Merge remote-tracking branch 'upstream/debug' into debug

This commit is contained in:
Rikki
2025-03-07 06:42:24 +08:00
11 changed files with 377 additions and 817 deletions

View File

@@ -58,6 +58,7 @@ class ChatBot:
plain_text=event.get_plaintext(), plain_text=event.get_plaintext(),
reply_message=event.reply, reply_message=event.reply,
) )
await message.initialize()
# 过滤词 # 过滤词
for word in global_config.ban_words: for word in global_config.ban_words:
@@ -163,12 +164,6 @@ class ChatBot:
message_manager.add_message(message_set) message_manager.add_message(message_set)
bot_response_time = tinking_time_point bot_response_time = tinking_time_point
emotion = await self.gpt._get_emotion_tags(raw_content)
print(f"'{response}' 获取到的情感标签为:{emotion}")
valuedict={
'happy':0.5,'angry':-1,'sad':-0.5,'surprised':0.5,'disgusted':-1.5,'fearful':-0.25,'neutral':0.25
}
await relationship_manager.update_relationship_value(message.user_id, relationship_value=valuedict[emotion[0]])
if random() < global_config.emoji_chance: if random() < global_config.emoji_chance:
emoji_path = await emoji_manager.get_emoji_for_text(response) emoji_path = await emoji_manager.get_emoji_for_text(response)
@@ -196,6 +191,12 @@ class ChatBot:
# reply_message_id=message.message_id # reply_message_id=message.message_id
) )
message_manager.add_message(bot_message) message_manager.add_message(bot_message)
emotion = await self.gpt._get_emotion_tags(raw_content)
print(f"'{response}' 获取到的情感标签为:{emotion}")
valuedict={
'happy':0.5,'angry':-1,'sad':-0.5,'surprised':0.5,'disgusted':-1.5,'fearful':-0.25,'neutral':0.25
}
await relationship_manager.update_relationship_value(message.user_id, relationship_value=valuedict[emotion[0]])
# willing_manager.change_reply_willing_after_sent(event.group_id) # willing_manager.change_reply_willing_after_sent(event.group_id)

View File

@@ -30,10 +30,14 @@ class BotConfig:
forget_memory_interval: int = 300 # 记忆遗忘间隔(秒) forget_memory_interval: int = 300 # 记忆遗忘间隔(秒)
EMOJI_CHECK_INTERVAL: int = 120 # 表情包检查间隔(分钟) EMOJI_CHECK_INTERVAL: int = 120 # 表情包检查间隔(分钟)
EMOJI_REGISTER_INTERVAL: int = 10 # 表情包注册间隔(分钟) EMOJI_REGISTER_INTERVAL: int = 10 # 表情包注册间隔(分钟)
EMOJI_CHECK_PROMPT: str = "不要包含违反公序良俗的内容" # 表情包过滤要求 EMOJI_SAVE: bool = True # 表情包
EMOJI_CHECK: bool = False #是否开启过滤
EMOJI_CHECK_PROMPT: str = "符合公序良俗" # 表情包过滤要求
ban_words = set() ban_words = set()
max_response_length: int = 1024 # 最大回复长度
# 模型配置 # 模型配置
llm_reasoning: Dict[str, str] = field(default_factory=lambda: {}) llm_reasoning: Dict[str, str] = field(default_factory=lambda: {})
llm_reasoning_minor: Dict[str, str] = field(default_factory=lambda: {}) llm_reasoning_minor: Dict[str, str] = field(default_factory=lambda: {})
@@ -96,6 +100,8 @@ class BotConfig:
config.EMOJI_CHECK_INTERVAL = emoji_config.get("check_interval", config.EMOJI_CHECK_INTERVAL) config.EMOJI_CHECK_INTERVAL = emoji_config.get("check_interval", config.EMOJI_CHECK_INTERVAL)
config.EMOJI_REGISTER_INTERVAL = emoji_config.get("register_interval", config.EMOJI_REGISTER_INTERVAL) config.EMOJI_REGISTER_INTERVAL = emoji_config.get("register_interval", config.EMOJI_REGISTER_INTERVAL)
config.EMOJI_CHECK_PROMPT = emoji_config.get('check_prompt',config.EMOJI_CHECK_PROMPT) config.EMOJI_CHECK_PROMPT = emoji_config.get('check_prompt',config.EMOJI_CHECK_PROMPT)
config.EMOJI_SAVE = emoji_config.get('auto_save',config.EMOJI_SAVE)
config.EMOJI_CHECK = emoji_config.get('enable_check',config.EMOJI_CHECK)
if "cq_code" in toml_dict: if "cq_code" in toml_dict:
cq_code_config = toml_dict["cq_code"] cq_code_config = toml_dict["cq_code"]
@@ -115,6 +121,7 @@ class BotConfig:
config.MODEL_R1_DISTILL_PROBABILITY = response_config.get("model_r1_distill_probability", config.MODEL_R1_DISTILL_PROBABILITY) config.MODEL_R1_DISTILL_PROBABILITY = response_config.get("model_r1_distill_probability", config.MODEL_R1_DISTILL_PROBABILITY)
config.API_USING = response_config.get("api_using", config.API_USING) config.API_USING = response_config.get("api_using", config.API_USING)
config.API_PAID = response_config.get("api_paid", config.API_PAID) config.API_PAID = response_config.get("api_paid", config.API_PAID)
config.max_response_length = response_config.get("max_response_length", config.max_response_length)
# 加载模型配置 # 加载模型配置
if "model" in toml_dict: if "model" in toml_dict:

View File

@@ -27,6 +27,7 @@ ctx = create_urllib3_context()
ctx.load_default_certs() ctx.load_default_certs()
ctx.set_ciphers("AES128-GCM-SHA256") ctx.set_ciphers("AES128-GCM-SHA256")
class TencentSSLAdapter(requests.adapters.HTTPAdapter): class TencentSSLAdapter(requests.adapters.HTTPAdapter):
def __init__(self, ssl_context=None, **kwargs): def __init__(self, ssl_context=None, **kwargs):
self.ssl_context = ssl_context self.ssl_context = ssl_context
@@ -37,6 +38,7 @@ class TencentSSLAdapter(requests.adapters.HTTPAdapter):
num_pools=connections, maxsize=maxsize, num_pools=connections, maxsize=maxsize,
block=block, ssl_context=self.ssl_context) block=block, ssl_context=self.ssl_context)
@dataclass @dataclass
class CQCode: class CQCode:
""" """
@@ -64,15 +66,15 @@ class CQCode:
"""初始化LLM实例""" """初始化LLM实例"""
self._llm = LLM_request(model=global_config.vlm, temperature=0.4, max_tokens=300) self._llm = LLM_request(model=global_config.vlm, temperature=0.4, max_tokens=300)
def translate(self): async def translate(self):
"""根据CQ码类型进行相应的翻译处理""" """根据CQ码类型进行相应的翻译处理"""
if self.type == 'text': if self.type == 'text':
self.translated_plain_text = self.params.get('text', '') self.translated_plain_text = self.params.get('text', '')
elif self.type == 'image': elif self.type == 'image':
if self.params.get('sub_type') == '0': if self.params.get('sub_type') == '0':
self.translated_plain_text = self.translate_image() self.translated_plain_text = await self.translate_image()
else: else:
self.translated_plain_text = self.translate_emoji() self.translated_plain_text = await self.translate_emoji()
elif self.type == 'at': elif self.type == 'at':
user_nickname = get_user_nickname(self.params.get('qq', '')) user_nickname = get_user_nickname(self.params.get('qq', ''))
if user_nickname: if user_nickname:
@@ -80,13 +82,13 @@ class CQCode:
else: else:
self.translated_plain_text = f"@某人" self.translated_plain_text = f"@某人"
elif self.type == 'reply': elif self.type == 'reply':
self.translated_plain_text = self.translate_reply() self.translated_plain_text = await self.translate_reply()
elif self.type == 'face': elif self.type == 'face':
face_id = self.params.get('id', '') face_id = self.params.get('id', '')
# self.translated_plain_text = f"[表情{face_id}]" # self.translated_plain_text = f"[表情{face_id}]"
self.translated_plain_text = f"[表情]" self.translated_plain_text = f"[表情]"
elif self.type == 'forward': elif self.type == 'forward':
self.translated_plain_text = self.translate_forward() self.translated_plain_text = await self.translate_forward()
else: else:
self.translated_plain_text = f"[{self.type}]" self.translated_plain_text = f"[{self.type}]"
@@ -158,7 +160,7 @@ class CQCode:
return None return None
def translate_emoji(self) -> str: async def translate_emoji(self) -> str:
"""处理表情包类型的CQ码""" """处理表情包类型的CQ码"""
if 'url' not in self.params: if 'url' not in self.params:
return '[表情包]' return '[表情包]'
@@ -167,12 +169,11 @@ class CQCode:
# 将 base64 字符串转换为字节类型 # 将 base64 字符串转换为字节类型
image_bytes = base64.b64decode(base64_str) image_bytes = base64.b64decode(base64_str)
storage_emoji(image_bytes) storage_emoji(image_bytes)
return self.get_emoji_description(base64_str) return await self.get_emoji_description(base64_str)
else: else:
return '[表情包]' return '[表情包]'
async def translate_image(self) -> str:
def translate_image(self) -> str:
"""处理图片类型的CQ码区分普通图片和表情包""" """处理图片类型的CQ码区分普通图片和表情包"""
# 没有url直接返回默认文本 # 没有url直接返回默认文本
if 'url' not in self.params: if 'url' not in self.params:
@@ -181,31 +182,33 @@ class CQCode:
if base64_str: if base64_str:
image_bytes = base64.b64decode(base64_str) image_bytes = base64.b64decode(base64_str)
storage_image(image_bytes) storage_image(image_bytes)
return self.get_image_description(base64_str) return await self.get_image_description(base64_str)
else: else:
return '[图片]' return '[图片]'
def get_emoji_description(self, image_base64: str) -> str: async def get_emoji_description(self, image_base64: str) -> str:
"""调用AI接口获取表情包描述""" """调用AI接口获取表情包描述"""
try: try:
prompt = "这是一个表情包请用简短的中文描述这个表情包传达的情感和含义。最多20个字。" prompt = "这是一个表情包请用简短的中文描述这个表情包传达的情感和含义。最多20个字。"
description, _ = self._llm.generate_response_for_image_sync(prompt, image_base64) # description, _ = self._llm.generate_response_for_image_sync(prompt, image_base64)
description, _ = await self._llm.generate_response_for_image(prompt, image_base64)
return f"[表情包:{description}]" return f"[表情包:{description}]"
except Exception as e: except Exception as e:
print(f"\033[1;31m[错误]\033[0m AI接口调用失败: {str(e)}") print(f"\033[1;31m[错误]\033[0m AI接口调用失败: {str(e)}")
return "[表情包]" return "[表情包]"
def get_image_description(self, image_base64: str) -> str: async def get_image_description(self, image_base64: str) -> str:
"""调用AI接口获取普通图片描述""" """调用AI接口获取普通图片描述"""
try: try:
prompt = "请用中文描述这张图片的内容。如果有文字请把文字都描述出来。并尝试猜测这个图片的含义。最多200个字。" prompt = "请用中文描述这张图片的内容。如果有文字请把文字都描述出来。并尝试猜测这个图片的含义。最多200个字。"
description, _ = self._llm.generate_response_for_image_sync(prompt, image_base64) # description, _ = self._llm.generate_response_for_image_sync(prompt, image_base64)
description, _ = await self._llm.generate_response_for_image(prompt, image_base64)
return f"[图片:{description}]" return f"[图片:{description}]"
except Exception as e: except Exception as e:
print(f"\033[1;31m[错误]\033[0m AI接口调用失败: {str(e)}") print(f"\033[1;31m[错误]\033[0m AI接口调用失败: {str(e)}")
return "[图片]" return "[图片]"
def translate_forward(self) -> str: async def translate_forward(self) -> str:
"""处理转发消息""" """处理转发消息"""
try: try:
if 'content' not in self.params: if 'content' not in self.params:
@@ -249,6 +252,7 @@ class CQCode:
plain_text=raw_message, plain_text=raw_message,
group_id=msg.get('group_id', 0) group_id=msg.get('group_id', 0)
) )
await message_obj.initialize()
content = message_obj.processed_plain_text content = message_obj.processed_plain_text
else: else:
content = '[空消息]' content = '[空消息]'
@@ -263,6 +267,7 @@ class CQCode:
plain_text=raw_message, plain_text=raw_message,
group_id=msg.get('group_id', 0) group_id=msg.get('group_id', 0)
) )
await message_obj.initialize()
content = message_obj.processed_plain_text content = message_obj.processed_plain_text
else: else:
content = '[空消息]' content = '[空消息]'
@@ -279,7 +284,7 @@ class CQCode:
print(f"\033[1;31m[错误]\033[0m 处理转发消息失败: {str(e)}") print(f"\033[1;31m[错误]\033[0m 处理转发消息失败: {str(e)}")
return '[转发消息]' return '[转发消息]'
def translate_reply(self) -> str: async def translate_reply(self) -> str:
"""处理回复类型的CQ码""" """处理回复类型的CQ码"""
# 创建Message对象 # 创建Message对象
@@ -295,6 +300,7 @@ class CQCode:
raw_message=str(self.reply_message.message), raw_message=str(self.reply_message.message),
group_id=self.group_id group_id=self.group_id
) )
await message_obj.initialize()
if message_obj.user_id == global_config.BOT_QQ: if message_obj.user_id == global_config.BOT_QQ:
return f"[回复 {global_config.BOT_NICKNAME} 的消息: {message_obj.processed_plain_text}]" return f"[回复 {global_config.BOT_NICKNAME} 的消息: {message_obj.processed_plain_text}]"
else: else:
@@ -331,9 +337,10 @@ class CQCode:
# 生成CQ码设置sub_type=1表示这是表情包 # 生成CQ码设置sub_type=1表示这是表情包
return f"[CQ:image,file=file:///{escaped_path},sub_type=1]" return f"[CQ:image,file=file:///{escaped_path},sub_type=1]"
class CQCode_tool: class CQCode_tool:
@staticmethod @staticmethod
def cq_from_dict_to_class(cq_code: Dict, reply: Optional[Dict] = None) -> CQCode: async def cq_from_dict_to_class(cq_code: Dict, reply: Optional[Dict] = None) -> CQCode:
""" """
将CQ码字典转换为CQCode对象 将CQ码字典转换为CQCode对象
@@ -362,7 +369,7 @@ class CQCode_tool:
) )
# 进行翻译处理 # 进行翻译处理
instance.translate() await instance.translate()
return instance return instance
@staticmethod @staticmethod

View File

@@ -20,6 +20,7 @@ import traceback
from nonebot import get_driver from nonebot import get_driver
from ..chat.config import global_config from ..chat.config import global_config
from ..models.utils_model import LLM_request from ..models.utils_model import LLM_request
from ..chat.utils_image import image_path_to_base64
from ..chat.utils import get_embedding from ..chat.utils import get_embedding
driver = get_driver() driver = get_driver()
@@ -98,7 +99,7 @@ class EmojiManager:
# 获取文本的embedding # 获取文本的embedding
text_for_search= await self._get_kimoji_for_text(text) text_for_search= await self._get_kimoji_for_text(text)
text_embedding = get_embedding(text_for_search) text_embedding = await get_embedding(text_for_search)
if not text_embedding: if not text_embedding:
logger.error("无法获取文本的embedding") logger.error("无法获取文本的embedding")
return None return None
@@ -160,27 +161,6 @@ class EmojiManager:
logger.error(f"获取表情包失败: {str(e)}") logger.error(f"获取表情包失败: {str(e)}")
return None return None
async def _get_emoji_tag(self, image_base64: str) -> str:
"""获取表情包的标签"""
try:
prompt = '这是一个表情包,请从"happy", "angry", "sad", "surprised", "disgusted", "fearful", "neutral"中选出1个情感标签。只输出标签不要输出其他任何内容只输出情感标签就好'
content, _ = await self.llm.generate_response_for_image(prompt, image_base64)
tag_result = content.strip().lower()
valid_tags = ["happy", "angry", "sad", "surprised", "disgusted", "fearful", "neutral"]
for tag_match in valid_tags:
if tag_match in tag_result or tag_match == tag_result:
return tag_match
print(f"\033[1;33m[警告]\033[0m 无效的标签: {tag_result}, 跳过")
except Exception as e:
print(f"\033[1;31m[错误]\033[0m 获取标签失败: {str(e)}")
return "neutral"
print(f"\033[1;32m[调试信息]\033[0m 使用默认标签: neutral")
return "neutral" # 默认标签
async def _get_emoji_discription(self, image_base64: str) -> str: async def _get_emoji_discription(self, image_base64: str) -> str:
"""获取表情包的标签""" """获取表情包的标签"""
try: try:
@@ -208,7 +188,7 @@ class EmojiManager:
async def _get_kimoji_for_text(self, text:str): async def _get_kimoji_for_text(self, text:str):
try: try:
prompt = f'这是{global_config.BOT_NICKNAME}将要发送的消息内容:\n{text}\n若要为其配上表情包,请你输出这个表情包应该表达怎样的情感,应该给人什么样的感觉,不要太简洁也不要太长,注意不要输出任何对内容的分析内容,只输出\"一种什么样的感觉\"中间的形容词部分。' prompt = f'这是{global_config.BOT_NICKNAME}将要发送的消息内容:\n{text}\n若要为其配上表情包,请你输出这个表情包应该表达怎样的情感,应该给人什么样的感觉,不要太简洁也不要太长,注意不要输出任何对消息内容的分析内容,只输出\"一种什么样的感觉\"中间的形容词部分。'
content, _ = await self.lm.generate_response_async(prompt) content, _ = await self.lm.generate_response_async(prompt)
logger.info(f"输出描述: {content}") logger.info(f"输出描述: {content}")
@@ -218,75 +198,6 @@ class EmojiManager:
logger.error(f"获取标签失败: {str(e)}") logger.error(f"获取标签失败: {str(e)}")
return None return None
async def _compress_image(self, image_path: str, target_size: int = 0.8 * 1024 * 1024) -> Optional[str]:
"""压缩图片并返回base64编码
Args:
image_path: 图片文件路径
target_size: 目标文件大小字节默认0.8MB
Returns:
Optional[str]: 成功返回base64编码的图片数据失败返回None
"""
try:
file_size = os.path.getsize(image_path)
if file_size <= target_size:
# 如果文件已经小于目标大小直接读取并返回base64
with open(image_path, 'rb') as f:
return base64.b64encode(f.read()).decode('utf-8')
# 打开图片
with Image.open(image_path) as img:
# 获取原始尺寸
original_width, original_height = img.size
# 计算缩放比例
scale = min(1.0, (target_size / file_size) ** 0.5)
# 计算新的尺寸
new_width = int(original_width * scale)
new_height = int(original_height * scale)
# 创建内存缓冲区
output_buffer = io.BytesIO()
# 如果是GIF处理所有帧
if getattr(img, "is_animated", False):
frames = []
for frame_idx in range(img.n_frames):
img.seek(frame_idx)
new_frame = img.copy()
new_frame = new_frame.resize((new_width, new_height), Image.Resampling.LANCZOS)
frames.append(new_frame)
# 保存到缓冲区
frames[0].save(
output_buffer,
format='GIF',
save_all=True,
append_images=frames[1:],
optimize=True,
duration=img.info.get('duration', 100),
loop=img.info.get('loop', 0)
)
else:
# 处理静态图片
resized_img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
# 保存到缓冲区,保持原始格式
if img.format == 'PNG' and img.mode in ('RGBA', 'LA'):
resized_img.save(output_buffer, format='PNG', optimize=True)
else:
resized_img.save(output_buffer, format='JPEG', quality=95, optimize=True)
# 获取压缩后的数据并转换为base64
compressed_data = output_buffer.getvalue()
logger.success(f"压缩图片: {os.path.basename(image_path)} ({original_width}x{original_height} -> {new_width}x{new_height})")
return base64.b64encode(compressed_data).decode('utf-8')
except Exception as e:
logger.error(f"压缩图片失败: {os.path.basename(image_path)}, 错误: {str(e)}")
return None
async def scan_new_emojis(self): async def scan_new_emojis(self):
"""扫描新的表情包""" """扫描新的表情包"""
try: try:
@@ -305,13 +216,14 @@ class EmojiManager:
continue continue
# 压缩图片并获取base64编码 # 压缩图片并获取base64编码
image_base64 = await self._compress_image(image_path) image_base64 = image_path_to_base64(image_path)
if image_base64 is None: if image_base64 is None:
os.remove(image_path) os.remove(image_path)
continue continue
# 获取表情包的描述 # 获取表情包的描述
discription = await self._get_emoji_discription(image_base64) discription = await self._get_emoji_discription(image_base64)
if global_config.EMOJI_CHECK:
check = await self._check_emoji(image_base64) check = await self._check_emoji(image_base64)
if '' not in check: if '' not in check:
os.remove(image_path) os.remove(image_path)
@@ -319,8 +231,7 @@ class EmojiManager:
logger.info(f"其不满足过滤规则,被剔除 {check}") logger.info(f"其不满足过滤规则,被剔除 {check}")
continue continue
logger.info(f"check通过 {check}") logger.info(f"check通过 {check}")
tag = await self._get_emoji_tag(image_base64) embedding = await get_embedding(discription)
embedding = get_embedding(discription)
if discription is not None: if discription is not None:
# 准备数据库记录 # 准备数据库记录
emoji_record = { emoji_record = {
@@ -328,7 +239,6 @@ class EmojiManager:
'path': image_path, 'path': image_path,
'embedding':embedding, 'embedding':embedding,
'discription': discription, 'discription': discription,
'tag':tag,
'timestamp': int(time.time()) 'timestamp': int(time.time())
} }

View File

@@ -38,47 +38,49 @@ class Message:
raw_message: str = None # 原始消息包含未解析的cq码 raw_message: str = None # 原始消息包含未解析的cq码
plain_text: str = None # 纯文本 plain_text: str = None # 纯文本
reply_message: Dict = None # 存储 回复的 源消息
# 延迟初始化字段
_initialized: bool = False
message_segments: List[Dict] = None # 存储解析后的消息片段 message_segments: List[Dict] = None # 存储解析后的消息片段
processed_plain_text: str = None # 用于存储处理后的plain_text processed_plain_text: str = None # 用于存储处理后的plain_text
detailed_plain_text: str = None # 用于存储详细可读文本 detailed_plain_text: str = None # 用于存储详细可读文本
reply_message: Dict = None # 存储 回复的 源消息 # 状态标志
is_emoji: bool = False
has_emoji: bool = False
translate_cq: bool = True
is_emoji: bool = False # 是否是表情包 async def initialize(self):
has_emoji: bool = False # 是否包含表情包 """显式异步初始化方法(必须调用)"""
if self._initialized:
return
translate_cq: bool = True # 是否翻译cq码 # 异步获取补充信息
self.group_name = self.group_name or get_groupname(self.group_id)
self.user_nickname = self.user_nickname or get_user_nickname(self.user_id)
self.user_cardname = self.user_cardname or get_user_cardname(self.user_id)
def __post_init__(self): # 消息解析
if self.time is None:
self.time = int(time.time())
if not self.group_name:
self.group_name = get_groupname(self.group_id)
if not self.user_nickname:
self.user_nickname = get_user_nickname(self.user_id)
if not self.user_cardname:
self.user_cardname=get_user_cardname(self.user_id)
if not self.processed_plain_text:
if self.raw_message: if self.raw_message:
self.message_segments = self.parse_message_segments(str(self.raw_message)) self.message_segments = await self.parse_message_segments(self.raw_message)
self.processed_plain_text = ' '.join( self.processed_plain_text = ' '.join(
seg.translated_plain_text seg.translated_plain_text
for seg in self.message_segments for seg in self.message_segments
) )
#将详细翻译为详细可读文本
time_str = time.strftime("%m-%d %H:%M:%S", time.localtime(self.time))
try:
name = f"{self.user_nickname}(ta的昵称:{self.user_cardname},ta的id:{self.user_id})"
except:
name = self.user_nickname or f"用户{self.user_id}"
content = self.processed_plain_text
self.detailed_plain_text = f"[{time_str}] {name}: {content}\n"
def parse_message_segments(self, message: str) -> List[CQCode]: # 构建详细文本
time_str = time.strftime("%m-%d %H:%M:%S", time.localtime(self.time))
name = (
f"{self.user_nickname}(ta的昵称:{self.user_cardname},ta的id:{self.user_id})"
if self.user_cardname
else f"{self.user_nickname or f'用户{self.user_id}'}"
)
self.detailed_plain_text = f"[{time_str}] {name}: {self.processed_plain_text}\n"
self._initialized = True
async def parse_message_segments(self, message: str) -> List[CQCode]:
""" """
将消息解析为片段列表包括纯文本和CQ码 将消息解析为片段列表包括纯文本和CQ码
返回的列表中每个元素都是字典,包含: 返回的列表中每个元素都是字典,包含:
@@ -136,7 +138,7 @@ class Message:
#翻译作为字典的CQ码 #翻译作为字典的CQ码
for _code_item in cq_code_dict_list: for _code_item in cq_code_dict_list:
message_obj = cq_code_tool.cq_from_dict_to_class(_code_item,reply = self.reply_message) message_obj = await cq_code_tool.cq_from_dict_to_class(_code_item,reply = self.reply_message)
trans_list.append(message_obj) trans_list.append(message_obj)
return trans_list return trans_list

View File

@@ -2,7 +2,7 @@ import time
import random import random
from ..schedule.schedule_generator import bot_schedule from ..schedule.schedule_generator import bot_schedule
import os import os
from .utils import get_embedding, combine_messages, get_recent_group_detailed_plain_text,find_similar_topics from .utils import get_embedding, combine_messages, get_recent_group_detailed_plain_text
from ...common.database import Database from ...common.database import Database
from .config import global_config from .config import global_config
from .topic_identifier import topic_identifier from .topic_identifier import topic_identifier
@@ -60,7 +60,7 @@ class PromptBuilder:
prompt_info = '' prompt_info = ''
promt_info_prompt = '' promt_info_prompt = ''
prompt_info = self.get_prompt_info(message_txt,threshold=0.5) prompt_info = await self.get_prompt_info(message_txt,threshold=0.5)
if prompt_info: if prompt_info:
prompt_info = f'''\n----------------------------------------------------\n你有以下这些[知识]\n{prompt_info}\n请你记住上面的[知识],之后可能会用到\n----------------------------------------------------\n''' prompt_info = f'''\n----------------------------------------------------\n你有以下这些[知识]\n{prompt_info}\n请你记住上面的[知识],之后可能会用到\n----------------------------------------------------\n'''
@@ -215,10 +215,10 @@ class PromptBuilder:
return prompt_for_initiative return prompt_for_initiative
def get_prompt_info(self,message:str,threshold:float): async def get_prompt_info(self,message:str,threshold:float):
related_info = '' related_info = ''
print(f"\033[1;34m[调试]\033[0m 获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}") print(f"\033[1;34m[调试]\033[0m 获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
embedding = get_embedding(message) embedding = await get_embedding(message)
related_info += self.get_info_from_db(embedding,threshold=threshold) related_info += self.get_info_from_db(embedding,threshold=threshold)
return related_info return related_info

View File

@@ -38,11 +38,13 @@ def combine_messages(messages: List[Message]) -> str:
return result return result
def db_message_to_str(message_dict: Dict) -> str: def db_message_to_str(message_dict: Dict) -> str:
print(f"message_dict: {message_dict}") print(f"message_dict: {message_dict}")
time_str = time.strftime("%m-%d %H:%M:%S", time.localtime(message_dict["time"])) time_str = time.strftime("%m-%d %H:%M:%S", time.localtime(message_dict["time"]))
try: try:
name="[(%s)%s]%s" % (message_dict['user_id'],message_dict.get("user_nickname", ""),message_dict.get("user_cardname", "")) name = "[(%s)%s]%s" % (
message_dict['user_id'], message_dict.get("user_nickname", ""), message_dict.get("user_cardname", ""))
except: except:
name = message_dict.get("user_nickname", "") or f"用户{message_dict['user_id']}" name = message_dict.get("user_nickname", "") or f"用户{message_dict['user_id']}"
content = message_dict.get("processed_plain_text", "") content = message_dict.get("processed_plain_text", "")
@@ -59,6 +61,7 @@ def is_mentioned_bot_in_message(message: Message) -> bool:
return True return True
return False return False
def is_mentioned_bot_in_txt(message: str) -> bool: def is_mentioned_bot_in_txt(message: str) -> bool:
"""检查消息是否提到了机器人""" """检查消息是否提到了机器人"""
keywords = [global_config.BOT_NICKNAME] keywords = [global_config.BOT_NICKNAME]
@@ -67,10 +70,13 @@ def is_mentioned_bot_in_txt(message: str) -> bool:
return True return True
return False return False
def get_embedding(text):
async def get_embedding(text):
"""获取文本的embedding向量""" """获取文本的embedding向量"""
llm = LLM_request(model=global_config.embedding) llm = LLM_request(model=global_config.embedding)
return llm.get_embedding_sync(text) # return llm.get_embedding_sync(text)
return await llm.get_embedding(text)
def cosine_similarity(v1, v2): def cosine_similarity(v1, v2):
dot_product = np.dot(v1, v2) dot_product = np.dot(v1, v2)
@@ -78,6 +84,7 @@ def cosine_similarity(v1, v2):
norm2 = np.linalg.norm(v2) norm2 = np.linalg.norm(v2)
return dot_product / (norm1 * norm2) return dot_product / (norm1 * norm2)
def calculate_information_content(text): def calculate_information_content(text):
"""计算文本的信息量(熵)""" """计算文本的信息量(熵)"""
char_count = Counter(text) char_count = Counter(text)
@@ -90,6 +97,7 @@ def calculate_information_content(text):
return entropy return entropy
def get_cloest_chat_from_db(db, length: int, timestamp: str): def get_cloest_chat_from_db(db, length: int, timestamp: str):
"""从数据库中获取最接近指定时间戳的聊天记录,并记录读取次数""" """从数据库中获取最接近指定时间戳的聊天记录,并记录读取次数"""
chat_text = '' chat_text = ''
@@ -123,7 +131,8 @@ def get_cloest_chat_from_db(db, length: int, timestamp: str):
# print(f"消息已读取3次跳过") # print(f"消息已读取3次跳过")
return '' return ''
def get_recent_group_messages(db, group_id: int, limit: int = 12) -> list:
async def get_recent_group_messages(db, group_id: int, limit: int = 12) -> list:
"""从数据库获取群组最近的消息记录 """从数据库获取群组最近的消息记录
Args: Args:
@@ -165,6 +174,7 @@ def get_recent_group_messages(db, group_id: int, limit: int = 12) -> list:
processed_plain_text=msg_data.get("processed_text", ""), processed_plain_text=msg_data.get("processed_text", ""),
group_id=group_id group_id=group_id
) )
await msg.initialize()
message_objects.append(msg) message_objects.append(msg)
except KeyError: except KeyError:
print("[WARNING] 数据库中存在无效的消息") print("[WARNING] 数据库中存在无效的消息")
@@ -174,6 +184,7 @@ def get_recent_group_messages(db, group_id: int, limit: int = 12) -> list:
message_objects.reverse() message_objects.reverse()
return message_objects return message_objects
def get_recent_group_detailed_plain_text(db, group_id: int, limit: int = 12, combine=False): def get_recent_group_detailed_plain_text(db, group_id: int, limit: int = 12, combine=False):
recent_messages = list(db.db.messages.find( recent_messages = list(db.db.messages.find(
{"group_id": group_id}, {"group_id": group_id},
@@ -205,7 +216,6 @@ def get_recent_group_detailed_plain_text(db, group_id: int, limit: int = 12,comb
return message_detailed_plain_text_list return message_detailed_plain_text_list
def split_into_sentences_w_remove_punctuation(text: str) -> List[str]: def split_into_sentences_w_remove_punctuation(text: str) -> List[str]:
"""将文本分割成句子,但保持书名号中的内容完整 """将文本分割成句子,但保持书名号中的内容完整
Args: Args:
@@ -287,6 +297,7 @@ def split_into_sentences_w_remove_punctuation(text: str) -> List[str]:
return sentences_done return sentences_done
def random_remove_punctuation(text: str) -> str: def random_remove_punctuation(text: str) -> str:
"""随机处理标点符号,模拟人类打字习惯 """随机处理标点符号,模拟人类打字习惯
@@ -314,6 +325,7 @@ def random_remove_punctuation(text: str) -> str:
return result return result
def process_llm_response(text: str) -> List[str]: def process_llm_response(text: str) -> List[str]:
# processed_response = process_text_with_typos(content) # processed_response = process_text_with_typos(content)
if len(text) > 300: if len(text) > 300:
@@ -335,6 +347,7 @@ def process_llm_response(text: str) -> List[str]:
return sentences return sentences
def calculate_typing_time(input_string: str, chinese_time: float = 0.2, english_time: float = 0.1) -> float: def calculate_typing_time(input_string: str, chinese_time: float = 0.2, english_time: float = 0.1) -> float:
""" """
计算输入字符串所需的时间,中文和英文字符有不同的输入时间 计算输入字符串所需的时间,中文和英文字符有不同的输入时间
@@ -351,28 +364,6 @@ def calculate_typing_time(input_string: str, chinese_time: float = 0.2, english_
return total_time return total_time
def find_similar_topics(message_txt: str, all_memory_topic: list, top_k: int = 5) -> list:
"""使用重排序API找出与输入文本最相似的话题
Args:
message_txt: 输入文本
all_memory_topic: 所有记忆主题列表
top_k: 返回最相似的话题数量
Returns:
list: 最相似话题列表及其相似度分数
"""
if not all_memory_topic:
return []
try:
llm = LLM_request(model=global_config.rerank)
return llm.rerank_sync(message_txt, all_memory_topic, top_k)
except Exception as e:
print(f"重排序API调用出错: {str(e)}")
return []
def cosine_similarity(v1, v2): def cosine_similarity(v1, v2):
"""计算余弦相似度""" """计算余弦相似度"""
dot_product = np.dot(v1, v2) dot_product = np.dot(v1, v2)
@@ -382,6 +373,7 @@ def cosine_similarity(v1, v2):
return 0 return 0
return dot_product / (norm1 * norm2) return dot_product / (norm1 * norm2)
def text_to_vector(text): def text_to_vector(text):
"""将文本转换为词频向量""" """将文本转换为词频向量"""
# 分词 # 分词
@@ -390,6 +382,7 @@ def text_to_vector(text):
word_freq = Counter(words) word_freq = Counter(words)
return word_freq return word_freq
def find_similar_topics_simple(text: str, topics: list, top_k: int = 5) -> list: def find_similar_topics_simple(text: str, topics: list, top_k: int = 5) -> list:
"""使用简单的余弦相似度计算文本相似度""" """使用简单的余弦相似度计算文本相似度"""
# 将输入文本转换为词频向量 # 将输入文本转换为词频向量

View File

@@ -4,6 +4,7 @@ import hashlib
import time import time
import os import os
from ...common.database import Database from ...common.database import Database
from ..chat.config import global_config
import zlib # 用于 CRC32 import zlib # 用于 CRC32
import base64 import base64
from nonebot import get_driver from nonebot import get_driver
@@ -143,6 +144,8 @@ def storage_emoji(image_data: bytes) -> bytes:
Returns: Returns:
bytes: 原始图片数据 bytes: 原始图片数据
""" """
if not global_config.EMOJI_SAVE:
return image_data
try: try:
# 使用 CRC32 计算哈希值 # 使用 CRC32 计算哈希值
hash_value = format(zlib.crc32(image_data) & 0xFFFFFFFF, 'x') hash_value = format(zlib.crc32(image_data) & 0xFFFFFFFF, 'x')
@@ -227,7 +230,7 @@ def compress_base64_image_by_scale(base64_data: str, target_size: int = 0.8 * 10
image_data = base64.b64decode(base64_data) image_data = base64.b64decode(base64_data)
# 如果已经小于目标大小,直接返回原图 # 如果已经小于目标大小,直接返回原图
if len(image_data) <= target_size: if len(image_data) <= 2*1024*1024:
return base64_data return base64_data
# 将字节数据转换为图片对象 # 将字节数据转换为图片对象
@@ -252,7 +255,7 @@ def compress_base64_image_by_scale(base64_data: str, target_size: int = 0.8 * 10
for frame_idx in range(img.n_frames): for frame_idx in range(img.n_frames):
img.seek(frame_idx) img.seek(frame_idx)
new_frame = img.copy() new_frame = img.copy()
new_frame = new_frame.resize((new_width, new_height), Image.Resampling.LANCZOS) new_frame = new_frame.resize((new_width//2, new_height//2), Image.Resampling.LANCZOS) # 动图折上折
frames.append(new_frame) frames.append(new_frame)
# 保存到缓冲区 # 保存到缓冲区
@@ -287,3 +290,18 @@ def compress_base64_image_by_scale(base64_data: str, target_size: int = 0.8 * 10
import traceback import traceback
logger.error(traceback.format_exc()) logger.error(traceback.format_exc())
return base64_data return base64_data
def image_path_to_base64(image_path: str) -> str:
"""将图片路径转换为base64编码
Args:
image_path: 图片文件路径
Returns:
str: base64编码的图片数据
"""
try:
with open(image_path, 'rb') as f:
image_data = f.read()
return base64.b64encode(image_data).decode('utf-8')
except Exception as e:
logger.error(f"读取图片失败: {image_path}, 错误: {str(e)}")
return None

View File

@@ -11,7 +11,7 @@ from ..chat.config import global_config
from ...common.database import Database # 使用正确的导入语法 from ...common.database import Database # 使用正确的导入语法
from ..models.utils_model import LLM_request from ..models.utils_model import LLM_request
import math import math
from ..chat.utils import calculate_information_content, get_cloest_chat_from_db ,find_similar_topics,text_to_vector,cosine_similarity from ..chat.utils import calculate_information_content, get_cloest_chat_from_db ,text_to_vector,cosine_similarity
@@ -673,7 +673,7 @@ class Hippocampus:
if first_layer: if first_layer:
# 如果记忆条数超过限制,随机选择指定数量的记忆 # 如果记忆条数超过限制,随机选择指定数量的记忆
if len(first_layer) > max_memory_num/2: if len(first_layer) > max_memory_num/2:
first_layer = random.sample(first_layer, max_memory_num) first_layer = random.sample(first_layer, max_memory_num//2)
# 为每条记忆添加来源主题和相似度信息 # 为每条记忆添加来源主题和相似度信息
for memory in first_layer: for memory in first_layer:
relevant_memories.append({ relevant_memories.append({

View File

@@ -25,603 +25,221 @@ class LLM_request:
self.model_name = model["name"] self.model_name = model["name"]
self.params = kwargs self.params = kwargs
async def generate_response(self, prompt: str) -> Tuple[str, str]: async def _execute_request(
"""根据输入的提示生成模型的异步响应""" self,
headers = { endpoint: str,
"Authorization": f"Bearer {self.api_key}", prompt: str = None,
"Content-Type": "application/json" image_base64: str = None,
payload: dict = None,
retry_policy: dict = None,
response_handler: callable = None,
):
"""统一请求执行入口
Args:
endpoint: API端点路径 (如 "chat/completions")
prompt: prompt文本
image_base64: 图片的base64编码
payload: 请求体数据
is_async: 是否异步
retry_policy: 自定义重试策略
(示例: {"max_retries":3, "base_wait":15, "retry_codes":[429,500]})
response_handler: 自定义响应处理器
"""
# 合并重试策略
default_retry = {
"max_retries": 3, "base_wait": 15,
"retry_codes": [429, 413, 500, 503],
"abort_codes": [400, 401, 402, 403]}
policy = {**default_retry, **(retry_policy or {})}
# 常见Error Code Mapping
error_code_mapping = {
400: "参数不正确",
401: "API key 错误,认证失败",
402: "账号余额不足",
403: "需要实名,或余额不足",
404: "Not Found",
429: "请求过于频繁,请稍后再试",
500: "服务器内部故障",
503: "服务器负载过高"
} }
api_url = f"{self.base_url.rstrip('/')}/{endpoint.lstrip('/')}"
logger.info(f"发送请求到URL: {api_url}")
logger.info(f"使用模型: {self.model_name}")
# 构建请求体 # 构建请求体
data = { if image_base64:
"model": self.model_name, payload = await self._build_payload(prompt, image_base64)
"messages": [{"role": "user", "content": prompt}], elif payload is None:
**self.params payload = await self._build_payload(prompt)
}
# 发送请求到完整的chat/completions端点 for retry in range(policy["max_retries"]):
api_url = f"{self.base_url.rstrip('/')}/chat/completions"
logger.info(f"发送请求到URL: {api_url}/{self.model_name}") # 记录请求的URL
max_retries = 3
base_wait_time = 15
for retry in range(max_retries):
try: try:
# 使用上下文管理器处理会话
headers = await self._build_headers()
async with aiohttp.ClientSession() as session: async with aiohttp.ClientSession() as session:
async with session.post(api_url, headers=headers, json=data) as response: async with session.post(api_url, headers=headers, json=payload) as response:
if response.status == 429: # 处理需要重试的状态码
wait_time = base_wait_time * (2 ** retry) # 指数退避 if response.status in policy["retry_codes"]:
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...") wait_time = policy["base_wait"] * (2 ** retry)
logger.warning(f"错误码: {response.status}, 等待 {wait_time}秒后重试")
if response.status == 413:
logger.warning("请求体过大,尝试压缩...")
image_base64 = compress_base64_image_by_scale(image_base64)
payload = await self._build_payload(prompt, image_base64)
elif response.status in [500, 503]:
logger.error(f"错误码: {response.status} - {error_code_mapping.get(response.status)}")
raise RuntimeError("服务器负载过高模型恢复失败QAQ")
else:
logger.warning(f"请求限制(429),等待{wait_time}秒后重试...")
await asyncio.sleep(wait_time) await asyncio.sleep(wait_time)
continue continue
elif response.status in policy["abort_codes"]:
logger.error(f"错误码: {response.status} - {error_code_mapping.get(response.status)}")
raise RuntimeError(f"请求被拒绝: {error_code_mapping.get(response.status)}")
if response.status in [500, 503]: response.raise_for_status()
logger.error(f"服务器错误: {response.status}")
raise RuntimeError("服务器负载过高模型恢复失败QAQ")
response.raise_for_status() # 检查其他响应状态
result = await response.json() result = await response.json()
if "choices" in result and len(result["choices"]) > 0:
message = result["choices"][0]["message"] # 使用自定义处理器或默认处理
content = message.get("content", "") return response_handler(result) if response_handler else self._default_response_handler(result)
think_match = None
reasoning_content = message.get("reasoning_content", "")
if not reasoning_content:
think_match = re.search(r'(?:<think>)?(.*?)</think>', content, re.DOTALL)
if think_match:
reasoning_content = think_match.group(1).strip()
content = re.sub(r'(?:<think>)?.*?</think>', '', content, flags=re.DOTALL, count=1).strip()
return content, reasoning_content
return "没有返回结果", ""
except Exception as e: except Exception as e:
if retry < max_retries - 1: # 如果还有重试机会 if retry < policy["max_retries"] - 1:
wait_time = base_wait_time * (2 ** retry) wait_time = policy["base_wait"] * (2 ** retry)
logger.error(f"[回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True) logger.error(f"请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
await asyncio.sleep(wait_time) await asyncio.sleep(wait_time)
else: else:
logger.critical(f"请求失败: {str(e)}", exc_info=True) logger.critical(f"请求失败: {str(e)}")
logger.critical(f"请求头: {headers} 请求体: {data}") logger.critical(f"请求头: {await self._build_headers()} 请求体: {payload}")
raise RuntimeError(f"API请求失败: {str(e)}") raise RuntimeError(f"API请求失败: {str(e)}")
logger.error("达到最大重试次数,请求仍然失败") logger.error("达到最大重试次数,请求仍然失败")
raise RuntimeError("达到最大重试次数API请求仍然失败") raise RuntimeError("达到最大重试次数API请求仍然失败")
async def generate_response_for_image(self, prompt: str, image_base64: str) -> Tuple[str, str]: async def _build_payload(self, prompt: str, image_base64: str = None) -> dict:
"""根据输入的提示和图片生成模型的异步响应""" """构建请求体"""
headers = { if image_base64:
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
# 构建请求体
def build_request_data(img_base64: str):
return { return {
"model": self.model_name, "model": self.model_name,
"messages": [ "messages": [
{ {
"role": "user", "role": "user",
"content": [ "content": [
{ {"type": "text", "text": prompt},
"type": "text", {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}}
"text": prompt
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{img_base64}"
}
}
] ]
} }
], ],
"max_tokens": global_config.max_response_length,
**self.params
}
else:
return {
"model": self.model_name,
"messages": [{"role": "user", "content": prompt}],
"max_tokens": global_config.max_response_length,
**self.params **self.params
} }
def _default_response_handler(self, result: dict) -> Tuple:
# 发送请求到完整的chat/completions端点 """默认响应解析"""
api_url = f"{self.base_url.rstrip('/')}/chat/completions" if "choices" in result and result["choices"]:
logger.info(f"发送请求到URL: {api_url}/{self.model_name}") # 记录请求的URL
max_retries = 3
base_wait_time = 15
current_image_base64 = image_base64
current_image_base64 = compress_base64_image_by_scale(current_image_base64)
for retry in range(max_retries):
try:
data = build_request_data(current_image_base64)
async with aiohttp.ClientSession() as session:
async with session.post(api_url, headers=headers, json=data) as response:
if response.status == 429:
wait_time = base_wait_time * (2 ** retry) # 指数退避
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
await asyncio.sleep(wait_time)
continue
elif response.status == 413:
logger.warning("图片太大(413),尝试压缩...")
current_image_base64 = compress_base64_image_by_scale(current_image_base64)
continue
response.raise_for_status() # 检查其他响应状态
result = await response.json()
if "choices" in result and len(result["choices"]) > 0:
message = result["choices"][0]["message"] message = result["choices"][0]["message"]
content = message.get("content", "") content = message.get("content", "")
think_match = None content, reasoning = self._extract_reasoning(content)
reasoning_content = message.get("reasoning_content", "") reasoning_content = message.get("model_extra", {}).get("reasoning_content", "")
if not reasoning_content: if not reasoning_content:
think_match = re.search(r'(?:<think>)?(.*?)</think>', content, re.DOTALL) reasoning_content = reasoning
if think_match:
reasoning_content = think_match.group(1).strip()
content = re.sub(r'(?:<think>)?.*?</think>', '', content, flags=re.DOTALL, count=1).strip()
return content, reasoning_content return content, reasoning_content
return "没有返回结果", "" return "没有返回结果", ""
except Exception as e: def _extract_reasoning(self, content: str) -> tuple[str, str]:
if retry < max_retries - 1: # 如果还有重试机会 """CoT思维链提取"""
wait_time = base_wait_time * (2 ** retry) match = re.search(r'(?:<think>)?(.*?)</think>', content, re.DOTALL)
logger.error(f"[image回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True) content = re.sub(r'(?:<think>)?.*?</think>', '', content, flags=re.DOTALL, count=1).strip()
await asyncio.sleep(wait_time) if match:
reasoning = match.group(1).strip()
else: else:
logger.critical(f"请求失败: {str(e)}", exc_info=True) reasoning = ""
logger.critical(f"请求头: {headers} 请求体: {data}") return content, reasoning
raise RuntimeError(f"API请求失败: {str(e)}")
logger.error("达到最大重试次数,请求仍然失败") async def _build_headers(self) -> dict:
raise RuntimeError("达到最大重试次数API请求仍然失败") """构建请求头"""
return {
async def generate_response_async(self, prompt: str) -> Union[str, Tuple[str, str]]:
"""异步方式根据输入的提示生成模型的响应"""
headers = {
"Authorization": f"Bearer {self.api_key}", "Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json" "Content-Type": "application/json"
} }
async def generate_response(self, prompt: str) -> Tuple[str, str]:
"""根据输入的提示生成模型的异步响应"""
content, reasoning_content = await self._execute_request(
endpoint="/chat/completions",
prompt=prompt
)
return content, reasoning_content
async def generate_response_for_image(self, prompt: str, image_base64: str) -> Tuple[str, str]:
"""根据输入的提示和图片生成模型的异步响应"""
content, reasoning_content = await self._execute_request(
endpoint="/chat/completions",
prompt=prompt,
image_base64=image_base64
)
return content, reasoning_content
async def generate_response_async(self, prompt: str) -> Union[str, Tuple[str, str]]:
"""异步方式根据输入的提示生成模型的响应"""
# 构建请求体 # 构建请求体
data = { data = {
"model": self.model_name, "model": self.model_name,
"messages": [{"role": "user", "content": prompt}], "messages": [{"role": "user", "content": prompt}],
"temperature": 0.5, "temperature": 0.5,
"max_tokens": global_config.max_response_length,
**self.params **self.params
} }
# 发送请求到完整的 chat/completions 端点 content, reasoning_content = await self._execute_request(
api_url = f"{self.base_url.rstrip('/')}/chat/completions" endpoint="/chat/completions",
logger.info(f"Request URL: {api_url}") # 记录请求的 URL payload=data,
prompt=prompt
max_retries = 3 )
base_wait_time = 15
async with aiohttp.ClientSession() as session:
for retry in range(max_retries):
try:
async with session.post(api_url, headers=headers, json=data) as response:
if response.status == 429:
wait_time = base_wait_time * (2 ** retry) # 指数退避
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
await asyncio.sleep(wait_time)
continue
response.raise_for_status() # 检查其他响应状态
result = await response.json()
if "choices" in result and len(result["choices"]) > 0:
message = result["choices"][0]["message"]
content = message.get("content", "")
think_match = None
reasoning_content = message.get("reasoning_content", "")
if not reasoning_content:
think_match = re.search(r'(?:<think>)?(.*?)</think>', content, re.DOTALL)
if think_match:
reasoning_content = think_match.group(1).strip()
content = re.sub(r'(?:<think>)?.*?</think>', '', content, flags=re.DOTALL, count=1).strip()
return content, reasoning_content return content, reasoning_content
return "没有返回结果", ""
except Exception as e: async def get_embedding(self, text: str) -> Union[list, None]:
if retry < max_retries - 1: # 如果还有重试机会
wait_time = base_wait_time * (2 ** retry)
logger.error(f"[回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
await asyncio.sleep(wait_time)
else:
logger.error(f"请求失败: {str(e)}")
logger.critical(f"请求头: {headers} 请求体: {data}")
return f"请求失败: {str(e)}", ""
logger.error("达到最大重试次数,请求仍然失败")
return "达到最大重试次数,请求仍然失败", ""
def generate_response_for_image_sync(self, prompt: str, image_base64: str) -> Tuple[str, str]:
"""同步方法:根据输入的提示和图片生成模型的响应"""
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
image_base64=compress_base64_image_by_scale(image_base64)
# 构建请求体
data = {
"model": self.model_name,
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": prompt
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}"
}
}
]
}
],
**self.params
}
# 发送请求到完整的chat/completions端点
api_url = f"{self.base_url.rstrip('/')}/chat/completions"
logger.info(f"发送请求到URL: {api_url}/{self.model_name}") # 记录请求的URL
max_retries = 2
base_wait_time = 6
for retry in range(max_retries):
try:
response = requests.post(api_url, headers=headers, json=data, timeout=30)
if response.status_code == 429:
wait_time = base_wait_time * (2 ** retry)
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
time.sleep(wait_time)
continue
response.raise_for_status() # 检查其他响应状态
result = response.json()
if "choices" in result and len(result["choices"]) > 0:
message = result["choices"][0]["message"]
content = message.get("content", "")
think_match = None
reasoning_content = message.get("reasoning_content", "")
if not reasoning_content:
think_match = re.search(r'(?:<think>)?(.*?)</think>', content, re.DOTALL)
if think_match:
reasoning_content = think_match.group(1).strip()
content = re.sub(r'(?:<think>)?.*?</think>', '', content, flags=re.DOTALL, count=1).strip()
return content, reasoning_content
return "没有返回结果", ""
except Exception as e:
if retry < max_retries - 1: # 如果还有重试机会
wait_time = base_wait_time * (2 ** retry)
logger.error(f"[image_sync回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True)
time.sleep(wait_time)
else:
logger.critical(f"请求失败: {str(e)}", exc_info=True)
logger.critical(f"请求头: {headers} 请求体: {data}")
raise RuntimeError(f"API请求失败: {str(e)}")
logger.error("达到最大重试次数,请求仍然失败")
raise RuntimeError("达到最大重试次数API请求仍然失败")
def get_embedding_sync(self, text: str) -> Union[list, None]:
"""同步方法获取文本的embedding向量
Args:
text: 需要获取embedding的文本
Returns:
list: embedding向量如果失败则返回None
"""
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
data = {
"model": self.model_name,
"input": text,
"encoding_format": "float"
}
api_url = f"{self.base_url.rstrip('/')}/embeddings"
logger.info(f"发送请求到URL: {api_url}/{self.model_name}") # 记录请求的URL
max_retries = 2
base_wait_time = 6
for retry in range(max_retries):
try:
response = requests.post(api_url, headers=headers, json=data, timeout=30)
if response.status_code == 429:
wait_time = base_wait_time * (2 ** retry)
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
time.sleep(wait_time)
continue
response.raise_for_status()
result = response.json()
if 'data' in result and len(result['data']) > 0:
return result['data'][0]['embedding']
return None
except Exception as e:
if retry < max_retries - 1:
wait_time = base_wait_time * (2 ** retry)
logger.error(f"[embedding_sync]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True)
time.sleep(wait_time)
else:
logger.critical(f"embedding请求失败: {str(e)}", exc_info=True)
logger.critical(f"请求头: {headers} 请求体: {data}")
return None
logger.error("达到最大重试次数embedding请求仍然失败")
return None
async def get_embedding(self, text: str, model: str = "BAAI/bge-m3") -> Union[list, None]:
"""异步方法获取文本的embedding向量 """异步方法获取文本的embedding向量
Args: Args:
text: 需要获取embedding的文本 text: 需要获取embedding的文本
model: 使用的模型名称,默认为"BAAI/bge-m3"
Returns: Returns:
list: embedding向量如果失败则返回None list: embedding向量如果失败则返回None
""" """
headers = { def embedding_handler(result):
"Authorization": f"Bearer {self.api_key}", """处理响应"""
"Content-Type": "application/json" if "data" in result and len(result["data"]) > 0:
} return result["data"][0].get("embedding", None)
return None
data = { embedding = await self._execute_request(
"model": model, endpoint="/embeddings",
prompt=text,
payload={
"model": self.model_name,
"input": text, "input": text,
"encoding_format": "float" "encoding_format": "float"
} },
retry_policy={
api_url = f"{self.base_url.rstrip('/')}/embeddings" "max_retries": 2,
logger.info(f"发送请求到URL: {api_url}/{self.model_name}") # 记录请求的URL "base_wait": 6
},
max_retries = 3 response_handler=embedding_handler
base_wait_time = 15 )
return embedding
for retry in range(max_retries):
try:
async with aiohttp.ClientSession() as session:
async with session.post(api_url, headers=headers, json=data) as response:
if response.status == 429:
wait_time = base_wait_time * (2 ** retry)
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
await asyncio.sleep(wait_time)
continue
response.raise_for_status()
result = await response.json()
if 'data' in result and len(result['data']) > 0:
return result['data'][0]['embedding']
return None
except Exception as e:
if retry < max_retries - 1:
wait_time = base_wait_time * (2 ** retry)
logger.error(f"[embedding]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True)
await asyncio.sleep(wait_time)
else:
logger.critical(f"embedding请求失败: {str(e)}", exc_info=True)
logger.critical(f"请求头: {headers} 请求体: {data}")
return None
logger.error("达到最大重试次数embedding请求仍然失败")
return None
def rerank_sync(self, query: str, documents: list, top_k: int = 5) -> list:
"""同步方法使用重排序API对文档进行排序
Args:
query: 查询文本
documents: 待排序的文档列表
top_k: 返回前k个结果
Returns:
list: [(document, score), ...] 格式的结果列表
"""
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
data = {
"model": self.model_name,
"query": query,
"documents": documents,
"top_n": top_k,
"return_documents": True,
}
api_url = f"{self.base_url.rstrip('/')}/rerank"
logger.info(f"发送请求到URL: {api_url}")
max_retries = 2
base_wait_time = 6
for retry in range(max_retries):
try:
response = requests.post(api_url, headers=headers, json=data, timeout=30)
if response.status_code == 429:
wait_time = base_wait_time * (2 ** retry)
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
time.sleep(wait_time)
continue
if response.status_code in [500, 503]:
wait_time = base_wait_time * (2 ** retry)
logger.error(f"服务器错误({response.status_code}),等待{wait_time}秒后重试...")
if retry < max_retries - 1:
time.sleep(wait_time)
continue
else:
# 如果是最后一次重试尝试使用chat/completions作为备选方案
return self._fallback_rerank_with_chat(query, documents, top_k)
response.raise_for_status()
result = response.json()
if 'results' in result:
return [(item["document"], item["score"]) for item in result["results"]]
return []
except Exception as e:
if retry < max_retries - 1:
wait_time = base_wait_time * (2 ** retry)
logger.error(f"[rerank_sync]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True)
time.sleep(wait_time)
else:
logger.critical(f"重排序请求失败: {str(e)}", exc_info=True)
logger.error("达到最大重试次数,重排序请求仍然失败")
return []
async def rerank(self, query: str, documents: list, top_k: int = 5) -> list:
"""异步方法使用重排序API对文档进行排序
Args:
query: 查询文本
documents: 待排序的文档列表
top_k: 返回前k个结果
Returns:
list: [(document, score), ...] 格式的结果列表
"""
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
data = {
"model": self.model_name,
"query": query,
"documents": documents,
"top_n": top_k,
"return_documents": True,
}
api_url = f"{self.base_url.rstrip('/')}/v1/rerank"
logger.info(f"发送请求到URL: {api_url}")
max_retries = 3
base_wait_time = 15
for retry in range(max_retries):
try:
async with aiohttp.ClientSession() as session:
async with session.post(api_url, headers=headers, json=data) as response:
if response.status == 429:
wait_time = base_wait_time * (2 ** retry)
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
await asyncio.sleep(wait_time)
continue
if response.status in [500, 503]:
wait_time = base_wait_time * (2 ** retry)
logger.error(f"服务器错误({response.status}),等待{wait_time}秒后重试...")
if retry < max_retries - 1:
await asyncio.sleep(wait_time)
continue
else:
# 如果是最后一次重试尝试使用chat/completions作为备选方案
return await self._fallback_rerank_with_chat_async(query, documents, top_k)
response.raise_for_status()
result = await response.json()
if 'results' in result:
return [(item["document"], item["score"]) for item in result["results"]]
return []
except Exception as e:
if retry < max_retries - 1:
wait_time = base_wait_time * (2 ** retry)
logger.error(f"[rerank]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True)
await asyncio.sleep(wait_time)
else:
logger.critical(f"重排序请求失败: {str(e)}", exc_info=True)
# 作为最后的备选方案尝试使用chat/completions
return await self._fallback_rerank_with_chat_async(query, documents, top_k)
logger.error("达到最大重试次数,重排序请求仍然失败")
return []
async def _fallback_rerank_with_chat_async(self, query: str, documents: list, top_k: int = 5) -> list:
"""当rerank API失败时的备选方案使用chat/completions异步实现重排序
Args:
query: 查询文本
documents: 待排序的文档列表
top_k: 返回前k个结果
Returns:
list: [(document, score), ...] 格式的结果列表
"""
try:
logger.info("使用chat/completions作为重排序的备选方案")
# 构建提示词
prompt = f"""请对以下文档列表进行重排序,按照与查询的相关性从高到低排序。
查询: {query}
文档列表:
{documents}
请以JSON格式返回排序结果格式为
[{{"document": "文档内容", "score": 相关性分数}}, ...]
只返回JSON不要其他任何文字。"""
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
data = {
"model": self.model_name,
"messages": [{"role": "user", "content": prompt}],
**self.params
}
api_url = f"{self.base_url.rstrip('/')}/v1/chat/completions"
async with aiohttp.ClientSession() as session:
async with session.post(api_url, headers=headers, json=data) as response:
response.raise_for_status()
result = await response.json()
if "choices" in result and len(result["choices"]) > 0:
message = result["choices"][0]["message"]
content = message.get("content", "")
try:
import json
parsed_content = json.loads(content)
if isinstance(parsed_content, list):
return [(item["document"], item["score"]) for item in parsed_content]
except:
pass
return []
except Exception as e:
logger.error(f"备选方案也失败了: {str(e)}")
return []

View File

@@ -20,6 +20,9 @@ ban_words = [
[emoji] [emoji]
check_interval = 120 # 检查表情包的时间间隔 check_interval = 120 # 检查表情包的时间间隔
register_interval = 10 # 注册表情包的时间间隔 register_interval = 10 # 注册表情包的时间间隔
auto_save = true # 自动偷表情包
enable_check = false # 是否启用表情包过滤
check_prompt = "符合公序良俗" # 表情包过滤要求
[cq_code] [cq_code]
enable_pic_translate = false enable_pic_translate = false
@@ -28,6 +31,7 @@ enable_pic_translate = false
model_r1_probability = 0.8 # 麦麦回答时选择R1模型的概率 model_r1_probability = 0.8 # 麦麦回答时选择R1模型的概率
model_v3_probability = 0.1 # 麦麦回答时选择V3模型的概率 model_v3_probability = 0.1 # 麦麦回答时选择V3模型的概率
model_r1_distill_probability = 0.1 # 麦麦回答时选择R1蒸馏模型的概率 model_r1_distill_probability = 0.1 # 麦麦回答时选择R1蒸馏模型的概率
max_response_length = 1024 # 麦麦回答的最大token数
[memory] [memory]
build_memory_interval = 300 # 记忆构建间隔 单位秒 build_memory_interval = 300 # 记忆构建间隔 单位秒