diff --git a/src/plugins/PFC/reply_generator.py b/src/plugins/PFC/reply_generator.py
index bb4719002..a27abecdd 100644
--- a/src/plugins/PFC/reply_generator.py
+++ b/src/plugins/PFC/reply_generator.py
@@ -151,7 +151,7 @@ class ReplyGenerator:
return content
except Exception as e:
- logger.error(f"生成回复时出错: {e}")
+ logger.error(f"生成回复时出错: {str(e)}")
return "抱歉,我现在有点混乱,让我重新思考一下..."
async def check_reply(self, reply: str, goal: str, retry_count: int = 0) -> Tuple[bool, str, bool]:
diff --git a/src/plugins/chat_module/reasoning_chat/reasoning_chat.py b/src/plugins/chat_module/reasoning_chat/reasoning_chat.py
index 5809e31da..46eeb79fe 100644
--- a/src/plugins/chat_module/reasoning_chat/reasoning_chat.py
+++ b/src/plugins/chat_module/reasoning_chat/reasoning_chat.py
@@ -255,7 +255,7 @@ class ReasoningChat:
info_catcher.catch_after_generate_response(timing_results["生成回复"])
except Exception as e:
- logger.error(f"回复生成出现错误:str{e}")
+ logger.error(f"回复生成出现错误:{str(e)}")
response_set = None
if not response_set:
diff --git a/src/plugins/models/utils_model_new.py b/src/plugins/models/utils_model_new.py
new file mode 100644
index 000000000..8535476cd
--- /dev/null
+++ b/src/plugins/models/utils_model_new.py
@@ -0,0 +1,1231 @@
+import asyncio
+import json
+import re
+from datetime import datetime
+from typing import Tuple, Union, Dict, Any
+
+import aiohttp
+from aiohttp.client import ClientResponse
+
+from src.common.logger import get_module_logger
+import base64
+from PIL import Image
+import io
+import os
+from ...common.database import db
+from ...config.config import global_config
+
+logger = get_module_logger("model_utils")
+
+
+class PayLoadTooLargeError(Exception):
+ """自定义异常类,用于处理请求体过大错误"""
+
+ def __init__(self, message: str):
+ super().__init__(message)
+ self.message = message
+
+ def __str__(self):
+ return "请求体过大,请尝试压缩图片或减少输入内容。"
+
+
+class RequestAbortException(Exception):
+ """自定义异常类,用于处理请求中断异常"""
+
+ def __init__(self, message: str, response: ClientResponse):
+ super().__init__(message)
+ self.message = message
+ self.response = response
+
+ def __str__(self):
+ return self.message
+
+
+class PermissionDeniedException(Exception):
+ """自定义异常类,用于处理访问拒绝的异常"""
+
+ def __init__(self, message: str):
+ super().__init__(message)
+ self.message = message
+
+ def __str__(self):
+ return self.message
+
+
+# 常见Error Code Mapping
+error_code_mapping = {
+ 400: "参数不正确",
+ 401: "API key 错误,认证失败,请检查/config/bot_config.toml和.env中的配置是否正确哦~",
+ 402: "账号余额不足",
+ 403: "需要实名,或余额不足",
+ 404: "Not Found",
+ 429: "请求过于频繁,请稍后再试",
+ 500: "服务器内部故障",
+ 503: "服务器负载过高",
+}
+
+
+class LLMRequest:
+ # 定义需要转换的模型列表,作为类变量避免重复
+ MODELS_NEEDING_TRANSFORMATION = [
+ "o3-mini",
+ "o1-mini",
+ "o1-preview",
+ "o1-2024-12-17",
+ "o1-preview-2024-09-12",
+ "o3-mini-2025-01-31",
+ "o1-mini-2024-09-12",
+ ]
+
+ def __init__(self, model: dict, **kwargs):
+ # 将大写的配置键转换为小写并从config中获取实际值
+ try:
+ self.api_key = os.environ[model["key"]]
+ self.base_url = os.environ[model["base_url"]]
+ except AttributeError as e:
+ logger.error(f"原始 model dict 信息:{model}")
+ logger.error(f"配置错误:找不到对应的配置项 - {str(e)}")
+ raise ValueError(f"配置错误:找不到对应的配置项 - {str(e)}") from e
+ self.model_name: str = model["name"]
+ self.params = kwargs
+
+ self.stream = model.get("stream", False)
+ self.pri_in = model.get("pri_in", 0)
+ self.pri_out = model.get("pri_out", 0)
+
+ # 获取数据库实例
+ self._init_database()
+
+ # 从 kwargs 中提取 request_type,如果没有提供则默认为 "default"
+ self.request_type = kwargs.pop("request_type", "default")
+
+ @staticmethod
+ def _init_database():
+ """初始化数据库集合"""
+ try:
+ # 创建llm_usage集合的索引
+ db.llm_usage.create_index([("timestamp", 1)])
+ db.llm_usage.create_index([("model_name", 1)])
+ db.llm_usage.create_index([("user_id", 1)])
+ db.llm_usage.create_index([("request_type", 1)])
+ except Exception as e:
+ logger.error(f"创建数据库索引失败: {str(e)}")
+
+ def _record_usage(
+ self,
+ prompt_tokens: int,
+ completion_tokens: int,
+ total_tokens: int,
+ user_id: str = "system",
+ request_type: str = None,
+ endpoint: str = "/chat/completions",
+ ):
+ """记录模型使用情况到数据库
+ Args:
+ prompt_tokens: 输入token数
+ completion_tokens: 输出token数
+ total_tokens: 总token数
+ user_id: 用户ID,默认为system
+ request_type: 请求类型(chat/embedding/image/topic/schedule)
+ endpoint: API端点
+ """
+ # 如果 request_type 为 None,则使用实例变量中的值
+ if request_type is None:
+ request_type = self.request_type
+
+ try:
+ usage_data = {
+ "model_name": self.model_name,
+ "user_id": user_id,
+ "request_type": request_type,
+ "endpoint": endpoint,
+ "prompt_tokens": prompt_tokens,
+ "completion_tokens": completion_tokens,
+ "total_tokens": total_tokens,
+ "cost": self._calculate_cost(prompt_tokens, completion_tokens),
+ "status": "success",
+ "timestamp": datetime.now(),
+ }
+ db.llm_usage.insert_one(usage_data)
+ logger.trace(
+ f"Token使用情况 - 模型: {self.model_name}, "
+ f"用户: {user_id}, 类型: {request_type}, "
+ f"提示词: {prompt_tokens}, 完成: {completion_tokens}, "
+ f"总计: {total_tokens}"
+ )
+ except Exception as e:
+ logger.error(f"记录token使用情况失败: {str(e)}")
+
+ def _calculate_cost(self, prompt_tokens: int, completion_tokens: int) -> float:
+ """计算API调用成本
+ 使用模型的pri_in和pri_out价格计算输入和输出的成本
+
+ Args:
+ prompt_tokens: 输入token数量
+ completion_tokens: 输出token数量
+
+ Returns:
+ float: 总成本(元)
+ """
+ # 使用模型的pri_in和pri_out计算成本
+ input_cost = (prompt_tokens / 1000000) * self.pri_in
+ output_cost = (completion_tokens / 1000000) * self.pri_out
+ return round(input_cost + output_cost, 6)
+
+ '''
+ async def _execute_request(
+ self,
+ endpoint: str,
+ prompt: str = None,
+ image_base64: str = None,
+ image_format: str = None,
+ payload: dict = None,
+ retry_policy: dict = None,
+ response_handler: callable = None,
+ user_id: str = "system",
+ request_type: str = None,
+ ):
+ """统一请求执行入口
+ Args:
+ endpoint: API端点路径 (如 "chat/completions")
+ prompt: prompt文本
+ image_base64: 图片的base64编码
+ image_format: 图片格式
+ payload: 请求体数据
+ retry_policy: 自定义重试策略
+ response_handler: 自定义响应处理器
+ user_id: 用户ID
+ request_type: 请求类型
+ """
+
+ if request_type is None:
+ request_type = self.request_type
+
+ # 合并重试策略
+ default_retry = {
+ "max_retries": 3,
+ "base_wait": 10,
+ "retry_codes": [429, 413, 500, 503],
+ "abort_codes": [400, 401, 402, 403],
+ }
+ policy = {**default_retry, **(retry_policy or {})}
+
+ # 常见Error Code Mapping
+ error_code_mapping = {
+ 400: "参数不正确",
+ 401: "API key 错误,认证失败,请检查/config/bot_config.toml和.env中的配置是否正确哦~",
+ 402: "账号余额不足",
+ 403: "需要实名,或余额不足",
+ 404: "Not Found",
+ 429: "请求过于频繁,请稍后再试",
+ 500: "服务器内部故障",
+ 503: "服务器负载过高",
+ }
+
+ api_url = f"{self.base_url.rstrip('/')}/{endpoint.lstrip('/')}"
+ # 判断是否为流式
+ stream_mode = self.stream
+ # logger_msg = "进入流式输出模式," if stream_mode else ""
+ # logger.debug(f"{logger_msg}发送请求到URL: {api_url}")
+ # logger.info(f"使用模型: {self.model_name}")
+
+ # 构建请求体
+ if image_base64:
+ payload = await self._build_payload(prompt, image_base64, image_format)
+ elif payload is None:
+ payload = await self._build_payload(prompt)
+
+ # 流式输出标志
+ # 先构建payload,再添加流式输出标志
+ if stream_mode:
+ payload["stream"] = stream_mode
+
+ for retry in range(policy["max_retries"]):
+ try:
+ # 使用上下文管理器处理会话
+ headers = await self._build_headers()
+ # 似乎是openai流式必须要的东西,不过阿里云的qwq-plus加了这个没有影响
+ if stream_mode:
+ headers["Accept"] = "text/event-stream"
+
+ async with aiohttp.ClientSession() as session:
+ try:
+ async with session.post(api_url, headers=headers, json=payload) as response:
+ # 处理需要重试的状态码
+ if response.status in policy["retry_codes"]:
+ wait_time = policy["base_wait"] * (2**retry)
+ logger.warning(
+ f"模型 {self.model_name} 错误码: {response.status}, 等待 {wait_time}秒后重试"
+ )
+ if response.status == 413:
+ logger.warning("请求体过大,尝试压缩...")
+ image_base64 = compress_base64_image_by_scale(image_base64)
+ payload = await self._build_payload(prompt, image_base64, image_format)
+ elif response.status in [500, 503]:
+ logger.error(
+ f"模型 {self.model_name} 错误码: {response.status} - {error_code_mapping.get(response.status)}"
+ )
+ raise RuntimeError("服务器负载过高,模型恢复失败QAQ")
+ else:
+ logger.warning(f"模型 {self.model_name} 请求限制(429),等待{wait_time}秒后重试...")
+
+ await asyncio.sleep(wait_time)
+ continue
+ elif response.status in policy["abort_codes"]:
+ logger.error(
+ f"模型 {self.model_name} 错误码: {response.status} - {error_code_mapping.get(response.status)}"
+ )
+ # 尝试获取并记录服务器返回的详细错误信息
+ try:
+ error_json = await response.json()
+ if error_json and isinstance(error_json, list) and len(error_json) > 0:
+ for error_item in error_json:
+ if "error" in error_item and isinstance(error_item["error"], dict):
+ error_obj = error_item["error"]
+ error_code = error_obj.get("code")
+ error_message = error_obj.get("message")
+ error_status = error_obj.get("status")
+ logger.error(
+ f"服务器错误详情: 代码={error_code}, 状态={error_status}, "
+ f"消息={error_message}"
+ )
+ elif isinstance(error_json, dict) and "error" in error_json:
+ # 处理单个错误对象的情况
+ error_obj = error_json.get("error", {})
+ error_code = error_obj.get("code")
+ error_message = error_obj.get("message")
+ error_status = error_obj.get("status")
+ logger.error(
+ f"服务器错误详情: 代码={error_code}, 状态={error_status}, 消息={error_message}"
+ )
+ else:
+ # 记录原始错误响应内容
+ logger.error(f"服务器错误响应: {error_json}")
+ except Exception as e:
+ logger.warning(f"无法解析服务器错误响应: {str(e)}")
+
+ if response.status == 403:
+ # 只针对硅基流动的V3和R1进行降级处理
+ if (
+ self.model_name.startswith("Pro/deepseek-ai")
+ and self.base_url == "https://api.siliconflow.cn/v1/"
+ ):
+ old_model_name = self.model_name
+ self.model_name = self.model_name[4:] # 移除"Pro/"前缀
+ logger.warning(
+ f"检测到403错误,模型从 {old_model_name} 降级为 {self.model_name}"
+ )
+
+ # 对全局配置进行更新
+ if global_config.llm_normal.get("name") == old_model_name:
+ global_config.llm_normal["name"] = self.model_name
+ logger.warning(f"将全局配置中的 llm_normal 模型临时降级至{self.model_name}")
+
+ if global_config.llm_reasoning.get("name") == old_model_name:
+ global_config.llm_reasoning["name"] = self.model_name
+ logger.warning(
+ f"将全局配置中的 llm_reasoning 模型临时降级至{self.model_name}"
+ )
+
+ # 更新payload中的模型名
+ if payload and "model" in payload:
+ payload["model"] = self.model_name
+
+ # 重新尝试请求
+ retry -= 1 # 不计入重试次数
+ continue
+
+ raise RuntimeError(f"请求被拒绝: {error_code_mapping.get(response.status)}")
+
+ response.raise_for_status()
+ reasoning_content = ""
+
+ # 将流式输出转化为非流式输出
+ if stream_mode:
+ flag_delta_content_finished = False
+ accumulated_content = ""
+ usage = None # 初始化usage变量,避免未定义错误
+
+ async for line_bytes in response.content:
+ try:
+ line = line_bytes.decode("utf-8").strip()
+ if not line:
+ continue
+ if line.startswith("data:"):
+ data_str = line[5:].strip()
+ if data_str == "[DONE]":
+ break
+ try:
+ chunk = json.loads(data_str)
+ if flag_delta_content_finished:
+ chunk_usage = chunk.get("usage", None)
+ if chunk_usage:
+ usage = chunk_usage # 获取token用量
+ else:
+ delta = chunk["choices"][0]["delta"]
+ delta_content = delta.get("content")
+ if delta_content is None:
+ delta_content = ""
+ accumulated_content += delta_content
+ # 检测流式输出文本是否结束
+ finish_reason = chunk["choices"][0].get("finish_reason")
+ if delta.get("reasoning_content", None):
+ reasoning_content += delta["reasoning_content"]
+ if finish_reason == "stop":
+ chunk_usage = chunk.get("usage", None)
+ if chunk_usage:
+ usage = chunk_usage
+ break
+ # 部分平台在文本输出结束前不会返回token用量,此时需要再获取一次chunk
+ flag_delta_content_finished = True
+
+ except Exception as e:
+ logger.exception(f"模型 {self.model_name} 解析流式输出错误: {str(e)}")
+ except GeneratorExit:
+ logger.warning("模型 {self.model_name} 流式输出被中断,正在清理资源...")
+ # 确保资源被正确清理
+ await response.release()
+ # 返回已经累积的内容
+ result = {
+ "choices": [
+ {
+ "message": {
+ "content": accumulated_content,
+ "reasoning_content": reasoning_content,
+ # 流式输出可能没有工具调用,此处不需要添加tool_calls字段
+ }
+ }
+ ],
+ "usage": usage,
+ }
+ return (
+ response_handler(result)
+ if response_handler
+ else self._default_response_handler(result, user_id, request_type, endpoint)
+ )
+ except Exception as e:
+ logger.error(f"模型 {self.model_name} 处理流式输出时发生错误: {str(e)}")
+ # 确保在发生错误时也能正确清理资源
+ try:
+ await response.release()
+ except Exception as cleanup_error:
+ logger.error(f"清理资源时发生错误: {cleanup_error}")
+ # 返回已经累积的内容
+ result = {
+ "choices": [
+ {
+ "message": {
+ "content": accumulated_content,
+ "reasoning_content": reasoning_content,
+ # 流式输出可能没有工具调用,此处不需要添加tool_calls字段
+ }
+ }
+ ],
+ "usage": usage,
+ }
+ return (
+ response_handler(result)
+ if response_handler
+ else self._default_response_handler(result, user_id, request_type, endpoint)
+ )
+ content = accumulated_content
+ think_match = re.search(r"(.*?)", content, re.DOTALL)
+ if think_match:
+ reasoning_content = think_match.group(1).strip()
+ content = re.sub(r".*?", "", content, flags=re.DOTALL).strip()
+ # 构造一个伪result以便调用自定义响应处理器或默认处理器
+ result = {
+ "choices": [
+ {
+ "message": {
+ "content": content,
+ "reasoning_content": reasoning_content,
+ # 流式输出可能没有工具调用,此处不需要添加tool_calls字段
+ }
+ }
+ ],
+ "usage": usage,
+ }
+ return (
+ response_handler(result)
+ if response_handler
+ else self._default_response_handler(result, user_id, request_type, endpoint)
+ )
+ else:
+ result = await response.json()
+ # 使用自定义处理器或默认处理
+ return (
+ response_handler(result)
+ if response_handler
+ else self._default_response_handler(result, user_id, request_type, endpoint)
+ )
+
+ except (aiohttp.ClientError, asyncio.TimeoutError) as e:
+ if retry < policy["max_retries"] - 1:
+ wait_time = policy["base_wait"] * (2**retry)
+ logger.error(f"模型 {self.model_name} 网络错误,等待{wait_time}秒后重试... 错误: {str(e)}")
+ await asyncio.sleep(wait_time)
+ continue
+ else:
+ logger.critical(f"模型 {self.model_name} 网络错误达到最大重试次数: {str(e)}")
+ raise RuntimeError(f"网络请求失败: {str(e)}") from e
+ except Exception as e:
+ logger.critical(f"模型 {self.model_name} 未预期的错误: {str(e)}")
+ raise RuntimeError(f"请求过程中发生错误: {str(e)}") from e
+
+ except aiohttp.ClientResponseError as e:
+ # 处理aiohttp抛出的响应错误
+ if retry < policy["max_retries"] - 1:
+ wait_time = policy["base_wait"] * (2**retry)
+ logger.error(
+ f"模型 {self.model_name} HTTP响应错误,等待{wait_time}秒后重试... 状态码: {e.status}, 错误: {e.message}"
+ )
+ try:
+ if hasattr(e, "response") and e.response and hasattr(e.response, "text"):
+ error_text = await e.response.text()
+ try:
+ error_json = json.loads(error_text)
+ if isinstance(error_json, list) and len(error_json) > 0:
+ for error_item in error_json:
+ if "error" in error_item and isinstance(error_item["error"], dict):
+ error_obj = error_item["error"]
+ logger.error(
+ f"模型 {self.model_name} 服务器错误详情: 代码={error_obj.get('code')}, "
+ f"状态={error_obj.get('status')}, "
+ f"消息={error_obj.get('message')}"
+ )
+ elif isinstance(error_json, dict) and "error" in error_json:
+ error_obj = error_json.get("error", {})
+ logger.error(
+ f"模型 {self.model_name} 服务器错误详情: 代码={error_obj.get('code')}, "
+ f"状态={error_obj.get('status')}, "
+ f"消息={error_obj.get('message')}"
+ )
+ else:
+ logger.error(f"模型 {self.model_name} 服务器错误响应: {error_json}")
+ except (json.JSONDecodeError, TypeError) as json_err:
+ logger.warning(
+ f"模型 {self.model_name} 响应不是有效的JSON: {str(json_err)}, 原始内容: {error_text[:200]}"
+ )
+ except (AttributeError, TypeError, ValueError) as parse_err:
+ logger.warning(f"模型 {self.model_name} 无法解析响应错误内容: {str(parse_err)}")
+
+ await asyncio.sleep(wait_time)
+ else:
+ logger.critical(
+ f"模型 {self.model_name} HTTP响应错误达到最大重试次数: 状态码: {e.status}, 错误: {e.message}"
+ )
+ # 安全地检查和记录请求详情
+ if (
+ image_base64
+ and payload
+ and isinstance(payload, dict)
+ and "messages" in payload
+ and len(payload["messages"]) > 0
+ ):
+ if isinstance(payload["messages"][0], dict) and "content" in payload["messages"][0]:
+ content = payload["messages"][0]["content"]
+ if isinstance(content, list) and len(content) > 1 and "image_url" in content[1]:
+ payload["messages"][0]["content"][1]["image_url"]["url"] = (
+ f"data:image/{image_format.lower() if image_format else 'jpeg'};base64,"
+ f"{image_base64[:10]}...{image_base64[-10:]}"
+ )
+ logger.critical(f"请求头: {await self._build_headers(no_key=True)} 请求体: {payload}")
+ raise RuntimeError(f"模型 {self.model_name} API请求失败: 状态码 {e.status}, {e.message}") from e
+ except Exception as e:
+ if retry < policy["max_retries"] - 1:
+ wait_time = policy["base_wait"] * (2**retry)
+ logger.error(f"模型 {self.model_name} 请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
+ await asyncio.sleep(wait_time)
+ else:
+ logger.critical(f"模型 {self.model_name} 请求失败: {str(e)}")
+ # 安全地检查和记录请求详情
+ if (
+ image_base64
+ and payload
+ and isinstance(payload, dict)
+ and "messages" in payload
+ and len(payload["messages"]) > 0
+ ):
+ if isinstance(payload["messages"][0], dict) and "content" in payload["messages"][0]:
+ content = payload["messages"][0]["content"]
+ if isinstance(content, list) and len(content) > 1 and "image_url" in content[1]:
+ payload["messages"][0]["content"][1]["image_url"]["url"] = (
+ f"data:image/{image_format.lower() if image_format else 'jpeg'};base64,"
+ f"{image_base64[:10]}...{image_base64[-10:]}"
+ )
+ logger.critical(f"请求头: {await self._build_headers(no_key=True)} 请求体: {payload}")
+ raise RuntimeError(f"模型 {self.model_name} API请求失败: {str(e)}") from e
+
+ logger.error(f"模型 {self.model_name} 达到最大重试次数,请求仍然失败")
+ raise RuntimeError(f"模型 {self.model_name} 达到最大重试次数,API请求仍然失败")
+ '''
+
+ async def _prepare_request(
+ self,
+ endpoint: str,
+ prompt: str = None,
+ image_base64: str = None,
+ image_format: str = None,
+ payload: dict = None,
+ retry_policy: dict = None,
+ ) -> Dict[str, Any]:
+ """配置请求参数
+ Args:
+ endpoint: API端点路径 (如 "chat/completions")
+ prompt: prompt文本
+ image_base64: 图片的base64编码
+ image_format: 图片格式
+ payload: 请求体数据
+ retry_policy: 自定义重试策略
+ request_type: 请求类型
+ """
+
+ # 合并重试策略
+ default_retry = {
+ "max_retries": 3,
+ "base_wait": 10,
+ "retry_codes": [429, 413, 500, 503],
+ "abort_codes": [400, 401, 402, 403],
+ }
+ policy = {**default_retry, **(retry_policy or {})}
+
+ api_url = f"{self.base_url.rstrip('/')}/{endpoint.lstrip('/')}"
+
+ stream_mode = self.stream
+
+ # 构建请求体
+ if image_base64:
+ payload = await self._build_payload(prompt, image_base64, image_format)
+ elif payload is None:
+ payload = await self._build_payload(prompt)
+
+ if stream_mode:
+ payload["stream"] = stream_mode
+
+ return {
+ "policy": policy,
+ "payload": payload,
+ "api_url": api_url,
+ "stream_mode": stream_mode,
+ "image_base64": image_base64, # 保留必要的exception处理所需的原始数据
+ "image_format": image_format,
+ "prompt": prompt
+ }
+
+ async def _execute_request(
+ self,
+ endpoint: str,
+ prompt: str = None,
+ image_base64: str = None,
+ image_format: str = None,
+ payload: dict = None,
+ retry_policy: dict = None,
+ response_handler: callable = None,
+ user_id: str = "system",
+ request_type: str = None,
+ ):
+ """统一请求执行入口
+ Args:
+ endpoint: API端点路径 (如 "chat/completions")
+ prompt: prompt文本
+ image_base64: 图片的base64编码
+ image_format: 图片格式
+ payload: 请求体数据
+ retry_policy: 自定义重试策略
+ response_handler: 自定义响应处理器
+ user_id: 用户ID
+ request_type: 请求类型
+ """
+ # 获取请求配置
+ request_content = await self._prepare_request(
+ endpoint, prompt, image_base64, image_format, payload, retry_policy
+ )
+ if request_type is None:
+ request_type = self.request_type
+ for retry in range(request_content["policy"]["max_retries"]):
+ try:
+ # 使用上下文管理器处理会话
+ headers = await self._build_headers()
+ # 似乎是openai流式必须要的东西,不过阿里云的qwq-plus加了这个没有影响
+ if request_content["stream_mode"]:
+ headers["Accept"] = "text/event-stream"
+ async with aiohttp.ClientSession() as session:
+ async with session.post(
+ request_content["api_url"], headers=headers, json=request_content["payload"]
+ ) as response:
+ handled_result = await self._handle_response(
+ response, request_content, retry, response_handler, user_id, request_type, endpoint
+ )
+ return handled_result
+ except Exception as e:
+ handled_payload, count_delta = await self._handle_exception(e, retry, request_content)
+ retry += count_delta # 降级不计入重试次数
+ if handled_payload:
+ # 如果降级成功,重新构建请求体
+ request_content["payload"] = handled_payload
+ continue
+
+ logger.error(f"模型 {self.model_name} 达到最大重试次数,请求仍然失败")
+ raise RuntimeError(f"模型 {self.model_name} 达到最大重试次数,API请求仍然失败")
+
+ async def _handle_response(
+ self,
+ response: ClientResponse,
+ request_content: Dict[str, Any],
+ retry_count: int,
+ response_handler: callable,
+ user_id,
+ request_type,
+ endpoint,
+ ) -> Union[Dict[str, Any], None]:
+ policy = request_content["policy"]
+ stream_mode = request_content["stream_mode"]
+ if response.status in policy["retry_codes"] or response.status in policy["abort_codes"]:
+ await self._handle_error_response(response, retry_count, policy)
+ return
+
+ response.raise_for_status()
+ result = {}
+ if stream_mode:
+ # 将流式输出转化为非流式输出
+ result = await self._handle_stream_output(response)
+ else:
+ result = await response.json()
+ return (
+ response_handler(result)
+ if response_handler
+ else self._default_response_handler(result, user_id, request_type, endpoint)
+ )
+
+ async def _handle_stream_output(self, response: ClientResponse) -> Dict[str, Any]:
+ flag_delta_content_finished = False
+ accumulated_content = ""
+ usage = None # 初始化usage变量,避免未定义错误
+ reasoning_content = ""
+ content = ""
+ async for line_bytes in response.content:
+ try:
+ line = line_bytes.decode("utf-8").strip()
+ if not line:
+ continue
+ if line.startswith("data:"):
+ data_str = line[5:].strip()
+ if data_str == "[DONE]":
+ break
+ try:
+ chunk = json.loads(data_str)
+ if flag_delta_content_finished:
+ chunk_usage = chunk.get("usage", None)
+ if chunk_usage:
+ usage = chunk_usage # 获取token用量
+ else:
+ delta = chunk["choices"][0]["delta"]
+ delta_content = delta.get("content")
+ if delta_content is None:
+ delta_content = ""
+ accumulated_content += delta_content
+ # 检测流式输出文本是否结束
+ finish_reason = chunk["choices"][0].get("finish_reason")
+ if delta.get("reasoning_content", None):
+ reasoning_content += delta["reasoning_content"]
+ if finish_reason == "stop":
+ chunk_usage = chunk.get("usage", None)
+ if chunk_usage:
+ usage = chunk_usage
+ break
+ # 部分平台在文本输出结束前不会返回token用量,此时需要再获取一次chunk
+ flag_delta_content_finished = True
+ except Exception as e:
+ logger.exception(f"模型 {self.model_name} 解析流式输出错误: {str(e)}")
+ except Exception as e:
+ if isinstance(e, GeneratorExit):
+ log_content = f"模型 {self.model_name} 流式输出被中断,正在清理资源..."
+ else:
+ log_content = f"模型 {self.model_name} 处理流式输出时发生错误: {str(e)}"
+ logger.warning(log_content)
+ # 确保资源被正确清理
+ try:
+ await response.release()
+ except Exception as cleanup_error:
+ logger.error(f"清理资源时发生错误: {cleanup_error}")
+ # 返回已经累积的内容
+ content = accumulated_content
+ if not content:
+ content = accumulated_content
+ think_match = re.search(r"(.*?)", content, re.DOTALL)
+ if think_match:
+ reasoning_content = think_match.group(1).strip()
+ content = re.sub(r".*?", "", content, flags=re.DOTALL).strip()
+ result = {
+ "choices": [
+ {
+ "message": {
+ "content": content,
+ "reasoning_content": reasoning_content,
+ # 流式输出可能没有工具调用,此处不需要添加tool_calls字段
+ }
+ }
+ ],
+ "usage": usage,
+ }
+ return result
+
+ async def _handle_error_response(
+ self, response: ClientResponse, retry_count: int, policy: Dict[str, Any]
+ ) -> Union[Dict[str, any]]:
+ if response.status in policy["retry_codes"]:
+ wait_time = policy["base_wait"] * (2**retry_count)
+ logger.warning(f"模型 {self.model_name} 错误码: {response.status}, 等待 {wait_time}秒后重试")
+ if response.status == 413:
+ logger.warning("请求体过大,尝试压缩...")
+ raise PayLoadTooLargeError("请求体过大")
+ elif response.status in [500, 503]:
+ logger.error(
+ f"模型 {self.model_name} 错误码: {response.status} - {error_code_mapping.get(response.status)}"
+ )
+ raise RuntimeError("服务器负载过高,模型恢复失败QAQ")
+ else:
+ logger.warning(f"模型 {self.model_name} 请求限制(429),等待{wait_time}秒后重试...")
+ raise RuntimeError("请求限制(429)")
+ elif response.status in policy["abort_codes"]:
+ if response.status != 403:
+ raise RequestAbortException("请求出现错误,中断处理", response)
+ else:
+ raise PermissionDeniedException("模型禁止访问")
+
+ async def _handle_exception(
+ self, exception, retry_count: int, request_content: Dict[str, Any]
+ ) -> Union[Tuple[Dict[str, Any], int], Tuple[None, int]]:
+ policy = request_content["policy"]
+ payload = request_content["payload"]
+ keep_request = False
+ if retry_count < policy["max_retries"] - 1:
+ wait_time = policy["base_wait"] * (2**retry_count)
+ keep_request = True
+ if isinstance(exception, RequestAbortException):
+ response = exception.response
+ logger.error(
+ f"模型 {self.model_name} 错误码: {response.status} - {error_code_mapping.get(response.status)}"
+ )
+ # 尝试获取并记录服务器返回的详细错误信息
+ try:
+ error_json = await response.json()
+ if error_json and isinstance(error_json, list) and len(error_json) > 0:
+ # 处理多个错误的情况
+ for error_item in error_json:
+ if "error" in error_item and isinstance(error_item["error"], dict):
+ error_obj: dict = error_item["error"]
+ error_code = error_obj.get("code")
+ error_message = error_obj.get("message")
+ error_status = error_obj.get("status")
+ logger.error(
+ f"服务器错误详情: 代码={error_code}, 状态={error_status}, 消息={error_message}"
+ )
+ elif isinstance(error_json, dict) and "error" in error_json:
+ # 处理单个错误对象的情况
+ error_obj = error_json.get("error", {})
+ error_code = error_obj.get("code")
+ error_message = error_obj.get("message")
+ error_status = error_obj.get("status")
+ logger.error(f"服务器错误详情: 代码={error_code}, 状态={error_status}, 消息={error_message}")
+ else:
+ # 记录原始错误响应内容
+ logger.error(f"服务器错误响应: {error_json}")
+ except Exception as e:
+ logger.warning(f"无法解析服务器错误响应: {str(e)}")
+ raise RuntimeError(f"请求被拒绝: {error_code_mapping.get(response.status)}")
+
+ elif isinstance(exception, PermissionDeniedException):
+ # 只针对硅基流动的V3和R1进行降级处理
+ if self.model_name.startswith("Pro/deepseek-ai") and self.base_url == "https://api.siliconflow.cn/v1/":
+ old_model_name = self.model_name
+ self.model_name = self.model_name[4:] # 移除"Pro/"前缀
+ logger.warning(f"检测到403错误,模型从 {old_model_name} 降级为 {self.model_name}")
+
+ # 对全局配置进行更新
+ if global_config.llm_normal.get("name") == old_model_name:
+ global_config.llm_normal["name"] = self.model_name
+ logger.warning(f"将全局配置中的 llm_normal 模型临时降级至{self.model_name}")
+ if global_config.llm_reasoning.get("name") == old_model_name:
+ global_config.llm_reasoning["name"] = self.model_name
+ logger.warning(f"将全局配置中的 llm_reasoning 模型临时降级至{self.model_name}")
+
+ if payload and "model" in payload:
+ payload["model"] = self.model_name
+
+ await asyncio.sleep(wait_time)
+ return payload, -1
+ raise RuntimeError(f"请求被拒绝: {error_code_mapping.get(403)}")
+
+ elif isinstance(exception, PayLoadTooLargeError):
+ if keep_request:
+ image_base64 = request_content["image_base64"]
+ compressed_image_base64 = compress_base64_image_by_scale(image_base64)
+ new_payload = await self._build_payload(request_content["prompt"], compressed_image_base64, request_content["image_format"])
+ return new_payload, 0
+ else:
+ return None, 0
+
+ elif isinstance(exception, aiohttp.ClientError) or isinstance(exception, asyncio.TimeoutError):
+ if keep_request:
+ logger.error(f"模型 {self.model_name} 网络错误,等待{wait_time}秒后重试... 错误: {str(exception)}")
+ await asyncio.sleep(wait_time)
+ return None, 0
+ else:
+ logger.critical(f"模型 {self.model_name} 网络错误达到最大重试次数: {str(exception)}")
+ raise RuntimeError(f"网络请求失败: {str(exception)}")
+
+ elif isinstance(exception, aiohttp.ClientResponseError):
+ # 处理aiohttp抛出的,除了policy中的status的响应错误
+ if keep_request:
+ logger.error(
+ f"模型 {self.model_name} HTTP响应错误,等待{wait_time}秒后重试... 状态码: {exception.status}, 错误: {exception.message}"
+ )
+ try:
+ error_text = await exception.response.text()
+ error_json = json.loads(error_text)
+ if isinstance(error_json, list) and len(error_json) > 0:
+ # 处理多个错误的情况
+ for error_item in error_json:
+ if "error" in error_item and isinstance(error_item["error"], dict):
+ error_obj = error_item["error"]
+ logger.error(
+ f"模型 {self.model_name} 服务器错误详情: 代码={error_obj.get('code')}, "
+ f"状态={error_obj.get('status')}, "
+ f"消息={error_obj.get('message')}"
+ )
+ elif isinstance(error_json, dict) and "error" in error_json:
+ error_obj = error_json.get("error", {})
+ logger.error(
+ f"模型 {self.model_name} 服务器错误详情: 代码={error_obj.get('code')}, "
+ f"状态={error_obj.get('status')}, "
+ f"消息={error_obj.get('message')}"
+ )
+ else:
+ logger.error(f"模型 {self.model_name} 服务器错误响应: {error_json}")
+ except (json.JSONDecodeError, TypeError) as json_err:
+ logger.warning(
+ f"模型 {self.model_name} 响应不是有效的JSON: {str(json_err)}, 原始内容: {error_text[:200]}"
+ )
+ except Exception as parse_err:
+ logger.warning(f"模型 {self.model_name} 无法解析响应错误内容: {str(parse_err)}")
+
+ await asyncio.sleep(wait_time)
+ return None, 0
+ else:
+ logger.critical(
+ f"模型 {self.model_name} HTTP响应错误达到最大重试次数: 状态码: {exception.status}, 错误: {exception.message}"
+ )
+ # 安全地检查和记录请求详情
+ handled_payload = await self._safely_record(request_content, payload)
+ logger.critical(f"请求头: {await self._build_headers(no_key=True)} 请求体: {handled_payload}")
+ raise RuntimeError(
+ f"模型 {self.model_name} API请求失败: 状态码 {exception.status}, {exception.message}"
+ )
+
+ else:
+ if keep_request:
+ logger.error(f"模型 {self.model_name} 请求失败,等待{wait_time}秒后重试... 错误: {str(exception)}")
+ await asyncio.sleep(wait_time)
+ return None, 0
+ else:
+ logger.critical(f"模型 {self.model_name} 请求失败: {str(exception)}")
+ # 安全地检查和记录请求详情
+ handled_payload = await self._safely_record(request_content, payload)
+ logger.critical(f"请求头: {await self._build_headers(no_key=True)} 请求体: {handled_payload}")
+ raise RuntimeError(f"模型 {self.model_name} API请求失败: {str(exception)}")
+
+ async def _safely_record(self, request_content: Dict[str, Any], payload: Dict[str, Any]):
+ image_base64: str = request_content.get("image_base64")
+ image_format: str = request_content.get("image_format")
+ if (
+ image_base64
+ and payload
+ and isinstance(payload, dict)
+ and "messages" in payload
+ and len(payload["messages"]) > 0
+ ):
+ if isinstance(payload["messages"][0], dict) and "content" in payload["messages"][0]:
+ content = payload["messages"][0]["content"]
+ if isinstance(content, list) and len(content) > 1 and "image_url" in content[1]:
+ payload["messages"][0]["content"][1]["image_url"]["url"] = (
+ f"data:image/{image_format.lower() if image_format else 'jpeg'};base64,"
+ f"{image_base64[:10]}...{image_base64[-10:]}"
+ )
+ # if isinstance(content, str) and len(content) > 100:
+ # payload["messages"][0]["content"] = content[:100]
+ return payload
+
+ async def _transform_parameters(self, params: dict) -> dict:
+ """
+ 根据模型名称转换参数:
+ - 对于需要转换的OpenAI CoT系列模型(例如 "o3-mini"),删除 'temperature' 参数,
+ 并将 'max_tokens' 重命名为 'max_completion_tokens'
+ """
+ # 复制一份参数,避免直接修改原始数据
+ new_params = dict(params)
+
+ if self.model_name.lower() in self.MODELS_NEEDING_TRANSFORMATION:
+ # 删除 'temperature' 参数(如果存在)
+ new_params.pop("temperature", None)
+ # 如果存在 'max_tokens',则重命名为 'max_completion_tokens'
+ if "max_tokens" in new_params:
+ new_params["max_completion_tokens"] = new_params.pop("max_tokens")
+ return new_params
+
+ async def _build_payload(self, prompt: str, image_base64: str = None, image_format: str = None) -> dict:
+ """构建请求体"""
+ # 复制一份参数,避免直接修改 self.params
+ params_copy = await self._transform_parameters(self.params)
+ if image_base64:
+ payload = {
+ "model": self.model_name,
+ "messages": [
+ {
+ "role": "user",
+ "content": [
+ {"type": "text", "text": prompt},
+ {
+ "type": "image_url",
+ "image_url": {"url": f"data:image/{image_format.lower()};base64,{image_base64}"},
+ },
+ ],
+ }
+ ],
+ "max_tokens": global_config.max_response_length,
+ **params_copy,
+ }
+ else:
+ payload = {
+ "model": self.model_name,
+ "messages": [{"role": "user", "content": prompt}],
+ "max_tokens": global_config.max_response_length,
+ **params_copy,
+ }
+ # 如果 payload 中依然存在 max_tokens 且需要转换,在这里进行再次检查
+ if self.model_name.lower() in self.MODELS_NEEDING_TRANSFORMATION and "max_tokens" in payload:
+ payload["max_completion_tokens"] = payload.pop("max_tokens")
+ return payload
+
+ def _default_response_handler(
+ self, result: dict, user_id: str = "system", request_type: str = None, endpoint: str = "/chat/completions"
+ ) -> Tuple:
+ """默认响应解析"""
+ if "choices" in result and result["choices"]:
+ message = result["choices"][0]["message"]
+ content = message.get("content", "")
+ content, reasoning = self._extract_reasoning(content)
+ reasoning_content = message.get("model_extra", {}).get("reasoning_content", "")
+ if not reasoning_content:
+ reasoning_content = message.get("reasoning_content", "")
+ if not reasoning_content:
+ reasoning_content = reasoning
+
+ # 提取工具调用信息
+ tool_calls = message.get("tool_calls", None)
+
+ # 记录token使用情况
+ usage = result.get("usage", {})
+ if usage:
+ prompt_tokens = usage.get("prompt_tokens", 0)
+ completion_tokens = usage.get("completion_tokens", 0)
+ total_tokens = usage.get("total_tokens", 0)
+ self._record_usage(
+ prompt_tokens=prompt_tokens,
+ completion_tokens=completion_tokens,
+ total_tokens=total_tokens,
+ user_id=user_id,
+ request_type=request_type if request_type is not None else self.request_type,
+ endpoint=endpoint,
+ )
+
+ # 只有当tool_calls存在且不为空时才返回
+ if tool_calls:
+ return content, reasoning_content, tool_calls
+ else:
+ return content, reasoning_content
+
+ return "没有返回结果", ""
+
+ @staticmethod
+ def _extract_reasoning(content: str) -> Tuple[str, str]:
+ """CoT思维链提取"""
+ match = re.search(r"(?:)?(.*?)", content, re.DOTALL)
+ content = re.sub(r"(?:)?.*?", "", content, flags=re.DOTALL, count=1).strip()
+ if match:
+ reasoning = match.group(1).strip()
+ else:
+ reasoning = ""
+ return content, reasoning
+
+ async def _build_headers(self, no_key: bool = False) -> dict:
+ """构建请求头"""
+ if no_key:
+ return {"Authorization": "Bearer **********", "Content-Type": "application/json"}
+ else:
+ return {"Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json"}
+ # 防止小朋友们截图自己的key
+
+ async def generate_response(self, prompt: str) -> Tuple:
+ """根据输入的提示生成模型的异步响应"""
+
+ response = await self._execute_request(endpoint="/chat/completions", prompt=prompt)
+ # 根据返回值的长度决定怎么处理
+ if len(response) == 3:
+ content, reasoning_content, tool_calls = response
+ return content, reasoning_content, self.model_name, tool_calls
+ else:
+ content, reasoning_content = response
+ return content, reasoning_content, self.model_name
+
+ async def generate_response_for_image(self, prompt: str, image_base64: str, image_format: str) -> Tuple:
+ """根据输入的提示和图片生成模型的异步响应"""
+
+ response = await self._execute_request(
+ endpoint="/chat/completions", prompt=prompt, image_base64=image_base64, image_format=image_format
+ )
+ # 根据返回值的长度决定怎么处理
+ if len(response) == 3:
+ content, reasoning_content, tool_calls = response
+ return content, reasoning_content, tool_calls
+ else:
+ content, reasoning_content = response
+ return content, reasoning_content
+
+ async def generate_response_async(self, prompt: str, **kwargs) -> Union[str, Tuple]:
+ """异步方式根据输入的提示生成模型的响应"""
+ # 构建请求体
+ data = {
+ "model": self.model_name,
+ "messages": [{"role": "user", "content": prompt}],
+ "max_tokens": global_config.max_response_length,
+ **self.params,
+ **kwargs,
+ }
+
+ response = await self._execute_request(endpoint="/chat/completions", payload=data, prompt=prompt)
+ # 原样返回响应,不做处理
+ return response
+
+ async def get_embedding(self, text: str) -> Union[list, None]:
+ """异步方法:获取文本的embedding向量
+
+ Args:
+ text: 需要获取embedding的文本
+
+ Returns:
+ list: embedding向量,如果失败则返回None
+ """
+
+ if len(text) < 1:
+ logger.debug("该消息没有长度,不再发送获取embedding向量的请求")
+ return None
+
+ def embedding_handler(result):
+ """处理响应"""
+ if "data" in result and len(result["data"]) > 0:
+ # 提取 token 使用信息
+ usage = result.get("usage", {})
+ if usage:
+ prompt_tokens = usage.get("prompt_tokens", 0)
+ completion_tokens = usage.get("completion_tokens", 0)
+ total_tokens = usage.get("total_tokens", 0)
+ # 记录 token 使用情况
+ self._record_usage(
+ prompt_tokens=prompt_tokens,
+ completion_tokens=completion_tokens,
+ total_tokens=total_tokens,
+ user_id="system", # 可以根据需要修改 user_id
+ # request_type="embedding", # 请求类型为 embedding
+ request_type=self.request_type, # 请求类型为 text
+ endpoint="/embeddings", # API 端点
+ )
+ return result["data"][0].get("embedding", None)
+ return result["data"][0].get("embedding", None)
+ return None
+
+ embedding = await self._execute_request(
+ endpoint="/embeddings",
+ prompt=text,
+ payload={"model": self.model_name, "input": text, "encoding_format": "float"},
+ retry_policy={"max_retries": 2, "base_wait": 6},
+ response_handler=embedding_handler,
+ )
+ return embedding
+
+
+def compress_base64_image_by_scale(base64_data: str, target_size: int = 0.8 * 1024 * 1024) -> str:
+ """压缩base64格式的图片到指定大小
+ Args:
+ base64_data: base64编码的图片数据
+ target_size: 目标文件大小(字节),默认0.8MB
+ Returns:
+ str: 压缩后的base64图片数据
+ """
+ try:
+ # 将base64转换为字节数据
+ image_data = base64.b64decode(base64_data)
+
+ # 如果已经小于目标大小,直接返回原图
+ if len(image_data) <= 2 * 1024 * 1024:
+ return base64_data
+
+ # 将字节数据转换为图片对象
+ img = Image.open(io.BytesIO(image_data))
+
+ # 获取原始尺寸
+ original_width, original_height = img.size
+
+ # 计算缩放比例
+ scale = min(1.0, (target_size / len(image_data)) ** 0.5)
+
+ # 计算新的尺寸
+ new_width = int(original_width * scale)
+ new_height = int(original_height * scale)
+
+ # 创建内存缓冲区
+ output_buffer = io.BytesIO()
+
+ # 如果是GIF,处理所有帧
+ if getattr(img, "is_animated", False):
+ frames = []
+ for frame_idx in range(img.n_frames):
+ img.seek(frame_idx)
+ new_frame = img.copy()
+ new_frame = new_frame.resize((new_width // 2, new_height // 2), Image.Resampling.LANCZOS) # 动图折上折
+ frames.append(new_frame)
+
+ # 保存到缓冲区
+ frames[0].save(
+ output_buffer,
+ format="GIF",
+ save_all=True,
+ append_images=frames[1:],
+ optimize=True,
+ duration=img.info.get("duration", 100),
+ loop=img.info.get("loop", 0),
+ )
+ else:
+ # 处理静态图片
+ resized_img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
+
+ # 保存到缓冲区,保持原始格式
+ if img.format == "PNG" and img.mode in ("RGBA", "LA"):
+ resized_img.save(output_buffer, format="PNG", optimize=True)
+ else:
+ resized_img.save(output_buffer, format="JPEG", quality=95, optimize=True)
+
+ # 获取压缩后的数据并转换为base64
+ compressed_data = output_buffer.getvalue()
+ logger.success(f"压缩图片: {original_width}x{original_height} -> {new_width}x{new_height}")
+ logger.info(f"压缩前大小: {len(image_data) / 1024:.1f}KB, 压缩后大小: {len(compressed_data) / 1024:.1f}KB")
+
+ return base64.b64encode(compressed_data).decode("utf-8")
+
+ except Exception as e:
+ logger.error(f"压缩图片失败: {str(e)}")
+ import traceback
+
+ logger.error(traceback.format_exc())
+ return base64_data