天的内容:\n{chat_talking_prompt}"
# print(f"\033[1;34m[调试]\033[0m 已从数据库获取群 {group_id} 的消息记录:{chat_talking_prompt}")
#激活prompt构建
activate_prompt = ''
activate_prompt = f"以上是群里正在进行的聊天,昵称为 '{sender_name}' 的用户说的:{message_txt}。引起了你的注意,你和他{relation_prompt},你想要{relation_prompt_2}"
activate_prompt = f"以上是群里正在进行的聊天,{memory_prompt} 现在昵称为 '{sender_name}' 的用户说的:{message_txt}。引起了你的注意,你和他{relation_prompt},你想要{relation_prompt_2}"
#检测机器人相关词汇
bot_keywords = ['人机', 'bot', '机器', '入机', 'robot', '机器人']
@@ -87,13 +150,12 @@ class PromptBuilder:
prompt_personality = ''
personality_choice = random.random()
if personality_choice < 4/6: # 第一种人格
prompt_personality = f'''你的网名叫{global_config.BOT_NICKNAME},是一个学习地质的女大学生,喜欢摄影你会刷贴吧你正在浏览qq群,{promt_info_prompt},
{activate_prompt}
prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME}曾经是一个学习地质的女大学生,现在学习心理学和脑科学你会刷贴吧你正在浏览qq群,{promt_info_prompt},
现在请你给出日常且口语化的回复,平淡一些,尽量简短一些。{is_bot_prompt}
请注意把握群里的聊天内容,不要回复的太有条理,可以有个性。'''
elif personality_choice < 1: # 第二种人格
prompt_personality = f'''你的网名叫{global_config.BOT_NICKNAME},是一个女大学生,你有黑色头发,你会刷小红书, 你正在浏览qq群,{promt_info_prompt},
{activate_prompt}
prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},是一个女大学生,你有黑色头发,你会刷小红书, 你正在浏览qq群,{promt_info_prompt},
现在请你给出日常且口语化的回复,请表现你自己的见解,不要一昧迎合,尽量简短一些。{is_bot_prompt}
请你表达自己的见解和观点。可以有个性。'''
@@ -108,15 +170,18 @@ class PromptBuilder:
#额外信息要求
extra_info = '''但是记得回复平淡一些,简短一些,不要过多提及自身的背景, 记住不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只需要输出回复内容就好,不要输出其他任何内容'''
extra_info = '''但是记得回复平淡一些,简短一些,记住不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只需要输出回复内容就好,不要输出其他任何内容'''
#合并prompt
prompt = ""
# prompt += f"{prompt_info}\n"
prompt += f"{prompt_info}\n"
prompt += f"{prompt_date}\n"
prompt += f"{chat_talking_prompt}\n"
# prompt += f"{memory_prompt}\n"
# prompt += f"{activate_prompt}\n"
prompt += f"{prompt_personality}\n"
prompt += f"{prompt_ger}\n"
@@ -124,31 +189,23 @@ class PromptBuilder:
return prompt
def get_prompt_info(self,message:str):
def get_prompt_info(self,message:str,threshold:float):
related_info = ''
if len(message) > 10:
message_segments = [message[i:i+10] for i in range(0, len(message), 10)]
for segment in message_segments:
embedding = get_embedding(segment)
related_info += self.get_info_from_db(embedding)
related_info += self.get_info_from_db(embedding,threshold=threshold)
else:
embedding = get_embedding(message)
related_info += self.get_info_from_db(embedding)
related_info += self.get_info_from_db(embedding,threshold=threshold)
return related_info
def get_info_from_db(self, query_embedding: list, limit: int = 1, threshold: float = 0.5) -> str:
"""
从知识库中查找与输入向量最相似的内容
Args:
query_embedding: 查询向量
limit: 返回结果数量默认为2
threshold: 相似度阈值默认为0.5
Returns:
str: 找到的相关信息,如果相似度低于阈值则返回空字符串
"""
if not query_embedding:
return ''
# 使用余弦相似度计算
pipeline = [
{
@@ -206,6 +263,7 @@ class PromptBuilder:
]
results = list(self.db.db.knowledges.aggregate(pipeline))
# print(f"\033[1;34m[调试]\033[0m获取知识库内容结果: {results}")
if not results:
return ''

View File

@@ -7,6 +7,8 @@ import numpy as np
from .config import llm_config, global_config
import re
from typing import Dict
from collections import Counter
import math
def combine_messages(messages: List[Message]) -> str:
@@ -81,6 +83,39 @@ def cosine_similarity(v1, v2):
norm2 = np.linalg.norm(v2)
return dot_product / (norm1 * norm2)
def calculate_information_content(text):
"""计算文本的信息量(熵)"""
# 统计字符频率
char_count = Counter(text)
total_chars = len(text)
# 计算熵
entropy = 0
for count in char_count.values():
probability = count / total_chars
entropy -= probability * math.log2(probability)
return entropy
def get_cloest_chat_from_db(db, length: int, timestamp: str):
# 从数据库中根据时间戳获取离其最近的聊天记录
chat_text = ''
closest_record = db.db.messages.find_one({"time": {"$lte": timestamp}}, sort=[('time', -1)]) # 调试输出
# print(f"距离time最近的消息时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(closest_record['time'])))}")
if closest_record:
closest_time = closest_record['time']
group_id = closest_record['group_id'] # 获取groupid
# 获取该时间戳之后的length条消息且groupid相同
chat_record = list(db.db.messages.find({"time": {"$gt": closest_time}, "group_id": group_id}).sort('time', 1).limit(length))
for record in chat_record:
time_str = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(record['time'])))
chat_text += f'[{time_str}] {record["user_nickname"] or "用户" + str(record["user_id"])}: {record["processed_plain_text"]}\n' # 添加发送者和时间信息
return chat_text
return [] # 如果没有找到记录,返回空列表
def get_recent_group_messages(db, group_id: int, limit: int = 12) -> list:
"""从数据库获取群组最近的消息记录

View File

@@ -4,11 +4,9 @@ import hashlib
import time
import os
from ...common.database import Database
from .config import BotConfig
import zlib # 用于 CRC32
import base64
bot_config = BotConfig.load_config()
from .config import global_config
def storage_image(image_data: bytes,type: str, max_size: int = 200) -> bytes:
@@ -39,12 +37,12 @@ def storage_compress_image(image_data: bytes, max_size: int = 200) -> bytes:
# 连接数据库
db = Database(
host=bot_config.MONGODB_HOST,
port=bot_config.MONGODB_PORT,
db_name=bot_config.DATABASE_NAME,
username=bot_config.MONGODB_USERNAME,
password=bot_config.MONGODB_PASSWORD,
auth_source=bot_config.MONGODB_AUTH_SOURCE
host=global_config.MONGODB_HOST,
port=global_config.MONGODB_PORT,
db_name=global_config.DATABASE_NAME,
username=global_config.MONGODB_USERNAME,
password=global_config.MONGODB_PASSWORD,
auth_source=global_config.MONGODB_AUTH_SOURCE
)
# 检查是否已存在相同哈希值的图片

View File

@@ -22,22 +22,31 @@ class WillingManager:
"""设置指定群组的回复意愿"""
self.group_reply_willing[group_id] = willing
def change_reply_willing_received(self, group_id: int, topic: str, is_mentioned_bot: bool, config, user_id: int = None, is_emoji: bool = False) -> float:
def change_reply_willing_received(self, group_id: int, topic: str, is_mentioned_bot: bool, config, user_id: int = None, is_emoji: bool = False, interested_rate: float = 0) -> float:
"""改变指定群组的回复意愿并返回回复概率"""
current_willing = self.group_reply_willing.get(group_id, 0)
if topic and current_willing < 1:
current_willing += 0.2
elif topic:
current_willing += 0.05
print(f"初始意愿: {current_willing}")
# if topic and current_willing < 1:
# current_willing += 0.2
# elif topic:
# current_willing += 0.05
if is_mentioned_bot and current_willing < 1.0:
current_willing += 0.9
print(f"被提及, 当前意愿: {current_willing}")
elif is_mentioned_bot:
current_willing += 0.05
print(f"被重复提及, 当前意愿: {current_willing}")
if is_emoji:
current_willing *= 0.2
current_willing *= 0.15
print(f"表情包, 当前意愿: {current_willing}")
if interested_rate > 0.6:
print(f"兴趣度: {interested_rate}, 当前意愿: {current_willing}")
current_willing += interested_rate-0.45
self.group_reply_willing[group_id] = min(current_willing, 3.0)
@@ -55,15 +64,15 @@ class WillingManager:
return reply_probability
def change_reply_willing_sent(self, group_id: int):
"""发送消息后降低群组的回复意愿"""
"""开始思考后降低群组的回复意愿"""
current_willing = self.group_reply_willing.get(group_id, 0)
self.group_reply_willing[group_id] = max(0, current_willing - 1.8)
self.group_reply_willing[group_id] = max(0, current_willing - 2)
def change_reply_willing_after_sent(self, group_id: int):
"""发送消息后提高群组的回复意愿"""
current_willing = self.group_reply_willing.get(group_id, 0)
if current_willing < 1:
self.group_reply_willing[group_id] = min(1, current_willing + 0.4)
self.group_reply_willing[group_id] = min(1, current_willing + 0.3)
async def ensure_started(self):
"""确保衰减任务已启动"""

View File

@@ -0,0 +1,186 @@
import os
import sys
import numpy as np
import requests
import time
# 添加项目根目录到 Python 路径
root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../.."))
sys.path.append(root_path)
from src.common.database import Database
from src.plugins.chat.config import llm_config
# 直接配置数据库连接信息
Database.initialize(
"127.0.0.1", # MongoDB 主机
27017, # MongoDB 端口
"MegBot" # 数据库名称
)
class KnowledgeLibrary:
def __init__(self):
self.db = Database.get_instance()
self.raw_info_dir = "data/raw_info"
self._ensure_dirs()
def _ensure_dirs(self):
"""确保必要的目录存在"""
os.makedirs(self.raw_info_dir, exist_ok=True)
def get_embedding(self, text: str) -> list:
"""获取文本的embedding向量"""
url = "https://api.siliconflow.cn/v1/embeddings"
payload = {
"model": "BAAI/bge-m3",
"input": text,
"encoding_format": "float"
}
headers = {
"Authorization": f"Bearer {llm_config.SILICONFLOW_API_KEY}",
"Content-Type": "application/json"
}
response = requests.post(url, json=payload, headers=headers)
if response.status_code != 200:
print(f"获取embedding失败: {response.text}")
return None
return response.json()['data'][0]['embedding']
def process_files(self):
"""处理raw_info目录下的所有txt文件"""
for filename in os.listdir(self.raw_info_dir):
if filename.endswith('.txt'):
file_path = os.path.join(self.raw_info_dir, filename)
self.process_single_file(file_path)
def process_single_file(self, file_path: str):
"""处理单个文件"""
try:
# 检查文件是否已处理
if self.db.db.processed_files.find_one({"file_path": file_path}):
print(f"文件已处理过,跳过: {file_path}")
return
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
# 按1024字符分段
segments = [content[i:i+300] for i in range(0, len(content), 300)]
# 处理每个分段
for segment in segments:
if not segment.strip(): # 跳过空段
continue
# 获取embedding
embedding = self.get_embedding(segment)
if not embedding:
continue
# 存储到数据库
doc = {
"content": segment,
"embedding": embedding,
"file_path": file_path,
"segment_length": len(segment)
}
# 使用文本内容的哈希值作为唯一标识
content_hash = hash(segment)
# 更新或插入文档
self.db.db.knowledges.update_one(
{"content_hash": content_hash},
{"$set": doc},
upsert=True
)
# 记录文件已处理
self.db.db.processed_files.insert_one({
"file_path": file_path,
"processed_time": time.time()
})
print(f"成功处理文件: {file_path}")
except Exception as e:
print(f"处理文件 {file_path} 时出错: {str(e)}")
def search_similar_segments(self, query: str, limit: int = 5) -> list:
"""搜索与查询文本相似的片段"""
query_embedding = self.get_embedding(query)
if not query_embedding:
return []
# 使用余弦相似度计算
pipeline = [
{
"$addFields": {
"dotProduct": {
"$reduce": {
"input": {"$range": [0, {"$size": "$embedding"}]},
"initialValue": 0,
"in": {
"$add": [
"$$value",
{"$multiply": [
{"$arrayElemAt": ["$embedding", "$$this"]},
{"$arrayElemAt": [query_embedding, "$$this"]}
]}
]
}
}
},
"magnitude1": {
"$sqrt": {
"$reduce": {
"input": "$embedding",
"initialValue": 0,
"in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]}
}
}
},
"magnitude2": {
"$sqrt": {
"$reduce": {
"input": query_embedding,
"initialValue": 0,
"in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]}
}
}
}
}
},
{
"$addFields": {
"similarity": {
"$divide": ["$dotProduct", {"$multiply": ["$magnitude1", "$magnitude2"]}]
}
}
},
{"$sort": {"similarity": -1}},
{"$limit": limit},
{"$project": {"content": 1, "similarity": 1, "file_path": 1}}
]
results = list(self.db.db.knowledges.aggregate(pipeline))
return results
# 创建单例实例
knowledge_library = KnowledgeLibrary()
if __name__ == "__main__":
# 测试知识库功能
print("开始处理知识库文件...")
knowledge_library.process_files()
# 测试搜索功能
test_query = "麦麦评价一下僕と花"
print(f"\n搜索与'{test_query}'相似的内容:")
results = knowledge_library.search_similar_segments(test_query)
for result in results:
print(f"相似度: {result['similarity']:.4f}")
print(f"内容: {result['content'][:100]}...")
print("-" * 50)

View File

@@ -0,0 +1,264 @@
# -*- coding: utf-8 -*-
import sys
import jieba
from llm_module import LLMModel
import networkx as nx
import matplotlib.pyplot as plt
import math
from collections import Counter
import datetime
import random
import time
# from chat.config import global_config
import sys
sys.path.append("C:/GitHub/MaiMBot") # 添加项目根目录到 Python 路径
from src.common.database import Database # 使用正确的导入语法
class Memory_graph:
def __init__(self):
self.G = nx.Graph() # 使用 networkx 的图结构
self.db = Database.get_instance()
def connect_dot(self, concept1, concept2):
self.G.add_edge(concept1, concept2)
def add_dot(self, concept, memory):
if concept in self.G:
# 如果节点已存在,将新记忆添加到现有列表中
if 'memory_items' in self.G.nodes[concept]:
if not isinstance(self.G.nodes[concept]['memory_items'], list):
# 如果当前不是列表,将其转换为列表
self.G.nodes[concept]['memory_items'] = [self.G.nodes[concept]['memory_items']]
self.G.nodes[concept]['memory_items'].append(memory)
else:
self.G.nodes[concept]['memory_items'] = [memory]
else:
# 如果是新节点,创建新的记忆列表
self.G.add_node(concept, memory_items=[memory])
def get_dot(self, concept):
# 检查节点是否存在于图中
if concept in self.G:
# 从图中获取节点数据
node_data = self.G.nodes[concept]
# print(node_data)
# 创建新的Memory_dot对象
return concept,node_data
return None
def get_related_item(self, topic, depth=1):
if topic not in self.G:
return [], []
first_layer_items = []
second_layer_items = []
# 获取相邻节点
neighbors = list(self.G.neighbors(topic))
# print(f"第一层: {topic}")
# 获取当前节点的记忆项
node_data = self.get_dot(topic)
if node_data:
concept, data = node_data
if 'memory_items' in data:
memory_items = data['memory_items']
if isinstance(memory_items, list):
first_layer_items.extend(memory_items)
else:
first_layer_items.append(memory_items)
# 只在depth=2时获取第二层记忆
if depth >= 2:
# 获取相邻节点的记忆项
for neighbor in neighbors:
# print(f"第二层: {neighbor}")
node_data = self.get_dot(neighbor)
if node_data:
concept, data = node_data
if 'memory_items' in data:
memory_items = data['memory_items']
if isinstance(memory_items, list):
second_layer_items.extend(memory_items)
else:
second_layer_items.append(memory_items)
return first_layer_items, second_layer_items
def store_memory(self):
for node in self.G.nodes():
dot_data = {
"concept": node
}
self.db.db.store_memory_dots.insert_one(dot_data)
@property
def dots(self):
# 返回所有节点对应的 Memory_dot 对象
return [self.get_dot(node) for node in self.G.nodes()]
def get_random_chat_from_db(self, length: int, timestamp: str):
# 从数据库中根据时间戳获取离其最近的聊天记录
chat_text = ''
closest_record = self.db.db.messages.find_one({"time": {"$lte": timestamp}}, sort=[('time', -1)]) # 调试输出
print(f"距离time最近的消息时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(closest_record['time'])))}")
if closest_record:
closest_time = closest_record['time']
group_id = closest_record['group_id'] # 获取groupid
# 获取该时间戳之后的length条消息且groupid相同
chat_record = list(self.db.db.messages.find({"time": {"$gt": closest_time}, "group_id": group_id}).sort('time', 1).limit(length))
for record in chat_record:
time_str = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(record['time'])))
chat_text += f'[{time_str}] {record["user_nickname"] or "用户" + str(record["user_id"])}: {record["processed_plain_text"]}\n' # 添加发送者和时间信息
return chat_text
return [] # 如果没有找到记录,返回空列表
def save_graph_to_db(self):
# 清空现有的图数据
self.db.db.graph_data.delete_many({})
# 保存节点
for node in self.G.nodes(data=True):
node_data = {
'concept': node[0],
'memory_items': node[1].get('memory_items', []) # 默认为空列表
}
self.db.db.graph_data.nodes.insert_one(node_data)
# 保存边
for edge in self.G.edges():
edge_data = {
'source': edge[0],
'target': edge[1]
}
self.db.db.graph_data.edges.insert_one(edge_data)
def load_graph_from_db(self):
# 清空当前图
self.G.clear()
# 加载节点
nodes = self.db.db.graph_data.nodes.find()
for node in nodes:
memory_items = node.get('memory_items', [])
if not isinstance(memory_items, list):
memory_items = [memory_items] if memory_items else []
self.G.add_node(node['concept'], memory_items=memory_items)
# 加载边
edges = self.db.db.graph_data.edges.find()
for edge in edges:
self.G.add_edge(edge['source'], edge['target'])
def main():
# 初始化数据库
Database.initialize(
"127.0.0.1",
27017,
"MegBot"
)
memory_graph = Memory_graph()
# 创建LLM模型实例
memory_graph.load_graph_from_db()
# 展示两种不同的可视化方式
print("\n按连接数量着色的图谱:")
visualize_graph(memory_graph, color_by_memory=False)
print("\n按记忆数量着色的图谱:")
visualize_graph(memory_graph, color_by_memory=True)
# memory_graph.save_graph_to_db()
while True:
query = input("请输入新的查询概念(输入'退出'以结束):")
if query.lower() == '退出':
break
items_list = memory_graph.get_related_item(query)
if items_list:
# print(items_list)
for memory_item in items_list:
print(memory_item)
else:
print("未找到相关记忆。")
def segment_text(text):
seg_text = list(jieba.cut(text))
return seg_text
def find_topic(text, topic_num):
prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个话题,帮我列出来,用逗号隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要告诉我其他内容。'
return prompt
def topic_what(text, topic):
prompt = f'这是一段文字:{text}。我想知道这记忆里有什么关于{topic}的话题,帮我总结成一句自然的话,可以包含时间和人物。只输出这句话就好'
return prompt
def visualize_graph(memory_graph: Memory_graph, color_by_memory: bool = False):
# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
G = memory_graph.G
# 保存图到本地
nx.write_gml(G, "memory_graph.gml") # 保存为 GML 格式
# 根据连接条数或记忆数量设置节点颜色
node_colors = []
nodes = list(G.nodes()) # 获取图中实际的节点列表
if color_by_memory:
# 计算每个节点的记忆数量
memory_counts = []
for node in nodes:
memory_items = G.nodes[node].get('memory_items', [])
if isinstance(memory_items, list):
count = len(memory_items)
else:
count = 1 if memory_items else 0
memory_counts.append(count)
max_memories = max(memory_counts) if memory_counts else 1
for count in memory_counts:
# 使用不同的颜色方案:红色表示记忆多,蓝色表示记忆少
if max_memories > 0:
intensity = min(1.0, count / max_memories)
color = (intensity, 0, 1.0 - intensity) # 从蓝色渐变到红色
else:
color = (0, 0, 1) # 如果没有记忆,则为蓝色
node_colors.append(color)
else:
# 使用原来的连接数量着色方案
max_degree = max(G.degree(), key=lambda x: x[1])[1] if G.degree() else 1
for node in nodes:
degree = G.degree(node)
if max_degree > 0:
red = min(1.0, degree / max_degree)
blue = 1.0 - red
color = (red, 0, blue)
else:
color = (0, 0, 1)
node_colors.append(color)
# 绘制图形
plt.figure(figsize=(12, 8))
pos = nx.spring_layout(G, k=1, iterations=50)
nx.draw(G, pos,
with_labels=True,
node_color=node_colors,
node_size=2000,
font_size=10,
font_family='SimHei',
font_weight='bold')
title = '记忆图谱可视化 - ' + ('按记忆数量着色' if color_by_memory else '按连接数量着色')
plt.title(title, fontsize=16, fontfamily='SimHei')
plt.show()
if __name__ == "__main__":
main()

View File

@@ -2,6 +2,7 @@ import os
import requests
from dotenv import load_dotenv
from typing import Tuple, Union
import time
# 加载环境变量
load_dotenv()
@@ -32,16 +33,34 @@ class LLMModel:
# 发送请求到完整的chat/completions端点
api_url = f"{self.base_url.rstrip('/')}/chat/completions"
try:
response = requests.post(api_url, headers=headers, json=data)
response.raise_for_status() # 检查响应状态
max_retries = 3
base_wait_time = 15 # 基础等待时间(秒)
result = response.json()
if "choices" in result and len(result["choices"]) > 0:
content = result["choices"][0]["message"]["content"]
reasoning_content = result["choices"][0]["message"].get("reasoning_content", "")
return content, reasoning_content # 返回内容和推理内容
return "没有返回结果", "" # 返回两个值
for retry in range(max_retries):
try:
response = requests.post(api_url, headers=headers, json=data)
except requests.exceptions.RequestException as e:
return f"请求失败: {str(e)}", "" # 返回错误信息和空字符串
if response.status_code == 429:
wait_time = base_wait_time * (2 ** retry) # 指数退避
print(f"遇到请求限制(429),等待{wait_time}秒后重试...")
time.sleep(wait_time)
continue
response.raise_for_status() # 检查其他响应状态
result = response.json()
if "choices" in result and len(result["choices"]) > 0:
content = result["choices"][0]["message"]["content"]
reasoning_content = result["choices"][0]["message"].get("reasoning_content", "")
return content, reasoning_content
return "没有返回结果", ""
except requests.exceptions.RequestException as e:
if retry < max_retries - 1: # 如果还有重试机会
wait_time = base_wait_time * (2 ** retry)
print(f"请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
time.sleep(wait_time)
else:
return f"请求失败: {str(e)}", ""
return "达到最大重试次数,请求仍然失败", ""

View File

@@ -0,0 +1,82 @@
import os
import requests
from dotenv import load_dotenv
from typing import Tuple, Union
import time
from ..chat.config import BotConfig
# 获取当前文件的绝对路径
current_dir = os.path.dirname(os.path.abspath(__file__))
root_dir = os.path.abspath(os.path.join(current_dir, '..', '..', '..'))
env_path = os.path.join(root_dir, 'config', '.env')
# 加载环境变量
print(f"尝试从 {env_path} 加载环境变量配置")
if os.path.exists(env_path):
load_dotenv(env_path)
print("成功加载环境变量配置")
else:
print(f"环境变量配置文件不存在: {env_path}")
class LLMModel:
# def __init__(self, model_name="deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", **kwargs):
def __init__(self, model_name="Pro/deepseek-ai/DeepSeek-V3", **kwargs):
self.model_name = model_name
self.params = kwargs
self.api_key = os.getenv("SILICONFLOW_KEY")
self.base_url = os.getenv("SILICONFLOW_BASE_URL")
if not self.api_key or not self.base_url:
raise ValueError("环境变量未正确加载SILICONFLOW_KEY 或 SILICONFLOW_BASE_URL 未设置")
print(f"API URL: {self.base_url}") # 打印 base_url 用于调试
def generate_response(self, prompt: str) -> Tuple[str, str]:
"""根据输入的提示生成模型的响应"""
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
# 构建请求体
data = {
"model": self.model_name,
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.5,
**self.params
}
# 发送请求到完整的chat/completions端点
api_url = f"{self.base_url.rstrip('/')}/chat/completions"
max_retries = 3
base_wait_time = 15 # 基础等待时间(秒)
for retry in range(max_retries):
try:
response = requests.post(api_url, headers=headers, json=data)
if response.status_code == 429:
wait_time = base_wait_time * (2 ** retry) # 指数退避
print(f"遇到请求限制(429),等待{wait_time}秒后重试...")
time.sleep(wait_time)
continue
response.raise_for_status() # 检查其他响应状态
result = response.json()
if "choices" in result and len(result["choices"]) > 0:
content = result["choices"][0]["message"]["content"]
reasoning_content = result["choices"][0]["message"].get("reasoning_content", "")
return content, reasoning_content
return "没有返回结果", ""
except requests.exceptions.RequestException as e:
if retry < max_retries - 1: # 如果还有重试机会
wait_time = base_wait_time * (2 ** retry)
print(f"请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
time.sleep(wait_time)
else:
return f"请求失败: {str(e)}", ""
return "达到最大重试次数,请求仍然失败", ""

View File

@@ -1,7 +1,6 @@
# -*- coding: utf-8 -*-
import sys
import jieba
from llm_module import LLMModel
from .llm_module import LLMModel
import networkx as nx
import matplotlib.pyplot as plt
import math
@@ -9,10 +8,10 @@ from collections import Counter
import datetime
import random
import time
from ..chat.config import global_config
import sys
sys.path.append("C:/GitHub/MegMeg-bot") # 添加项目根目录到 Python 路径
from src.common.database import Database # 使用正确的导入语法
from ...common.database import Database # 使用正确的导入语法
from ..chat.utils import calculate_information_content, get_cloest_chat_from_db
class Memory_graph:
def __init__(self):
@@ -23,93 +22,128 @@ class Memory_graph:
self.G.add_edge(concept1, concept2)
def add_dot(self, concept, memory):
self.G.add_node(concept, memory_items=memory)
if concept in self.G:
# 如果节点已存在,将新记忆添加到现有列表中
if 'memory_items' in self.G.nodes[concept]:
if not isinstance(self.G.nodes[concept]['memory_items'], list):
# 如果当前不是列表,将其转换为列表
self.G.nodes[concept]['memory_items'] = [self.G.nodes[concept]['memory_items']]
self.G.nodes[concept]['memory_items'].append(memory)
else:
self.G.nodes[concept]['memory_items'] = [memory]
else:
# 如果是新节点,创建新的记忆列表
self.G.add_node(concept, memory_items=[memory])
def get_dot(self, concept):
# 检查节点是否存在于图中
if concept in self.G:
# 从图中获取节点数据
node_data = self.G.nodes[concept]
print(node_data)
# print(node_data)
# 创建新的Memory_dot对象
return concept,node_data
return None
def get_related_item(self, topic, depth=1):
if topic not in self.G:
return set()
return [], []
first_layer_items = []
second_layer_items = []
items_set = set()
# 获取相邻节点
neighbors = list(self.G.neighbors(topic))
print(f"第一层: {topic}")
# print(f"第一层: {topic}")
# 获取当前节点的记忆项
node_data = self.get_dot(topic)
if node_data:
concept, data = node_data
if 'memory_items' in data:
items_set.add(data['memory_items'])
memory_items = data['memory_items']
if isinstance(memory_items, list):
first_layer_items.extend(memory_items)
else:
first_layer_items.append(memory_items)
# 获取相邻节点的记忆
for neighbor in neighbors:
print(f"第二层: {neighbor}")
node_data = self.get_dot(neighbor)
if node_data:
concept, data = node_data
if 'memory_items' in data:
items_set.add(data['memory_items'])
# 只在depth=2时获取第二层记忆
if depth >= 2:
# 获取相邻节点的记忆项
for neighbor in neighbors:
# print(f"第二层: {neighbor}")
node_data = self.get_dot(neighbor)
if node_data:
concept, data = node_data
if 'memory_items' in data:
memory_items = data['memory_items']
if isinstance(memory_items, list):
second_layer_items.extend(memory_items)
else:
second_layer_items.append(memory_items)
return items_set
def store_memory(self):
for node in self.G.nodes():
dot_data = {
"concept": node
}
self.db.db.store_memory_dots.insert_one(dot_data)
return first_layer_items, second_layer_items
@property
def dots(self):
# 返回所有节点对应的 Memory_dot 对象
return [self.get_dot(node) for node in self.G.nodes()]
def get_random_chat_from_db(self, length: int, timestamp: str):
# 从数据库中根据时间戳获取离其最近的聊天记录
chat_text = ''
closest_record = self.db.db.messages.find_one({"time": {"$lte": timestamp}}, sort=[('time', -1)]) # 调试输出
print(f"距离time最近的消息时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(closest_record['time'])))}")
if closest_record:
closest_time = closest_record['time']
group_id = closest_record['group_id'] # 获取groupid
# 获取该时间戳之后的length条消息且groupid相同
chat_record = list(self.db.db.messages.find({"time": {"$gt": closest_time}, "group_id": group_id}).sort('time', 1).limit(length))
for record in chat_record:
time_str = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(record['time'])))
chat_text += f'[{time_str}] {record["user_nickname"] or "用户" + str(record["user_id"])}: {record["processed_plain_text"]}\n' # 添加发送者和时间信息
return chat_text
return [] # 如果没有找到记录,返回空列表
def save_graph_to_db(self):
# 清空现有的图数据
self.db.db.graph_data.delete_many({})
# 保存节点
for node in self.G.nodes(data=True):
node_data = {
'concept': node[0],
'memory_items': node[1].get('memory_items', None)
}
self.db.db.graph_data.nodes.insert_one(node_data)
concept = node[0]
memory_items = node[1].get('memory_items', [])
# 查找是否存在同名节点
existing_node = self.db.db.graph_data.nodes.find_one({'concept': concept})
if existing_node:
# 如果存在,合并memory_items并去重
existing_items = existing_node.get('memory_items', [])
if not isinstance(existing_items, list):
existing_items = [existing_items] if existing_items else []
# 合并并去重
all_items = list(set(existing_items + memory_items))
# 更新节点
self.db.db.graph_data.nodes.update_one(
{'concept': concept},
{'$set': {'memory_items': all_items}}
)
else:
# 如果不存在,创建新节点
node_data = {
'concept': concept,
'memory_items': memory_items
}
self.db.db.graph_data.nodes.insert_one(node_data)
# 保存边
for edge in self.G.edges():
edge_data = {
'source': edge[0],
'target': edge[1]
}
self.db.db.graph_data.edges.insert_one(edge_data)
source, target = edge
# 查找是否存在同样的边
existing_edge = self.db.db.graph_data.edges.find_one({
'source': source,
'target': target
})
if existing_edge:
# 如果存在,增加num属性
num = existing_edge.get('num', 1) + 1
self.db.db.graph_data.edges.update_one(
{'source': source, 'target': target},
{'$set': {'num': num}}
)
else:
# 如果不存在,创建新边
edge_data = {
'source': source,
'target': target,
'num': 1
}
self.db.db.graph_data.edges.insert_one(edge_data)
def load_graph_from_db(self):
# 清空当前图
@@ -117,127 +151,99 @@ class Memory_graph:
# 加载节点
nodes = self.db.db.graph_data.nodes.find()
for node in nodes:
self.G.add_node(node['concept'], memory_items=node['memory_items'])
memory_items = node.get('memory_items', [])
if not isinstance(memory_items, list):
memory_items = [memory_items] if memory_items else []
self.G.add_node(node['concept'], memory_items=memory_items)
# 加载边
edges = self.db.db.graph_data.edges.find()
for edge in edges:
self.G.add_edge(edge['source'], edge['target'])
def calculate_information_content(text):
"""计算文本的信息量(熵)"""
# 统计字符频率
char_count = Counter(text)
total_chars = len(text)
# 计算熵
entropy = 0
for count in char_count.values():
probability = count / total_chars
entropy -= probability * math.log2(probability)
return entropy
def main():
# 初始化数据库
Database.initialize(
"127.0.0.1",
27017,
"MegBot"
)
memory_graph = Memory_graph()
# 创建LLM模型实例
llm_model = LLMModel()
llm_model_small = LLMModel(model_name="deepseek-ai/DeepSeek-V2.5")
# 使用当前时间戳进行测试
current_timestamp = datetime.datetime.now().timestamp()
chat_text = []
chat_size =30
for _ in range(60): # 循环10次
random_time = current_timestamp - random.randint(1, 3600*3) # 随机时间
print(f"随机时间戳对应的时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(random_time))}")
chat_ = memory_graph.get_random_chat_from_db(chat_size, random_time)
chat_text.append(chat_) # 拼接所有text
self.G.add_edge(edge['source'], edge['target'], num=edge.get('num', 1))
for input_text in chat_text:
print(input_text)
first_memory = set()
first_memory = memory_compress(input_text, llm_model_small, llm_model_small, rate=2.5)
#将记忆加入到图谱中
for topic, memory in first_memory:
topics = segment_text(topic)
print(f"话题: {topic},节点: {topics}, 记忆: {memory}")
for split_topic in topics:
memory_graph.add_dot(split_topic,memory)
for split_topic in topics:
for other_split_topic in topics:
if split_topic != other_split_topic:
memory_graph.connect_dot(split_topic, other_split_topic)
# memory_graph.store_memory()
visualize_graph(memory_graph)
# 海马体
class Hippocampus:
def __init__(self,memory_graph:Memory_graph):
self.memory_graph = memory_graph
self.llm_model = LLMModel()
self.llm_model_small = LLMModel(model_name="deepseek-ai/DeepSeek-V2.5")
memory_graph.save_graph_to_db()
# memory_graph.load_graph_from_db()
def get_memory_sample(self,chat_size=20,time_frequency:dict={'near':2,'mid':4,'far':3}):
current_timestamp = datetime.datetime.now().timestamp()
chat_text = []
#短期1h 中期4h 长期24h
for _ in range(time_frequency.get('near')): # 循环10次
random_time = current_timestamp - random.randint(1, 3600) # 随机时间
# print(f"获得 最近 随机时间戳对应的时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(random_time))}")
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
chat_text.append(chat_)
for _ in range(time_frequency.get('mid')): # 循环10次
random_time = current_timestamp - random.randint(3600, 3600*4) # 随机时间
# print(f"获得 最近 随机时间戳对应的时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(random_time))}")
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
chat_text.append(chat_)
for _ in range(time_frequency.get('far')): # 循环10次
random_time = current_timestamp - random.randint(3600*4, 3600*24) # 随机时间
# print(f"获得 最近 随机时间戳对应的时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(random_time))}")
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
chat_text.append(chat_)
return chat_text
while True:
query = input("请输入新的查询概念(输入'退出'以结束):")
if query.lower() == '退出':
break
items_list = memory_graph.get_related_item(query)
if items_list:
# print(items_list)
for memory_item in items_list:
print(memory_item)
else:
print("未找到相关记忆。")
def build_memory(self,chat_size=12):
#最近消息获取频率
time_frequency = {'near':1,'mid':2,'far':2}
memory_sample = self.get_memory_sample(chat_size,time_frequency)
# print(f"\033[1;32m[记忆构建]\033[0m 获取记忆样本: {memory_sample}")
while True:
query = input("请输入问题:")
if query.lower() == '退出':
break
for i, input_text in enumerate(memory_sample, 1):
#加载进度可视化
progress = (i / len(memory_sample)) * 100
bar_length = 30
filled_length = int(bar_length * i // len(memory_sample))
bar = '' * filled_length + '-' * (bar_length - filled_length)
print(f"\n进度: [{bar}] {progress:.1f}% ({i}/{len(memory_sample)})")
topic_prompt = find_topic(query, 3)
topic_response = llm_model.generate_response(topic_prompt)
# 生成压缩后记忆
first_memory = set()
first_memory = self.memory_compress(input_text, 2.5)
# 延时防止访问超频
# time.sleep(5)
#将记忆加入到图谱中
for topic, memory in first_memory:
topics = segment_text(topic)
print(f"\033[1;34m话题\033[0m: {topic},节点: {topics}, 记忆: {memory}")
for split_topic in topics:
self.memory_graph.add_dot(split_topic,memory)
for split_topic in topics:
for other_split_topic in topics:
if split_topic != other_split_topic:
self.memory_graph.connect_dot(split_topic, other_split_topic)
self.memory_graph.save_graph_to_db()
def memory_compress(self, input_text, rate=1):
information_content = calculate_information_content(input_text)
print(f"文本的信息量(熵): {information_content:.4f} bits")
topic_num = max(1, min(5, int(information_content * rate / 4)))
# print(topic_num)
topic_prompt = find_topic(input_text, topic_num)
topic_response = self.llm_model.generate_response(topic_prompt)
# 检查 topic_response 是否为元组
if isinstance(topic_response, tuple):
topics = topic_response[0].split(",") # 假设第一个元素是我们需要的字符串
else:
topics = topic_response.split(",")
print(topics)
for keyword in topics:
items_list = memory_graph.get_related_item(keyword)
if items_list:
print(items_list)
def memory_compress(input_text, llm_model, llm_model_small, rate=1):
information_content = calculate_information_content(input_text)
print(f"文本的信息量(熵): {information_content:.4f} bits")
topic_num = max(1, min(5, int(information_content * rate / 4)))
print(topic_num)
topic_prompt = find_topic(input_text, topic_num)
topic_response = llm_model.generate_response(topic_prompt)
# 检查 topic_response 是否为元组
if isinstance(topic_response, tuple):
topics = topic_response[0].split(",") # 假设第一个元素是我们需要的字符串
else:
topics = topic_response.split(",")
print(topics)
compressed_memory = set()
for topic in topics:
topic_what_prompt = topic_what(input_text,topic)
topic_what_response = llm_model_small.generate_response(topic_what_prompt)
compressed_memory.add((topic.strip(), topic_what_response[0])) # 将话题和记忆作为元组存储
return compressed_memory
# print(topics)
compressed_memory = set()
for topic in topics:
topic_what_prompt = topic_what(input_text,topic)
topic_what_response = self.llm_model_small.generate_response(topic_what_prompt)
compressed_memory.add((topic.strip(), topic_what_response[0])) # 将话题和记忆作为元组存储
return compressed_memory
def segment_text(text):
@@ -252,48 +258,21 @@ def topic_what(text, topic):
prompt = f'这是一段文字:{text}。我想知道这记忆里有什么关于{topic}的话题,帮我总结成一句自然的话,可以包含时间和人物。只输出这句话就好'
return prompt
def visualize_graph(memory_graph: Memory_graph):
# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
G = memory_graph.G
# 保存图到本地
nx.write_gml(G, "memory_graph.gml") # 保存为 GML 格式
# 根据连接条数设置节点颜色
node_colors = []
nodes = list(G.nodes()) # 获取图中实际的节点列表
max_degree = max(G.degree(), key=lambda x: x[1])[1] if G.degree() else 1 # 获取最大连接数
for node in nodes:
degree = G.degree(node) # 获取节点的度
# 计算颜色,使用渐变效果
if max_degree > 0:
red = min(1.0, degree / max_degree) # 红色分量随连接数增加而增加
blue = 1.0 - red # 蓝色分量随连接数增加而减少
color = (red, 0, blue)
else:
color = (0, 0, 1) # 如果没有连接,则为蓝色
node_colors.append(color)
# 绘制图形
plt.figure(figsize=(12, 8))
pos = nx.spring_layout(G, k=1, iterations=50) # 使用弹簧布局,调整参数使布局更合理
nx.draw(G, pos,
with_labels=True,
node_color=node_colors,
node_size=2000,
font_size=10,
font_family='SimHei', # 设置节点标签的字体
font_weight='bold')
plt.title('记忆图谱可视化', fontsize=16, fontfamily='SimHei')
plt.show()
if __name__ == "__main__":
main()
start_time = time.time()
Database.initialize(
global_config.MONGODB_HOST,
global_config.MONGODB_PORT,
global_config.DATABASE_NAME
)
#创建记忆图
memory_graph = Memory_graph()
#加载数据库中存储的记忆图
memory_graph.load_graph_from_db()
#创建海马体
hippocampus = Hippocampus(memory_graph)
end_time = time.time()
print(f"\033[32m[加载海马体耗时: {end_time - start_time:.2f} 秒]\033[0m")

View File

@@ -0,0 +1,428 @@
# -*- coding: utf-8 -*-
import sys
import jieba
import networkx as nx
import matplotlib.pyplot as plt
import math
from collections import Counter
import datetime
import random
import time
import os
from dotenv import load_dotenv
# from chat.config import global_config
sys.path.append("C:/GitHub/MaiMBot") # 添加项目根目录到 Python 路径
from src.common.database import Database # 使用正确的导入语法
from src.plugins.memory_system.llm_module import LLMModel
class Memory_graph:
def __init__(self):
self.G = nx.Graph() # 使用 networkx 的图结构
self.db = Database.get_instance()
def connect_dot(self, concept1, concept2):
self.G.add_edge(concept1, concept2)
def add_dot(self, concept, memory):
if concept in self.G:
# 如果节点已存在,将新记忆添加到现有列表中
if 'memory_items' in self.G.nodes[concept]:
if not isinstance(self.G.nodes[concept]['memory_items'], list):
# 如果当前不是列表,将其转换为列表
self.G.nodes[concept]['memory_items'] = [self.G.nodes[concept]['memory_items']]
self.G.nodes[concept]['memory_items'].append(memory)
else:
self.G.nodes[concept]['memory_items'] = [memory]
else:
# 如果是新节点,创建新的记忆列表
self.G.add_node(concept, memory_items=[memory])
def get_dot(self, concept):
# 检查节点是否存在于图中
if concept in self.G:
# 从图中获取节点数据
node_data = self.G.nodes[concept]
# print(node_data)
# 创建新的Memory_dot对象
return concept,node_data
return None
def get_related_item(self, topic, depth=1):
if topic not in self.G:
return [], []
first_layer_items = []
second_layer_items = []
# 获取相邻节点
neighbors = list(self.G.neighbors(topic))
# print(f"第一层: {topic}")
# 获取当前节点的记忆项
node_data = self.get_dot(topic)
if node_data:
concept, data = node_data
if 'memory_items' in data:
memory_items = data['memory_items']
if isinstance(memory_items, list):
first_layer_items.extend(memory_items)
else:
first_layer_items.append(memory_items)
# 只在depth=2时获取第二层记忆
if depth >= 2:
# 获取相邻节点的记忆项
for neighbor in neighbors:
# print(f"第二层: {neighbor}")
node_data = self.get_dot(neighbor)
if node_data:
concept, data = node_data
if 'memory_items' in data:
memory_items = data['memory_items']
if isinstance(memory_items, list):
second_layer_items.extend(memory_items)
else:
second_layer_items.append(memory_items)
return first_layer_items, second_layer_items
def store_memory(self):
for node in self.G.nodes():
dot_data = {
"concept": node
}
self.db.db.store_memory_dots.insert_one(dot_data)
@property
def dots(self):
# 返回所有节点对应的 Memory_dot 对象
return [self.get_dot(node) for node in self.G.nodes()]
def get_random_chat_from_db(self, length: int, timestamp: str):
# 从数据库中根据时间戳获取离其最近的聊天记录
chat_text = ''
closest_record = self.db.db.messages.find_one({"time": {"$lte": timestamp}}, sort=[('time', -1)]) # 调试输出
print(f"距离time最近的消息时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(closest_record['time'])))}")
if closest_record:
closest_time = closest_record['time']
group_id = closest_record['group_id'] # 获取groupid
# 获取该时间戳之后的length条消息且groupid相同
chat_record = list(self.db.db.messages.find({"time": {"$gt": closest_time}, "group_id": group_id}).sort('time', 1).limit(length))
for record in chat_record:
time_str = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(record['time'])))
chat_text += f'[{time_str}] {record["user_nickname"] or "用户" + str(record["user_id"])}: {record["processed_plain_text"]}\n' # 添加发送者和时间信息
return chat_text
return [] # 如果没有找到记录,返回空列表
def save_graph_to_db(self):
# 保存节点
for node in self.G.nodes(data=True):
concept = node[0]
memory_items = node[1].get('memory_items', [])
# 查找是否存在同名节点
existing_node = self.db.db.graph_data.nodes.find_one({'concept': concept})
if existing_node:
# 如果存在,合并memory_items并去重
existing_items = existing_node.get('memory_items', [])
if not isinstance(existing_items, list):
existing_items = [existing_items] if existing_items else []
# 合并并去重
all_items = list(set(existing_items + memory_items))
# 更新节点
self.db.db.graph_data.nodes.update_one(
{'concept': concept},
{'$set': {'memory_items': all_items}}
)
else:
# 如果不存在,创建新节点
node_data = {
'concept': concept,
'memory_items': memory_items
}
self.db.db.graph_data.nodes.insert_one(node_data)
# 保存边
for edge in self.G.edges():
source, target = edge
# 查找是否存在同样的边
existing_edge = self.db.db.graph_data.edges.find_one({
'source': source,
'target': target
})
if existing_edge:
# 如果存在,增加num属性
num = existing_edge.get('num', 1) + 1
self.db.db.graph_data.edges.update_one(
{'source': source, 'target': target},
{'$set': {'num': num}}
)
else:
# 如果不存在,创建新边
edge_data = {
'source': source,
'target': target,
'num': 1
}
self.db.db.graph_data.edges.insert_one(edge_data)
def load_graph_from_db(self):
# 清空当前图
self.G.clear()
# 加载节点
nodes = self.db.db.graph_data.nodes.find()
for node in nodes:
memory_items = node.get('memory_items', [])
if not isinstance(memory_items, list):
memory_items = [memory_items] if memory_items else []
self.G.add_node(node['concept'], memory_items=memory_items)
# 加载边
edges = self.db.db.graph_data.edges.find()
for edge in edges:
self.G.add_edge(edge['source'], edge['target'], num=edge.get('num', 1))
def calculate_information_content(text):
"""计算文本的信息量(熵)"""
# 统计字符频率
char_count = Counter(text)
total_chars = len(text)
# 计算熵
entropy = 0
for count in char_count.values():
probability = count / total_chars
entropy -= probability * math.log2(probability)
return entropy
# Database.initialize(
# global_config.MONGODB_HOST,
# global_config.MONGODB_PORT,
# global_config.DATABASE_NAME
# )
# memory_graph = Memory_graph()
# llm_model = LLMModel()
# llm_model_small = LLMModel(model_name="deepseek-ai/DeepSeek-V2.5")
# memory_graph.load_graph_from_db()
def main():
# 获取当前文件的绝对路径
current_dir = os.path.dirname(os.path.abspath(__file__))
root_dir = os.path.abspath(os.path.join(current_dir, '..', '..', '..'))
env_path = os.path.join(root_dir, 'config', '.env')
# 加载环境变量
print(f"尝试从 {env_path} 加载环境变量配置")
if os.path.exists(env_path):
load_dotenv(env_path)
print("成功加载环境变量配置")
else:
print(f"环境变量配置文件不存在: {env_path}")
# 初始化数据库
Database.initialize(
"127.0.0.1",
27017,
"MegBot"
)
memory_graph = Memory_graph()
# 创建LLM模型实例
llm_model = LLMModel()
llm_model_small = LLMModel(model_name="deepseek-ai/DeepSeek-V2.5")
# 使用当前时间戳进行测试
current_timestamp = datetime.datetime.now().timestamp()
chat_text = []
chat_size =25
for _ in range(30): # 循环10次
random_time = current_timestamp - random.randint(1, 3600*10) # 随机时间
print(f"随机时间戳对应的时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(random_time))}")
chat_ = memory_graph.get_random_chat_from_db(chat_size, random_time)
chat_text.append(chat_) # 拼接所有text
# time.sleep(1)
for i, input_text in enumerate(chat_text, 1):
progress = (i / len(chat_text)) * 100
bar_length = 30
filled_length = int(bar_length * i // len(chat_text))
bar = '' * filled_length + '-' * (bar_length - filled_length)
print(f"\n进度: [{bar}] {progress:.1f}% ({i}/{len(chat_text)})")
# print(input_text)
first_memory = set()
first_memory = memory_compress(input_text, llm_model_small, llm_model_small, rate=2.5)
# time.sleep(5)
#将记忆加入到图谱中
for topic, memory in first_memory:
topics = segment_text(topic)
print(f"\033[1;34m话题\033[0m: {topic},节点: {topics}, 记忆: {memory}")
for split_topic in topics:
memory_graph.add_dot(split_topic,memory)
for split_topic in topics:
for other_split_topic in topics:
if split_topic != other_split_topic:
memory_graph.connect_dot(split_topic, other_split_topic)
# memory_graph.store_memory()
# 展示两种不同的可视化方式
print("\n按连接数量着色的图谱:")
visualize_graph(memory_graph, color_by_memory=False)
print("\n按记忆数量着色的图谱:")
visualize_graph(memory_graph, color_by_memory=True)
memory_graph.save_graph_to_db()
# memory_graph.load_graph_from_db()
while True:
query = input("请输入新的查询概念(输入'退出'以结束):")
if query.lower() == '退出':
break
items_list = memory_graph.get_related_item(query)
if items_list:
# print(items_list)
for memory_item in items_list:
print(memory_item)
else:
print("未找到相关记忆。")
while True:
query = input("请输入问题:")
if query.lower() == '退出':
break
topic_prompt = find_topic(query, 3)
topic_response = llm_model.generate_response(topic_prompt)
# 检查 topic_response 是否为元组
if isinstance(topic_response, tuple):
topics = topic_response[0].split(",") # 假设第一个元素是我们需要的字符串
else:
topics = topic_response.split(",")
print(topics)
for keyword in topics:
items_list = memory_graph.get_related_item(keyword)
if items_list:
print(items_list)
def memory_compress(input_text, llm_model, llm_model_small, rate=1):
information_content = calculate_information_content(input_text)
print(f"文本的信息量(熵): {information_content:.4f} bits")
topic_num = max(1, min(5, int(information_content * rate / 4)))
print(topic_num)
topic_prompt = find_topic(input_text, topic_num)
topic_response = llm_model.generate_response(topic_prompt)
# 检查 topic_response 是否为元组
if isinstance(topic_response, tuple):
topics = topic_response[0].split(",") # 假设第一个元素是我们需要的字符串
else:
topics = topic_response.split(",")
print(topics)
compressed_memory = set()
for topic in topics:
topic_what_prompt = topic_what(input_text,topic)
topic_what_response = llm_model_small.generate_response(topic_what_prompt)
compressed_memory.add((topic.strip(), topic_what_response[0])) # 将话题和记忆作为元组存储
return compressed_memory
def segment_text(text):
seg_text = list(jieba.cut(text))
return seg_text
def find_topic(text, topic_num):
prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个话题,帮我列出来,用逗号隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要告诉我其他内容。'
return prompt
def topic_what(text, topic):
prompt = f'这是一段文字:{text}。我想知道这记忆里有什么关于{topic}的话题,帮我总结成一句自然的话,可以包含时间和人物。只输出这句话就好'
return prompt
def visualize_graph(memory_graph: Memory_graph, color_by_memory: bool = False):
# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
G = memory_graph.G
# 保存图到本地
nx.write_gml(G, "memory_graph.gml") # 保存为 GML 格式
# 根据连接条数或记忆数量设置节点颜色
node_colors = []
nodes = list(G.nodes()) # 获取图中实际的节点列表
if color_by_memory:
# 计算每个节点的记忆数量
memory_counts = []
for node in nodes:
memory_items = G.nodes[node].get('memory_items', [])
if isinstance(memory_items, list):
count = len(memory_items)
else:
count = 1 if memory_items else 0
memory_counts.append(count)
max_memories = max(memory_counts) if memory_counts else 1
for count in memory_counts:
# 使用不同的颜色方案:红色表示记忆多,蓝色表示记忆少
if max_memories > 0:
intensity = min(1.0, count / max_memories)
color = (intensity, 0, 1.0 - intensity) # 从蓝色渐变到红色
else:
color = (0, 0, 1) # 如果没有记忆,则为蓝色
node_colors.append(color)
else:
# 使用原来的连接数量着色方案
max_degree = max(G.degree(), key=lambda x: x[1])[1] if G.degree() else 1
for node in nodes:
degree = G.degree(node)
if max_degree > 0:
red = min(1.0, degree / max_degree)
blue = 1.0 - red
color = (red, 0, blue)
else:
color = (0, 0, 1)
node_colors.append(color)
# 绘制图形
plt.figure(figsize=(12, 8))
pos = nx.spring_layout(G, k=1, iterations=50)
nx.draw(G, pos,
with_labels=True,
node_color=node_colors,
node_size=2000,
font_size=10,
font_family='SimHei',
font_weight='bold')
title = '记忆图谱可视化 - ' + ('按记忆数量着色' if color_by_memory else '按连接数量着色')
plt.title(title, fontsize=16, fontfamily='SimHei')
plt.show()
if __name__ == "__main__":
main()

View File

@@ -62,7 +62,7 @@ class ScheduleGenerator:
elif read_only == False:
print(f"{date_str}的日程不存在,准备生成新的日程。")
prompt = f"""我是{global_config.BOT_NICKNAME},一个地质学大二女大学生喜欢刷qq贴吧知乎和小红书请为我生成{date_str}{weekday})的日程安排,包括:
prompt = f"""我是{global_config.BOT_NICKNAME},一个曾经学习地质,现在学习心理学和脑科学的女大学生喜欢刷qq贴吧知乎和小红书请为我生成{date_str}{weekday})的日程安排,包括:
1. 早上的学习和工作安排
2. 下午的活动和任务
3. 晚上的计划和休息时间