@@ -1,8 +1,10 @@
|
||||
from src.tools.tool_can_use.base_tool import BaseTool
|
||||
from src.chat.utils.utils import get_embedding
|
||||
from src.common.database import db
|
||||
from src.common.database.database_model import Knowledges # Updated import
|
||||
from src.common.logger_manager import get_logger
|
||||
from typing import Any, Union
|
||||
from typing import Any, Union, List # Added List
|
||||
import json # Added for parsing embedding
|
||||
import math # Added for cosine similarity
|
||||
|
||||
logger = get_logger("get_knowledge_tool")
|
||||
|
||||
@@ -30,6 +32,7 @@ class SearchKnowledgeTool(BaseTool):
|
||||
Returns:
|
||||
dict: 工具执行结果
|
||||
"""
|
||||
query = "" # Initialize query to ensure it's defined in except block
|
||||
try:
|
||||
query = function_args.get("query")
|
||||
threshold = function_args.get("threshold", 0.4)
|
||||
@@ -48,9 +51,19 @@ class SearchKnowledgeTool(BaseTool):
|
||||
logger.error(f"知识库搜索工具执行失败: {str(e)}")
|
||||
return {"type": "info", "id": query, "content": f"知识库搜索失败,炸了: {str(e)}"}
|
||||
|
||||
@staticmethod
|
||||
def _cosine_similarity(vec1: List[float], vec2: List[float]) -> float:
|
||||
"""计算两个向量之间的余弦相似度"""
|
||||
dot_product = sum(p * q for p, q in zip(vec1, vec2))
|
||||
magnitude1 = math.sqrt(sum(p * p for p in vec1))
|
||||
magnitude2 = math.sqrt(sum(q * q for q in vec2))
|
||||
if magnitude1 == 0 or magnitude2 == 0:
|
||||
return 0.0
|
||||
return dot_product / (magnitude1 * magnitude2)
|
||||
|
||||
@staticmethod
|
||||
def get_info_from_db(
|
||||
query_embedding: list, limit: int = 1, threshold: float = 0.5, return_raw: bool = False
|
||||
query_embedding: list[float], limit: int = 1, threshold: float = 0.5, return_raw: bool = False
|
||||
) -> Union[str, list]:
|
||||
"""从数据库中获取相关信息
|
||||
|
||||
@@ -66,66 +79,51 @@ class SearchKnowledgeTool(BaseTool):
|
||||
if not query_embedding:
|
||||
return "" if not return_raw else []
|
||||
|
||||
# 使用余弦相似度计算
|
||||
pipeline = [
|
||||
{
|
||||
"$addFields": {
|
||||
"dotProduct": {
|
||||
"$reduce": {
|
||||
"input": {"$range": [0, {"$size": "$embedding"}]},
|
||||
"initialValue": 0,
|
||||
"in": {
|
||||
"$add": [
|
||||
"$$value",
|
||||
{
|
||||
"$multiply": [
|
||||
{"$arrayElemAt": ["$embedding", "$$this"]},
|
||||
{"$arrayElemAt": [query_embedding, "$$this"]},
|
||||
]
|
||||
},
|
||||
]
|
||||
},
|
||||
}
|
||||
},
|
||||
"magnitude1": {
|
||||
"$sqrt": {
|
||||
"$reduce": {
|
||||
"input": "$embedding",
|
||||
"initialValue": 0,
|
||||
"in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]},
|
||||
}
|
||||
}
|
||||
},
|
||||
"magnitude2": {
|
||||
"$sqrt": {
|
||||
"$reduce": {
|
||||
"input": query_embedding,
|
||||
"initialValue": 0,
|
||||
"in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]},
|
||||
}
|
||||
}
|
||||
},
|
||||
}
|
||||
},
|
||||
{"$addFields": {"similarity": {"$divide": ["$dotProduct", {"$multiply": ["$magnitude1", "$magnitude2"]}]}}},
|
||||
{
|
||||
"$match": {
|
||||
"similarity": {"$gte": threshold} # 只保留相似度大于等于阈值的结果
|
||||
}
|
||||
},
|
||||
{"$sort": {"similarity": -1}},
|
||||
{"$limit": limit},
|
||||
{"$project": {"content": 1, "similarity": 1}},
|
||||
]
|
||||
similar_items = []
|
||||
try:
|
||||
all_knowledges = Knowledges.select()
|
||||
for item in all_knowledges:
|
||||
try:
|
||||
item_embedding_str = item.embedding
|
||||
if not item_embedding_str:
|
||||
logger.warning(f"Knowledge item ID {item.id} has empty embedding string.")
|
||||
continue
|
||||
item_embedding = json.loads(item_embedding_str)
|
||||
if not isinstance(item_embedding, list) or not all(
|
||||
isinstance(x, (int, float)) for x in item_embedding
|
||||
):
|
||||
logger.warning(f"Knowledge item ID {item.id} has invalid embedding format after JSON parsing.")
|
||||
continue
|
||||
except json.JSONDecodeError:
|
||||
logger.warning(f"Failed to parse embedding for knowledge item ID {item.id}")
|
||||
continue
|
||||
except AttributeError:
|
||||
logger.warning(f"Knowledge item ID {item.id} missing 'embedding' attribute or it's not a string.")
|
||||
continue
|
||||
|
||||
results = list(db.knowledges.aggregate(pipeline))
|
||||
logger.debug(f"知识库查询结果数量: {len(results)}")
|
||||
similarity = SearchKnowledgeTool._cosine_similarity(query_embedding, item_embedding)
|
||||
|
||||
if similarity >= threshold:
|
||||
similar_items.append({"content": item.content, "similarity": similarity, "raw_item": item})
|
||||
|
||||
# 按相似度降序排序
|
||||
similar_items.sort(key=lambda x: x["similarity"], reverse=True)
|
||||
|
||||
# 应用限制
|
||||
results = similar_items[:limit]
|
||||
logger.debug(f"知识库查询后,符合条件的结果数量: {len(results)}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"从 Peewee 数据库获取知识信息失败: {str(e)}")
|
||||
return "" if not return_raw else []
|
||||
|
||||
if not results:
|
||||
return "" if not return_raw else []
|
||||
|
||||
if return_raw:
|
||||
return results
|
||||
# Peewee 模型实例不能直接序列化为 JSON,如果需要原始模型,调用者需要处理
|
||||
# 这里返回包含内容和相似度的字典列表
|
||||
return [{"content": r["content"], "similarity": r["similarity"]} for r in results]
|
||||
else:
|
||||
# 返回所有找到的内容,用换行分隔
|
||||
return "\n".join(str(result["content"]) for result in results)
|
||||
|
||||
Reference in New Issue
Block a user