diff --git a/src/plugins/PFC/reply_generator.py b/src/plugins/PFC/reply_generator.py index bb4719002..a27abecdd 100644 --- a/src/plugins/PFC/reply_generator.py +++ b/src/plugins/PFC/reply_generator.py @@ -151,7 +151,7 @@ class ReplyGenerator: return content except Exception as e: - logger.error(f"生成回复时出错: {e}") + logger.error(f"生成回复时出错: {str(e)}") return "抱歉,我现在有点混乱,让我重新思考一下..." async def check_reply(self, reply: str, goal: str, retry_count: int = 0) -> Tuple[bool, str, bool]: diff --git a/src/plugins/chat_module/reasoning_chat/reasoning_chat.py b/src/plugins/chat_module/reasoning_chat/reasoning_chat.py index 5809e31da..46eeb79fe 100644 --- a/src/plugins/chat_module/reasoning_chat/reasoning_chat.py +++ b/src/plugins/chat_module/reasoning_chat/reasoning_chat.py @@ -255,7 +255,7 @@ class ReasoningChat: info_catcher.catch_after_generate_response(timing_results["生成回复"]) except Exception as e: - logger.error(f"回复生成出现错误:str{e}") + logger.error(f"回复生成出现错误:{str(e)}") response_set = None if not response_set: diff --git a/src/plugins/models/utils_model_new.py b/src/plugins/models/utils_model_new.py new file mode 100644 index 000000000..8535476cd --- /dev/null +++ b/src/plugins/models/utils_model_new.py @@ -0,0 +1,1231 @@ +import asyncio +import json +import re +from datetime import datetime +from typing import Tuple, Union, Dict, Any + +import aiohttp +from aiohttp.client import ClientResponse + +from src.common.logger import get_module_logger +import base64 +from PIL import Image +import io +import os +from ...common.database import db +from ...config.config import global_config + +logger = get_module_logger("model_utils") + + +class PayLoadTooLargeError(Exception): + """自定义异常类,用于处理请求体过大错误""" + + def __init__(self, message: str): + super().__init__(message) + self.message = message + + def __str__(self): + return "请求体过大,请尝试压缩图片或减少输入内容。" + + +class RequestAbortException(Exception): + """自定义异常类,用于处理请求中断异常""" + + def __init__(self, message: str, response: ClientResponse): + super().__init__(message) + self.message = message + self.response = response + + def __str__(self): + return self.message + + +class PermissionDeniedException(Exception): + """自定义异常类,用于处理访问拒绝的异常""" + + def __init__(self, message: str): + super().__init__(message) + self.message = message + + def __str__(self): + return self.message + + +# 常见Error Code Mapping +error_code_mapping = { + 400: "参数不正确", + 401: "API key 错误,认证失败,请检查/config/bot_config.toml和.env中的配置是否正确哦~", + 402: "账号余额不足", + 403: "需要实名,或余额不足", + 404: "Not Found", + 429: "请求过于频繁,请稍后再试", + 500: "服务器内部故障", + 503: "服务器负载过高", +} + + +class LLMRequest: + # 定义需要转换的模型列表,作为类变量避免重复 + MODELS_NEEDING_TRANSFORMATION = [ + "o3-mini", + "o1-mini", + "o1-preview", + "o1-2024-12-17", + "o1-preview-2024-09-12", + "o3-mini-2025-01-31", + "o1-mini-2024-09-12", + ] + + def __init__(self, model: dict, **kwargs): + # 将大写的配置键转换为小写并从config中获取实际值 + try: + self.api_key = os.environ[model["key"]] + self.base_url = os.environ[model["base_url"]] + except AttributeError as e: + logger.error(f"原始 model dict 信息:{model}") + logger.error(f"配置错误:找不到对应的配置项 - {str(e)}") + raise ValueError(f"配置错误:找不到对应的配置项 - {str(e)}") from e + self.model_name: str = model["name"] + self.params = kwargs + + self.stream = model.get("stream", False) + self.pri_in = model.get("pri_in", 0) + self.pri_out = model.get("pri_out", 0) + + # 获取数据库实例 + self._init_database() + + # 从 kwargs 中提取 request_type,如果没有提供则默认为 "default" + self.request_type = kwargs.pop("request_type", "default") + + @staticmethod + def _init_database(): + """初始化数据库集合""" + try: + # 创建llm_usage集合的索引 + db.llm_usage.create_index([("timestamp", 1)]) + db.llm_usage.create_index([("model_name", 1)]) + db.llm_usage.create_index([("user_id", 1)]) + db.llm_usage.create_index([("request_type", 1)]) + except Exception as e: + logger.error(f"创建数据库索引失败: {str(e)}") + + def _record_usage( + self, + prompt_tokens: int, + completion_tokens: int, + total_tokens: int, + user_id: str = "system", + request_type: str = None, + endpoint: str = "/chat/completions", + ): + """记录模型使用情况到数据库 + Args: + prompt_tokens: 输入token数 + completion_tokens: 输出token数 + total_tokens: 总token数 + user_id: 用户ID,默认为system + request_type: 请求类型(chat/embedding/image/topic/schedule) + endpoint: API端点 + """ + # 如果 request_type 为 None,则使用实例变量中的值 + if request_type is None: + request_type = self.request_type + + try: + usage_data = { + "model_name": self.model_name, + "user_id": user_id, + "request_type": request_type, + "endpoint": endpoint, + "prompt_tokens": prompt_tokens, + "completion_tokens": completion_tokens, + "total_tokens": total_tokens, + "cost": self._calculate_cost(prompt_tokens, completion_tokens), + "status": "success", + "timestamp": datetime.now(), + } + db.llm_usage.insert_one(usage_data) + logger.trace( + f"Token使用情况 - 模型: {self.model_name}, " + f"用户: {user_id}, 类型: {request_type}, " + f"提示词: {prompt_tokens}, 完成: {completion_tokens}, " + f"总计: {total_tokens}" + ) + except Exception as e: + logger.error(f"记录token使用情况失败: {str(e)}") + + def _calculate_cost(self, prompt_tokens: int, completion_tokens: int) -> float: + """计算API调用成本 + 使用模型的pri_in和pri_out价格计算输入和输出的成本 + + Args: + prompt_tokens: 输入token数量 + completion_tokens: 输出token数量 + + Returns: + float: 总成本(元) + """ + # 使用模型的pri_in和pri_out计算成本 + input_cost = (prompt_tokens / 1000000) * self.pri_in + output_cost = (completion_tokens / 1000000) * self.pri_out + return round(input_cost + output_cost, 6) + + ''' + async def _execute_request( + self, + endpoint: str, + prompt: str = None, + image_base64: str = None, + image_format: str = None, + payload: dict = None, + retry_policy: dict = None, + response_handler: callable = None, + user_id: str = "system", + request_type: str = None, + ): + """统一请求执行入口 + Args: + endpoint: API端点路径 (如 "chat/completions") + prompt: prompt文本 + image_base64: 图片的base64编码 + image_format: 图片格式 + payload: 请求体数据 + retry_policy: 自定义重试策略 + response_handler: 自定义响应处理器 + user_id: 用户ID + request_type: 请求类型 + """ + + if request_type is None: + request_type = self.request_type + + # 合并重试策略 + default_retry = { + "max_retries": 3, + "base_wait": 10, + "retry_codes": [429, 413, 500, 503], + "abort_codes": [400, 401, 402, 403], + } + policy = {**default_retry, **(retry_policy or {})} + + # 常见Error Code Mapping + error_code_mapping = { + 400: "参数不正确", + 401: "API key 错误,认证失败,请检查/config/bot_config.toml和.env中的配置是否正确哦~", + 402: "账号余额不足", + 403: "需要实名,或余额不足", + 404: "Not Found", + 429: "请求过于频繁,请稍后再试", + 500: "服务器内部故障", + 503: "服务器负载过高", + } + + api_url = f"{self.base_url.rstrip('/')}/{endpoint.lstrip('/')}" + # 判断是否为流式 + stream_mode = self.stream + # logger_msg = "进入流式输出模式," if stream_mode else "" + # logger.debug(f"{logger_msg}发送请求到URL: {api_url}") + # logger.info(f"使用模型: {self.model_name}") + + # 构建请求体 + if image_base64: + payload = await self._build_payload(prompt, image_base64, image_format) + elif payload is None: + payload = await self._build_payload(prompt) + + # 流式输出标志 + # 先构建payload,再添加流式输出标志 + if stream_mode: + payload["stream"] = stream_mode + + for retry in range(policy["max_retries"]): + try: + # 使用上下文管理器处理会话 + headers = await self._build_headers() + # 似乎是openai流式必须要的东西,不过阿里云的qwq-plus加了这个没有影响 + if stream_mode: + headers["Accept"] = "text/event-stream" + + async with aiohttp.ClientSession() as session: + try: + async with session.post(api_url, headers=headers, json=payload) as response: + # 处理需要重试的状态码 + if response.status in policy["retry_codes"]: + wait_time = policy["base_wait"] * (2**retry) + logger.warning( + f"模型 {self.model_name} 错误码: {response.status}, 等待 {wait_time}秒后重试" + ) + if response.status == 413: + logger.warning("请求体过大,尝试压缩...") + image_base64 = compress_base64_image_by_scale(image_base64) + payload = await self._build_payload(prompt, image_base64, image_format) + elif response.status in [500, 503]: + logger.error( + f"模型 {self.model_name} 错误码: {response.status} - {error_code_mapping.get(response.status)}" + ) + raise RuntimeError("服务器负载过高,模型恢复失败QAQ") + else: + logger.warning(f"模型 {self.model_name} 请求限制(429),等待{wait_time}秒后重试...") + + await asyncio.sleep(wait_time) + continue + elif response.status in policy["abort_codes"]: + logger.error( + f"模型 {self.model_name} 错误码: {response.status} - {error_code_mapping.get(response.status)}" + ) + # 尝试获取并记录服务器返回的详细错误信息 + try: + error_json = await response.json() + if error_json and isinstance(error_json, list) and len(error_json) > 0: + for error_item in error_json: + if "error" in error_item and isinstance(error_item["error"], dict): + error_obj = error_item["error"] + error_code = error_obj.get("code") + error_message = error_obj.get("message") + error_status = error_obj.get("status") + logger.error( + f"服务器错误详情: 代码={error_code}, 状态={error_status}, " + f"消息={error_message}" + ) + elif isinstance(error_json, dict) and "error" in error_json: + # 处理单个错误对象的情况 + error_obj = error_json.get("error", {}) + error_code = error_obj.get("code") + error_message = error_obj.get("message") + error_status = error_obj.get("status") + logger.error( + f"服务器错误详情: 代码={error_code}, 状态={error_status}, 消息={error_message}" + ) + else: + # 记录原始错误响应内容 + logger.error(f"服务器错误响应: {error_json}") + except Exception as e: + logger.warning(f"无法解析服务器错误响应: {str(e)}") + + if response.status == 403: + # 只针对硅基流动的V3和R1进行降级处理 + if ( + self.model_name.startswith("Pro/deepseek-ai") + and self.base_url == "https://api.siliconflow.cn/v1/" + ): + old_model_name = self.model_name + self.model_name = self.model_name[4:] # 移除"Pro/"前缀 + logger.warning( + f"检测到403错误,模型从 {old_model_name} 降级为 {self.model_name}" + ) + + # 对全局配置进行更新 + if global_config.llm_normal.get("name") == old_model_name: + global_config.llm_normal["name"] = self.model_name + logger.warning(f"将全局配置中的 llm_normal 模型临时降级至{self.model_name}") + + if global_config.llm_reasoning.get("name") == old_model_name: + global_config.llm_reasoning["name"] = self.model_name + logger.warning( + f"将全局配置中的 llm_reasoning 模型临时降级至{self.model_name}" + ) + + # 更新payload中的模型名 + if payload and "model" in payload: + payload["model"] = self.model_name + + # 重新尝试请求 + retry -= 1 # 不计入重试次数 + continue + + raise RuntimeError(f"请求被拒绝: {error_code_mapping.get(response.status)}") + + response.raise_for_status() + reasoning_content = "" + + # 将流式输出转化为非流式输出 + if stream_mode: + flag_delta_content_finished = False + accumulated_content = "" + usage = None # 初始化usage变量,避免未定义错误 + + async for line_bytes in response.content: + try: + line = line_bytes.decode("utf-8").strip() + if not line: + continue + if line.startswith("data:"): + data_str = line[5:].strip() + if data_str == "[DONE]": + break + try: + chunk = json.loads(data_str) + if flag_delta_content_finished: + chunk_usage = chunk.get("usage", None) + if chunk_usage: + usage = chunk_usage # 获取token用量 + else: + delta = chunk["choices"][0]["delta"] + delta_content = delta.get("content") + if delta_content is None: + delta_content = "" + accumulated_content += delta_content + # 检测流式输出文本是否结束 + finish_reason = chunk["choices"][0].get("finish_reason") + if delta.get("reasoning_content", None): + reasoning_content += delta["reasoning_content"] + if finish_reason == "stop": + chunk_usage = chunk.get("usage", None) + if chunk_usage: + usage = chunk_usage + break + # 部分平台在文本输出结束前不会返回token用量,此时需要再获取一次chunk + flag_delta_content_finished = True + + except Exception as e: + logger.exception(f"模型 {self.model_name} 解析流式输出错误: {str(e)}") + except GeneratorExit: + logger.warning("模型 {self.model_name} 流式输出被中断,正在清理资源...") + # 确保资源被正确清理 + await response.release() + # 返回已经累积的内容 + result = { + "choices": [ + { + "message": { + "content": accumulated_content, + "reasoning_content": reasoning_content, + # 流式输出可能没有工具调用,此处不需要添加tool_calls字段 + } + } + ], + "usage": usage, + } + return ( + response_handler(result) + if response_handler + else self._default_response_handler(result, user_id, request_type, endpoint) + ) + except Exception as e: + logger.error(f"模型 {self.model_name} 处理流式输出时发生错误: {str(e)}") + # 确保在发生错误时也能正确清理资源 + try: + await response.release() + except Exception as cleanup_error: + logger.error(f"清理资源时发生错误: {cleanup_error}") + # 返回已经累积的内容 + result = { + "choices": [ + { + "message": { + "content": accumulated_content, + "reasoning_content": reasoning_content, + # 流式输出可能没有工具调用,此处不需要添加tool_calls字段 + } + } + ], + "usage": usage, + } + return ( + response_handler(result) + if response_handler + else self._default_response_handler(result, user_id, request_type, endpoint) + ) + content = accumulated_content + think_match = re.search(r"(.*?)", content, re.DOTALL) + if think_match: + reasoning_content = think_match.group(1).strip() + content = re.sub(r".*?", "", content, flags=re.DOTALL).strip() + # 构造一个伪result以便调用自定义响应处理器或默认处理器 + result = { + "choices": [ + { + "message": { + "content": content, + "reasoning_content": reasoning_content, + # 流式输出可能没有工具调用,此处不需要添加tool_calls字段 + } + } + ], + "usage": usage, + } + return ( + response_handler(result) + if response_handler + else self._default_response_handler(result, user_id, request_type, endpoint) + ) + else: + result = await response.json() + # 使用自定义处理器或默认处理 + return ( + response_handler(result) + if response_handler + else self._default_response_handler(result, user_id, request_type, endpoint) + ) + + except (aiohttp.ClientError, asyncio.TimeoutError) as e: + if retry < policy["max_retries"] - 1: + wait_time = policy["base_wait"] * (2**retry) + logger.error(f"模型 {self.model_name} 网络错误,等待{wait_time}秒后重试... 错误: {str(e)}") + await asyncio.sleep(wait_time) + continue + else: + logger.critical(f"模型 {self.model_name} 网络错误达到最大重试次数: {str(e)}") + raise RuntimeError(f"网络请求失败: {str(e)}") from e + except Exception as e: + logger.critical(f"模型 {self.model_name} 未预期的错误: {str(e)}") + raise RuntimeError(f"请求过程中发生错误: {str(e)}") from e + + except aiohttp.ClientResponseError as e: + # 处理aiohttp抛出的响应错误 + if retry < policy["max_retries"] - 1: + wait_time = policy["base_wait"] * (2**retry) + logger.error( + f"模型 {self.model_name} HTTP响应错误,等待{wait_time}秒后重试... 状态码: {e.status}, 错误: {e.message}" + ) + try: + if hasattr(e, "response") and e.response and hasattr(e.response, "text"): + error_text = await e.response.text() + try: + error_json = json.loads(error_text) + if isinstance(error_json, list) and len(error_json) > 0: + for error_item in error_json: + if "error" in error_item and isinstance(error_item["error"], dict): + error_obj = error_item["error"] + logger.error( + f"模型 {self.model_name} 服务器错误详情: 代码={error_obj.get('code')}, " + f"状态={error_obj.get('status')}, " + f"消息={error_obj.get('message')}" + ) + elif isinstance(error_json, dict) and "error" in error_json: + error_obj = error_json.get("error", {}) + logger.error( + f"模型 {self.model_name} 服务器错误详情: 代码={error_obj.get('code')}, " + f"状态={error_obj.get('status')}, " + f"消息={error_obj.get('message')}" + ) + else: + logger.error(f"模型 {self.model_name} 服务器错误响应: {error_json}") + except (json.JSONDecodeError, TypeError) as json_err: + logger.warning( + f"模型 {self.model_name} 响应不是有效的JSON: {str(json_err)}, 原始内容: {error_text[:200]}" + ) + except (AttributeError, TypeError, ValueError) as parse_err: + logger.warning(f"模型 {self.model_name} 无法解析响应错误内容: {str(parse_err)}") + + await asyncio.sleep(wait_time) + else: + logger.critical( + f"模型 {self.model_name} HTTP响应错误达到最大重试次数: 状态码: {e.status}, 错误: {e.message}" + ) + # 安全地检查和记录请求详情 + if ( + image_base64 + and payload + and isinstance(payload, dict) + and "messages" in payload + and len(payload["messages"]) > 0 + ): + if isinstance(payload["messages"][0], dict) and "content" in payload["messages"][0]: + content = payload["messages"][0]["content"] + if isinstance(content, list) and len(content) > 1 and "image_url" in content[1]: + payload["messages"][0]["content"][1]["image_url"]["url"] = ( + f"data:image/{image_format.lower() if image_format else 'jpeg'};base64," + f"{image_base64[:10]}...{image_base64[-10:]}" + ) + logger.critical(f"请求头: {await self._build_headers(no_key=True)} 请求体: {payload}") + raise RuntimeError(f"模型 {self.model_name} API请求失败: 状态码 {e.status}, {e.message}") from e + except Exception as e: + if retry < policy["max_retries"] - 1: + wait_time = policy["base_wait"] * (2**retry) + logger.error(f"模型 {self.model_name} 请求失败,等待{wait_time}秒后重试... 错误: {str(e)}") + await asyncio.sleep(wait_time) + else: + logger.critical(f"模型 {self.model_name} 请求失败: {str(e)}") + # 安全地检查和记录请求详情 + if ( + image_base64 + and payload + and isinstance(payload, dict) + and "messages" in payload + and len(payload["messages"]) > 0 + ): + if isinstance(payload["messages"][0], dict) and "content" in payload["messages"][0]: + content = payload["messages"][0]["content"] + if isinstance(content, list) and len(content) > 1 and "image_url" in content[1]: + payload["messages"][0]["content"][1]["image_url"]["url"] = ( + f"data:image/{image_format.lower() if image_format else 'jpeg'};base64," + f"{image_base64[:10]}...{image_base64[-10:]}" + ) + logger.critical(f"请求头: {await self._build_headers(no_key=True)} 请求体: {payload}") + raise RuntimeError(f"模型 {self.model_name} API请求失败: {str(e)}") from e + + logger.error(f"模型 {self.model_name} 达到最大重试次数,请求仍然失败") + raise RuntimeError(f"模型 {self.model_name} 达到最大重试次数,API请求仍然失败") + ''' + + async def _prepare_request( + self, + endpoint: str, + prompt: str = None, + image_base64: str = None, + image_format: str = None, + payload: dict = None, + retry_policy: dict = None, + ) -> Dict[str, Any]: + """配置请求参数 + Args: + endpoint: API端点路径 (如 "chat/completions") + prompt: prompt文本 + image_base64: 图片的base64编码 + image_format: 图片格式 + payload: 请求体数据 + retry_policy: 自定义重试策略 + request_type: 请求类型 + """ + + # 合并重试策略 + default_retry = { + "max_retries": 3, + "base_wait": 10, + "retry_codes": [429, 413, 500, 503], + "abort_codes": [400, 401, 402, 403], + } + policy = {**default_retry, **(retry_policy or {})} + + api_url = f"{self.base_url.rstrip('/')}/{endpoint.lstrip('/')}" + + stream_mode = self.stream + + # 构建请求体 + if image_base64: + payload = await self._build_payload(prompt, image_base64, image_format) + elif payload is None: + payload = await self._build_payload(prompt) + + if stream_mode: + payload["stream"] = stream_mode + + return { + "policy": policy, + "payload": payload, + "api_url": api_url, + "stream_mode": stream_mode, + "image_base64": image_base64, # 保留必要的exception处理所需的原始数据 + "image_format": image_format, + "prompt": prompt + } + + async def _execute_request( + self, + endpoint: str, + prompt: str = None, + image_base64: str = None, + image_format: str = None, + payload: dict = None, + retry_policy: dict = None, + response_handler: callable = None, + user_id: str = "system", + request_type: str = None, + ): + """统一请求执行入口 + Args: + endpoint: API端点路径 (如 "chat/completions") + prompt: prompt文本 + image_base64: 图片的base64编码 + image_format: 图片格式 + payload: 请求体数据 + retry_policy: 自定义重试策略 + response_handler: 自定义响应处理器 + user_id: 用户ID + request_type: 请求类型 + """ + # 获取请求配置 + request_content = await self._prepare_request( + endpoint, prompt, image_base64, image_format, payload, retry_policy + ) + if request_type is None: + request_type = self.request_type + for retry in range(request_content["policy"]["max_retries"]): + try: + # 使用上下文管理器处理会话 + headers = await self._build_headers() + # 似乎是openai流式必须要的东西,不过阿里云的qwq-plus加了这个没有影响 + if request_content["stream_mode"]: + headers["Accept"] = "text/event-stream" + async with aiohttp.ClientSession() as session: + async with session.post( + request_content["api_url"], headers=headers, json=request_content["payload"] + ) as response: + handled_result = await self._handle_response( + response, request_content, retry, response_handler, user_id, request_type, endpoint + ) + return handled_result + except Exception as e: + handled_payload, count_delta = await self._handle_exception(e, retry, request_content) + retry += count_delta # 降级不计入重试次数 + if handled_payload: + # 如果降级成功,重新构建请求体 + request_content["payload"] = handled_payload + continue + + logger.error(f"模型 {self.model_name} 达到最大重试次数,请求仍然失败") + raise RuntimeError(f"模型 {self.model_name} 达到最大重试次数,API请求仍然失败") + + async def _handle_response( + self, + response: ClientResponse, + request_content: Dict[str, Any], + retry_count: int, + response_handler: callable, + user_id, + request_type, + endpoint, + ) -> Union[Dict[str, Any], None]: + policy = request_content["policy"] + stream_mode = request_content["stream_mode"] + if response.status in policy["retry_codes"] or response.status in policy["abort_codes"]: + await self._handle_error_response(response, retry_count, policy) + return + + response.raise_for_status() + result = {} + if stream_mode: + # 将流式输出转化为非流式输出 + result = await self._handle_stream_output(response) + else: + result = await response.json() + return ( + response_handler(result) + if response_handler + else self._default_response_handler(result, user_id, request_type, endpoint) + ) + + async def _handle_stream_output(self, response: ClientResponse) -> Dict[str, Any]: + flag_delta_content_finished = False + accumulated_content = "" + usage = None # 初始化usage变量,避免未定义错误 + reasoning_content = "" + content = "" + async for line_bytes in response.content: + try: + line = line_bytes.decode("utf-8").strip() + if not line: + continue + if line.startswith("data:"): + data_str = line[5:].strip() + if data_str == "[DONE]": + break + try: + chunk = json.loads(data_str) + if flag_delta_content_finished: + chunk_usage = chunk.get("usage", None) + if chunk_usage: + usage = chunk_usage # 获取token用量 + else: + delta = chunk["choices"][0]["delta"] + delta_content = delta.get("content") + if delta_content is None: + delta_content = "" + accumulated_content += delta_content + # 检测流式输出文本是否结束 + finish_reason = chunk["choices"][0].get("finish_reason") + if delta.get("reasoning_content", None): + reasoning_content += delta["reasoning_content"] + if finish_reason == "stop": + chunk_usage = chunk.get("usage", None) + if chunk_usage: + usage = chunk_usage + break + # 部分平台在文本输出结束前不会返回token用量,此时需要再获取一次chunk + flag_delta_content_finished = True + except Exception as e: + logger.exception(f"模型 {self.model_name} 解析流式输出错误: {str(e)}") + except Exception as e: + if isinstance(e, GeneratorExit): + log_content = f"模型 {self.model_name} 流式输出被中断,正在清理资源..." + else: + log_content = f"模型 {self.model_name} 处理流式输出时发生错误: {str(e)}" + logger.warning(log_content) + # 确保资源被正确清理 + try: + await response.release() + except Exception as cleanup_error: + logger.error(f"清理资源时发生错误: {cleanup_error}") + # 返回已经累积的内容 + content = accumulated_content + if not content: + content = accumulated_content + think_match = re.search(r"(.*?)", content, re.DOTALL) + if think_match: + reasoning_content = think_match.group(1).strip() + content = re.sub(r".*?", "", content, flags=re.DOTALL).strip() + result = { + "choices": [ + { + "message": { + "content": content, + "reasoning_content": reasoning_content, + # 流式输出可能没有工具调用,此处不需要添加tool_calls字段 + } + } + ], + "usage": usage, + } + return result + + async def _handle_error_response( + self, response: ClientResponse, retry_count: int, policy: Dict[str, Any] + ) -> Union[Dict[str, any]]: + if response.status in policy["retry_codes"]: + wait_time = policy["base_wait"] * (2**retry_count) + logger.warning(f"模型 {self.model_name} 错误码: {response.status}, 等待 {wait_time}秒后重试") + if response.status == 413: + logger.warning("请求体过大,尝试压缩...") + raise PayLoadTooLargeError("请求体过大") + elif response.status in [500, 503]: + logger.error( + f"模型 {self.model_name} 错误码: {response.status} - {error_code_mapping.get(response.status)}" + ) + raise RuntimeError("服务器负载过高,模型恢复失败QAQ") + else: + logger.warning(f"模型 {self.model_name} 请求限制(429),等待{wait_time}秒后重试...") + raise RuntimeError("请求限制(429)") + elif response.status in policy["abort_codes"]: + if response.status != 403: + raise RequestAbortException("请求出现错误,中断处理", response) + else: + raise PermissionDeniedException("模型禁止访问") + + async def _handle_exception( + self, exception, retry_count: int, request_content: Dict[str, Any] + ) -> Union[Tuple[Dict[str, Any], int], Tuple[None, int]]: + policy = request_content["policy"] + payload = request_content["payload"] + keep_request = False + if retry_count < policy["max_retries"] - 1: + wait_time = policy["base_wait"] * (2**retry_count) + keep_request = True + if isinstance(exception, RequestAbortException): + response = exception.response + logger.error( + f"模型 {self.model_name} 错误码: {response.status} - {error_code_mapping.get(response.status)}" + ) + # 尝试获取并记录服务器返回的详细错误信息 + try: + error_json = await response.json() + if error_json and isinstance(error_json, list) and len(error_json) > 0: + # 处理多个错误的情况 + for error_item in error_json: + if "error" in error_item and isinstance(error_item["error"], dict): + error_obj: dict = error_item["error"] + error_code = error_obj.get("code") + error_message = error_obj.get("message") + error_status = error_obj.get("status") + logger.error( + f"服务器错误详情: 代码={error_code}, 状态={error_status}, 消息={error_message}" + ) + elif isinstance(error_json, dict) and "error" in error_json: + # 处理单个错误对象的情况 + error_obj = error_json.get("error", {}) + error_code = error_obj.get("code") + error_message = error_obj.get("message") + error_status = error_obj.get("status") + logger.error(f"服务器错误详情: 代码={error_code}, 状态={error_status}, 消息={error_message}") + else: + # 记录原始错误响应内容 + logger.error(f"服务器错误响应: {error_json}") + except Exception as e: + logger.warning(f"无法解析服务器错误响应: {str(e)}") + raise RuntimeError(f"请求被拒绝: {error_code_mapping.get(response.status)}") + + elif isinstance(exception, PermissionDeniedException): + # 只针对硅基流动的V3和R1进行降级处理 + if self.model_name.startswith("Pro/deepseek-ai") and self.base_url == "https://api.siliconflow.cn/v1/": + old_model_name = self.model_name + self.model_name = self.model_name[4:] # 移除"Pro/"前缀 + logger.warning(f"检测到403错误,模型从 {old_model_name} 降级为 {self.model_name}") + + # 对全局配置进行更新 + if global_config.llm_normal.get("name") == old_model_name: + global_config.llm_normal["name"] = self.model_name + logger.warning(f"将全局配置中的 llm_normal 模型临时降级至{self.model_name}") + if global_config.llm_reasoning.get("name") == old_model_name: + global_config.llm_reasoning["name"] = self.model_name + logger.warning(f"将全局配置中的 llm_reasoning 模型临时降级至{self.model_name}") + + if payload and "model" in payload: + payload["model"] = self.model_name + + await asyncio.sleep(wait_time) + return payload, -1 + raise RuntimeError(f"请求被拒绝: {error_code_mapping.get(403)}") + + elif isinstance(exception, PayLoadTooLargeError): + if keep_request: + image_base64 = request_content["image_base64"] + compressed_image_base64 = compress_base64_image_by_scale(image_base64) + new_payload = await self._build_payload(request_content["prompt"], compressed_image_base64, request_content["image_format"]) + return new_payload, 0 + else: + return None, 0 + + elif isinstance(exception, aiohttp.ClientError) or isinstance(exception, asyncio.TimeoutError): + if keep_request: + logger.error(f"模型 {self.model_name} 网络错误,等待{wait_time}秒后重试... 错误: {str(exception)}") + await asyncio.sleep(wait_time) + return None, 0 + else: + logger.critical(f"模型 {self.model_name} 网络错误达到最大重试次数: {str(exception)}") + raise RuntimeError(f"网络请求失败: {str(exception)}") + + elif isinstance(exception, aiohttp.ClientResponseError): + # 处理aiohttp抛出的,除了policy中的status的响应错误 + if keep_request: + logger.error( + f"模型 {self.model_name} HTTP响应错误,等待{wait_time}秒后重试... 状态码: {exception.status}, 错误: {exception.message}" + ) + try: + error_text = await exception.response.text() + error_json = json.loads(error_text) + if isinstance(error_json, list) and len(error_json) > 0: + # 处理多个错误的情况 + for error_item in error_json: + if "error" in error_item and isinstance(error_item["error"], dict): + error_obj = error_item["error"] + logger.error( + f"模型 {self.model_name} 服务器错误详情: 代码={error_obj.get('code')}, " + f"状态={error_obj.get('status')}, " + f"消息={error_obj.get('message')}" + ) + elif isinstance(error_json, dict) and "error" in error_json: + error_obj = error_json.get("error", {}) + logger.error( + f"模型 {self.model_name} 服务器错误详情: 代码={error_obj.get('code')}, " + f"状态={error_obj.get('status')}, " + f"消息={error_obj.get('message')}" + ) + else: + logger.error(f"模型 {self.model_name} 服务器错误响应: {error_json}") + except (json.JSONDecodeError, TypeError) as json_err: + logger.warning( + f"模型 {self.model_name} 响应不是有效的JSON: {str(json_err)}, 原始内容: {error_text[:200]}" + ) + except Exception as parse_err: + logger.warning(f"模型 {self.model_name} 无法解析响应错误内容: {str(parse_err)}") + + await asyncio.sleep(wait_time) + return None, 0 + else: + logger.critical( + f"模型 {self.model_name} HTTP响应错误达到最大重试次数: 状态码: {exception.status}, 错误: {exception.message}" + ) + # 安全地检查和记录请求详情 + handled_payload = await self._safely_record(request_content, payload) + logger.critical(f"请求头: {await self._build_headers(no_key=True)} 请求体: {handled_payload}") + raise RuntimeError( + f"模型 {self.model_name} API请求失败: 状态码 {exception.status}, {exception.message}" + ) + + else: + if keep_request: + logger.error(f"模型 {self.model_name} 请求失败,等待{wait_time}秒后重试... 错误: {str(exception)}") + await asyncio.sleep(wait_time) + return None, 0 + else: + logger.critical(f"模型 {self.model_name} 请求失败: {str(exception)}") + # 安全地检查和记录请求详情 + handled_payload = await self._safely_record(request_content, payload) + logger.critical(f"请求头: {await self._build_headers(no_key=True)} 请求体: {handled_payload}") + raise RuntimeError(f"模型 {self.model_name} API请求失败: {str(exception)}") + + async def _safely_record(self, request_content: Dict[str, Any], payload: Dict[str, Any]): + image_base64: str = request_content.get("image_base64") + image_format: str = request_content.get("image_format") + if ( + image_base64 + and payload + and isinstance(payload, dict) + and "messages" in payload + and len(payload["messages"]) > 0 + ): + if isinstance(payload["messages"][0], dict) and "content" in payload["messages"][0]: + content = payload["messages"][0]["content"] + if isinstance(content, list) and len(content) > 1 and "image_url" in content[1]: + payload["messages"][0]["content"][1]["image_url"]["url"] = ( + f"data:image/{image_format.lower() if image_format else 'jpeg'};base64," + f"{image_base64[:10]}...{image_base64[-10:]}" + ) + # if isinstance(content, str) and len(content) > 100: + # payload["messages"][0]["content"] = content[:100] + return payload + + async def _transform_parameters(self, params: dict) -> dict: + """ + 根据模型名称转换参数: + - 对于需要转换的OpenAI CoT系列模型(例如 "o3-mini"),删除 'temperature' 参数, + 并将 'max_tokens' 重命名为 'max_completion_tokens' + """ + # 复制一份参数,避免直接修改原始数据 + new_params = dict(params) + + if self.model_name.lower() in self.MODELS_NEEDING_TRANSFORMATION: + # 删除 'temperature' 参数(如果存在) + new_params.pop("temperature", None) + # 如果存在 'max_tokens',则重命名为 'max_completion_tokens' + if "max_tokens" in new_params: + new_params["max_completion_tokens"] = new_params.pop("max_tokens") + return new_params + + async def _build_payload(self, prompt: str, image_base64: str = None, image_format: str = None) -> dict: + """构建请求体""" + # 复制一份参数,避免直接修改 self.params + params_copy = await self._transform_parameters(self.params) + if image_base64: + payload = { + "model": self.model_name, + "messages": [ + { + "role": "user", + "content": [ + {"type": "text", "text": prompt}, + { + "type": "image_url", + "image_url": {"url": f"data:image/{image_format.lower()};base64,{image_base64}"}, + }, + ], + } + ], + "max_tokens": global_config.max_response_length, + **params_copy, + } + else: + payload = { + "model": self.model_name, + "messages": [{"role": "user", "content": prompt}], + "max_tokens": global_config.max_response_length, + **params_copy, + } + # 如果 payload 中依然存在 max_tokens 且需要转换,在这里进行再次检查 + if self.model_name.lower() in self.MODELS_NEEDING_TRANSFORMATION and "max_tokens" in payload: + payload["max_completion_tokens"] = payload.pop("max_tokens") + return payload + + def _default_response_handler( + self, result: dict, user_id: str = "system", request_type: str = None, endpoint: str = "/chat/completions" + ) -> Tuple: + """默认响应解析""" + if "choices" in result and result["choices"]: + message = result["choices"][0]["message"] + content = message.get("content", "") + content, reasoning = self._extract_reasoning(content) + reasoning_content = message.get("model_extra", {}).get("reasoning_content", "") + if not reasoning_content: + reasoning_content = message.get("reasoning_content", "") + if not reasoning_content: + reasoning_content = reasoning + + # 提取工具调用信息 + tool_calls = message.get("tool_calls", None) + + # 记录token使用情况 + usage = result.get("usage", {}) + if usage: + prompt_tokens = usage.get("prompt_tokens", 0) + completion_tokens = usage.get("completion_tokens", 0) + total_tokens = usage.get("total_tokens", 0) + self._record_usage( + prompt_tokens=prompt_tokens, + completion_tokens=completion_tokens, + total_tokens=total_tokens, + user_id=user_id, + request_type=request_type if request_type is not None else self.request_type, + endpoint=endpoint, + ) + + # 只有当tool_calls存在且不为空时才返回 + if tool_calls: + return content, reasoning_content, tool_calls + else: + return content, reasoning_content + + return "没有返回结果", "" + + @staticmethod + def _extract_reasoning(content: str) -> Tuple[str, str]: + """CoT思维链提取""" + match = re.search(r"(?:)?(.*?)", content, re.DOTALL) + content = re.sub(r"(?:)?.*?", "", content, flags=re.DOTALL, count=1).strip() + if match: + reasoning = match.group(1).strip() + else: + reasoning = "" + return content, reasoning + + async def _build_headers(self, no_key: bool = False) -> dict: + """构建请求头""" + if no_key: + return {"Authorization": "Bearer **********", "Content-Type": "application/json"} + else: + return {"Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json"} + # 防止小朋友们截图自己的key + + async def generate_response(self, prompt: str) -> Tuple: + """根据输入的提示生成模型的异步响应""" + + response = await self._execute_request(endpoint="/chat/completions", prompt=prompt) + # 根据返回值的长度决定怎么处理 + if len(response) == 3: + content, reasoning_content, tool_calls = response + return content, reasoning_content, self.model_name, tool_calls + else: + content, reasoning_content = response + return content, reasoning_content, self.model_name + + async def generate_response_for_image(self, prompt: str, image_base64: str, image_format: str) -> Tuple: + """根据输入的提示和图片生成模型的异步响应""" + + response = await self._execute_request( + endpoint="/chat/completions", prompt=prompt, image_base64=image_base64, image_format=image_format + ) + # 根据返回值的长度决定怎么处理 + if len(response) == 3: + content, reasoning_content, tool_calls = response + return content, reasoning_content, tool_calls + else: + content, reasoning_content = response + return content, reasoning_content + + async def generate_response_async(self, prompt: str, **kwargs) -> Union[str, Tuple]: + """异步方式根据输入的提示生成模型的响应""" + # 构建请求体 + data = { + "model": self.model_name, + "messages": [{"role": "user", "content": prompt}], + "max_tokens": global_config.max_response_length, + **self.params, + **kwargs, + } + + response = await self._execute_request(endpoint="/chat/completions", payload=data, prompt=prompt) + # 原样返回响应,不做处理 + return response + + async def get_embedding(self, text: str) -> Union[list, None]: + """异步方法:获取文本的embedding向量 + + Args: + text: 需要获取embedding的文本 + + Returns: + list: embedding向量,如果失败则返回None + """ + + if len(text) < 1: + logger.debug("该消息没有长度,不再发送获取embedding向量的请求") + return None + + def embedding_handler(result): + """处理响应""" + if "data" in result and len(result["data"]) > 0: + # 提取 token 使用信息 + usage = result.get("usage", {}) + if usage: + prompt_tokens = usage.get("prompt_tokens", 0) + completion_tokens = usage.get("completion_tokens", 0) + total_tokens = usage.get("total_tokens", 0) + # 记录 token 使用情况 + self._record_usage( + prompt_tokens=prompt_tokens, + completion_tokens=completion_tokens, + total_tokens=total_tokens, + user_id="system", # 可以根据需要修改 user_id + # request_type="embedding", # 请求类型为 embedding + request_type=self.request_type, # 请求类型为 text + endpoint="/embeddings", # API 端点 + ) + return result["data"][0].get("embedding", None) + return result["data"][0].get("embedding", None) + return None + + embedding = await self._execute_request( + endpoint="/embeddings", + prompt=text, + payload={"model": self.model_name, "input": text, "encoding_format": "float"}, + retry_policy={"max_retries": 2, "base_wait": 6}, + response_handler=embedding_handler, + ) + return embedding + + +def compress_base64_image_by_scale(base64_data: str, target_size: int = 0.8 * 1024 * 1024) -> str: + """压缩base64格式的图片到指定大小 + Args: + base64_data: base64编码的图片数据 + target_size: 目标文件大小(字节),默认0.8MB + Returns: + str: 压缩后的base64图片数据 + """ + try: + # 将base64转换为字节数据 + image_data = base64.b64decode(base64_data) + + # 如果已经小于目标大小,直接返回原图 + if len(image_data) <= 2 * 1024 * 1024: + return base64_data + + # 将字节数据转换为图片对象 + img = Image.open(io.BytesIO(image_data)) + + # 获取原始尺寸 + original_width, original_height = img.size + + # 计算缩放比例 + scale = min(1.0, (target_size / len(image_data)) ** 0.5) + + # 计算新的尺寸 + new_width = int(original_width * scale) + new_height = int(original_height * scale) + + # 创建内存缓冲区 + output_buffer = io.BytesIO() + + # 如果是GIF,处理所有帧 + if getattr(img, "is_animated", False): + frames = [] + for frame_idx in range(img.n_frames): + img.seek(frame_idx) + new_frame = img.copy() + new_frame = new_frame.resize((new_width // 2, new_height // 2), Image.Resampling.LANCZOS) # 动图折上折 + frames.append(new_frame) + + # 保存到缓冲区 + frames[0].save( + output_buffer, + format="GIF", + save_all=True, + append_images=frames[1:], + optimize=True, + duration=img.info.get("duration", 100), + loop=img.info.get("loop", 0), + ) + else: + # 处理静态图片 + resized_img = img.resize((new_width, new_height), Image.Resampling.LANCZOS) + + # 保存到缓冲区,保持原始格式 + if img.format == "PNG" and img.mode in ("RGBA", "LA"): + resized_img.save(output_buffer, format="PNG", optimize=True) + else: + resized_img.save(output_buffer, format="JPEG", quality=95, optimize=True) + + # 获取压缩后的数据并转换为base64 + compressed_data = output_buffer.getvalue() + logger.success(f"压缩图片: {original_width}x{original_height} -> {new_width}x{new_height}") + logger.info(f"压缩前大小: {len(image_data) / 1024:.1f}KB, 压缩后大小: {len(compressed_data) / 1024:.1f}KB") + + return base64.b64encode(compressed_data).decode("utf-8") + + except Exception as e: + logger.error(f"压缩图片失败: {str(e)}") + import traceback + + logger.error(traceback.format_exc()) + return base64_data