fix: 修复代码质量问题 - 更正异常处理和导入语句

Co-authored-by: Windpicker-owo <221029311+Windpicker-owo@users.noreply.github.com>
This commit is contained in:
copilot-swe-agent[bot]
2025-11-07 04:39:35 +00:00
parent 3bdcfa3dd4
commit 5caf630623
20 changed files with 893 additions and 910 deletions

View File

@@ -6,10 +6,12 @@ from typing import ClassVar
from src.common.logger import get_logger
from src.plugin_system import BasePlugin, register_plugin
from src.plugin_system.base.component_types import ComponentInfo, ToolInfo
logger = get_logger("memory_graph_plugin")
# 用于存储后台任务引用
_background_tasks = set()
@register_plugin
class MemoryGraphPlugin(BasePlugin):
@@ -60,6 +62,7 @@ class MemoryGraphPlugin(BasePlugin):
"""插件卸载时的回调"""
try:
import asyncio
from src.memory_graph.manager_singleton import shutdown_memory_manager
logger.info(f"{self.log_prefix} 正在关闭记忆系统...")
@@ -68,7 +71,10 @@ class MemoryGraphPlugin(BasePlugin):
loop = asyncio.get_event_loop()
if loop.is_running():
# 如果循环正在运行,创建任务
asyncio.create_task(shutdown_memory_manager())
task = asyncio.create_task(shutdown_memory_manager())
# 存储引用以防止任务被垃圾回收
_background_tasks.add(task)
task.add_done_callback(_background_tasks.discard)
else:
# 如果循环未运行,直接运行
loop.run_until_complete(shutdown_memory_manager())

View File

@@ -10,13 +10,13 @@
使用方法:
# 预览模式(不实际删除)
python scripts/deduplicate_memories.py --dry-run
# 执行去重
python scripts/deduplicate_memories.py
# 指定相似度阈值
python scripts/deduplicate_memories.py --threshold 0.9
# 指定数据目录
python scripts/deduplicate_memories.py --data-dir data/memory_graph
"""
@@ -25,27 +25,26 @@ import asyncio
import sys
from datetime import datetime
from pathlib import Path
from typing import Dict, List, Optional, Set, Tuple
import numpy as np
sys.path.insert(0, str(Path(__file__).parent.parent))
from src.common.logger import get_logger
from src.memory_graph.manager_singleton import get_memory_manager, initialize_memory_manager, shutdown_memory_manager
from src.memory_graph.manager_singleton import initialize_memory_manager, shutdown_memory_manager
logger = get_logger(__name__)
class MemoryDeduplicator:
"""记忆去重器"""
def __init__(self, data_dir: str = "data/memory_graph", dry_run: bool = False, threshold: float = 0.85):
self.data_dir = data_dir
self.dry_run = dry_run
self.threshold = threshold
self.manager = None
# 统计信息
self.stats = {
"total_memories": 0,
@@ -54,34 +53,34 @@ class MemoryDeduplicator:
"duplicates_removed": 0,
"errors": 0,
}
async def initialize(self):
"""初始化记忆管理器"""
logger.info(f"正在初始化记忆管理器 (data_dir={self.data_dir})...")
self.manager = await initialize_memory_manager(data_dir=self.data_dir)
if not self.manager:
raise RuntimeError("记忆管理器初始化失败")
self.stats["total_memories"] = len(self.manager.graph_store.get_all_memories())
logger.info(f"✅ 记忆管理器初始化成功,共 {self.stats['total_memories']} 条记忆")
async def find_similar_pairs(self) -> List[Tuple[str, str, float]]:
async def find_similar_pairs(self) -> list[tuple[str, str, float]]:
"""
查找所有相似的记忆对(通过向量相似度计算)
Returns:
[(memory_id_1, memory_id_2, similarity), ...]
"""
logger.info("正在扫描相似记忆对...")
similar_pairs = []
seen_pairs = set() # 避免重复
# 获取所有记忆
all_memories = self.manager.graph_store.get_all_memories()
total_memories = len(all_memories)
logger.info(f"开始计算 {total_memories} 条记忆的相似度...")
# 两两比较记忆的相似度
for i, memory_i in enumerate(all_memories):
# 每处理10条记忆让出控制权
@@ -89,115 +88,115 @@ class MemoryDeduplicator:
await asyncio.sleep(0)
if i > 0:
logger.info(f"进度: {i}/{total_memories} ({i*100//total_memories}%)")
# 获取记忆i的向量从主题节点
vector_i = None
for node in memory_i.nodes:
if node.embedding is not None:
vector_i = node.embedding
break
if vector_i is None:
continue
# 与后续记忆比较
for j in range(i + 1, total_memories):
memory_j = all_memories[j]
# 获取记忆j的向量
vector_j = None
for node in memory_j.nodes:
if node.embedding is not None:
vector_j = node.embedding
break
if vector_j is None:
continue
# 计算余弦相似度
similarity = self._cosine_similarity(vector_i, vector_j)
# 只保存满足阈值的相似对
if similarity >= self.threshold:
pair_key = tuple(sorted([memory_i.id, memory_j.id]))
if pair_key not in seen_pairs:
seen_pairs.add(pair_key)
similar_pairs.append((memory_i.id, memory_j.id, similarity))
self.stats["similar_pairs"] = len(similar_pairs)
logger.info(f"找到 {len(similar_pairs)} 对相似记忆(阈值>={self.threshold}")
return similar_pairs
def _cosine_similarity(self, vec1: np.ndarray, vec2: np.ndarray) -> float:
"""计算余弦相似度"""
try:
vec1_norm = np.linalg.norm(vec1)
vec2_norm = np.linalg.norm(vec2)
if vec1_norm == 0 or vec2_norm == 0:
return 0.0
similarity = np.dot(vec1, vec2) / (vec1_norm * vec2_norm)
return float(similarity)
except Exception as e:
logger.error(f"计算余弦相似度失败: {e}")
return 0.0
def decide_which_to_keep(self, mem_id_1: str, mem_id_2: str) -> Tuple[Optional[str], Optional[str]]:
def decide_which_to_keep(self, mem_id_1: str, mem_id_2: str) -> tuple[str | None, str | None]:
"""
决定保留哪个记忆,删除哪个
优先级:
1. 重要性更高的
2. 激活度更高的
3. 创建时间更早的
Returns:
(keep_id, remove_id)
"""
mem1 = self.manager.graph_store.get_memory_by_id(mem_id_1)
mem2 = self.manager.graph_store.get_memory_by_id(mem_id_2)
if not mem1 or not mem2:
logger.warning(f"记忆不存在: {mem_id_1} or {mem_id_2}")
return None, None
# 比较重要性
if mem1.importance > mem2.importance:
return mem_id_1, mem_id_2
elif mem1.importance < mem2.importance:
return mem_id_2, mem_id_1
# 重要性相同,比较激活度
if mem1.activation > mem2.activation:
return mem_id_1, mem_id_2
elif mem1.activation < mem2.activation:
return mem_id_2, mem_id_1
# 激活度也相同,保留更早创建的
if mem1.created_at < mem2.created_at:
return mem_id_1, mem_id_2
else:
return mem_id_2, mem_id_1
async def deduplicate_pair(self, mem_id_1: str, mem_id_2: str, similarity: float) -> bool:
"""
去重一对相似记忆
Returns:
是否成功去重
"""
keep_id, remove_id = self.decide_which_to_keep(mem_id_1, mem_id_2)
if not keep_id or not remove_id:
self.stats["errors"] += 1
return False
keep_mem = self.manager.graph_store.get_memory_by_id(keep_id)
remove_mem = self.manager.graph_store.get_memory_by_id(remove_id)
logger.info(f"")
logger.info("")
logger.info(f"{'[预览]' if self.dry_run else '[执行]'} 去重相似记忆对 (相似度={similarity:.3f}):")
logger.info(f" 保留: {keep_id}")
logger.info(f" - 主题: {keep_mem.metadata.get('topic', 'N/A')}")
@@ -209,41 +208,41 @@ class MemoryDeduplicator:
logger.info(f" - 重要性: {remove_mem.importance:.2f}")
logger.info(f" - 激活度: {remove_mem.activation:.2f}")
logger.info(f" - 创建时间: {remove_mem.created_at}")
if self.dry_run:
logger.info(" [预览模式] 不执行实际删除")
self.stats["duplicates_found"] += 1
return True
try:
# 增强保留记忆的属性
keep_mem.importance = min(1.0, keep_mem.importance + 0.05)
keep_mem.activation = min(1.0, keep_mem.activation + 0.05)
# 累加访问次数
if hasattr(keep_mem, 'access_count') and hasattr(remove_mem, 'access_count'):
if hasattr(keep_mem, "access_count") and hasattr(remove_mem, "access_count"):
keep_mem.access_count += remove_mem.access_count
# 删除相似记忆
await self.manager.delete_memory(remove_id)
self.stats["duplicates_removed"] += 1
logger.info(f" ✅ 删除成功")
logger.info(" ✅ 删除成功")
# 让出控制权
await asyncio.sleep(0)
return True
except Exception as e:
logger.error(f" ❌ 删除失败: {e}", exc_info=True)
self.stats["errors"] += 1
return False
async def run(self):
"""执行去重"""
start_time = datetime.now()
print("="*70)
print("记忆去重工具")
print("="*70)
@@ -252,13 +251,13 @@ class MemoryDeduplicator:
print(f"模式: {'预览模式(不实际删除)' if self.dry_run else '执行模式(会实际删除)'}")
print("="*70)
print()
# 初始化
await self.initialize()
# 查找相似对
similar_pairs = await self.find_similar_pairs()
if not similar_pairs:
logger.info("未找到需要去重的相似记忆对")
print()
@@ -266,19 +265,19 @@ class MemoryDeduplicator:
print("未找到需要去重的记忆")
print("="*70)
return
# 去重处理
logger.info(f"开始{'预览' if self.dry_run else '执行'}去重...")
print()
processed_pairs = set() # 避免重复处理
for mem_id_1, mem_id_2, similarity in similar_pairs:
# 检查是否已处理(可能一个记忆已被删除)
pair_key = tuple(sorted([mem_id_1, mem_id_2]))
if pair_key in processed_pairs:
continue
# 检查记忆是否仍存在
if not self.manager.graph_store.get_memory_by_id(mem_id_1):
logger.debug(f"记忆 {mem_id_1} 已不存在,跳过")
@@ -286,22 +285,22 @@ class MemoryDeduplicator:
if not self.manager.graph_store.get_memory_by_id(mem_id_2):
logger.debug(f"记忆 {mem_id_2} 已不存在,跳过")
continue
# 执行去重
success = await self.deduplicate_pair(mem_id_1, mem_id_2, similarity)
if success:
processed_pairs.add(pair_key)
# 保存数据(如果不是干运行)
if not self.dry_run:
logger.info("正在保存数据...")
await self.manager.persistence.save_graph_store(self.manager.graph_store)
logger.info("✅ 数据已保存")
# 统计报告
elapsed = (datetime.now() - start_time).total_seconds()
print()
print("="*70)
print("去重报告")
@@ -312,7 +311,7 @@ class MemoryDeduplicator:
print(f"{'预览通过' if self.dry_run else '成功删除'}: {self.stats['duplicates_found'] if self.dry_run else self.stats['duplicates_removed']}")
print(f"错误数: {self.stats['errors']}")
print(f"耗时: {elapsed:.2f}")
if self.dry_run:
print()
print("⚠️ 这是预览模式,未实际删除任何记忆")
@@ -322,9 +321,9 @@ class MemoryDeduplicator:
print("✅ 去重完成!")
final_count = len(self.manager.graph_store.get_all_memories())
print(f"📊 最终记忆数: {final_count} (减少 {self.stats['total_memories'] - final_count} 条)")
print("="*70)
async def cleanup(self):
"""清理资源"""
if self.manager:
@@ -340,50 +339,50 @@ async def main():
示例:
# 预览模式(推荐先运行)
python scripts/deduplicate_memories.py --dry-run
# 执行去重
python scripts/deduplicate_memories.py
# 指定相似度阈值(只处理相似度>=0.9的记忆对)
python scripts/deduplicate_memories.py --threshold 0.9
# 指定数据目录
python scripts/deduplicate_memories.py --data-dir data/memory_graph
# 组合使用
python scripts/deduplicate_memories.py --dry-run --threshold 0.95 --data-dir data/test
"""
)
parser.add_argument(
"--dry-run",
action="store_true",
help="预览模式,不实际删除记忆(推荐先运行此模式)"
)
parser.add_argument(
"--threshold",
type=float,
default=0.85,
help="相似度阈值,只处理相似度>=此值的记忆对(默认: 0.85"
)
parser.add_argument(
"--data-dir",
type=str,
default="data/memory_graph",
help="记忆数据目录(默认: data/memory_graph"
)
args = parser.parse_args()
# 创建去重器
deduplicator = MemoryDeduplicator(
data_dir=args.data_dir,
dry_run=args.dry_run,
threshold=args.threshold
)
try:
# 执行去重
await deduplicator.run()
@@ -396,7 +395,7 @@ async def main():
finally:
# 清理资源
await deduplicator.cleanup()
return 0

View File

@@ -6,24 +6,24 @@
from src.memory_graph.manager import MemoryManager
from src.memory_graph.models import (
EdgeType,
Memory,
MemoryEdge,
MemoryNode,
MemoryStatus,
MemoryType,
NodeType,
EdgeType,
)
__all__ = [
"MemoryManager",
"EdgeType",
"Memory",
"MemoryNode",
"MemoryEdge",
"MemoryManager",
"MemoryNode",
"MemoryStatus",
"MemoryType",
"NodeType",
"EdgeType",
"MemoryStatus",
]
__version__ = "0.1.0"

View File

@@ -6,4 +6,4 @@ from src.memory_graph.core.builder import MemoryBuilder
from src.memory_graph.core.extractor import MemoryExtractor
from src.memory_graph.core.node_merger import NodeMerger
__all__ = ["NodeMerger", "MemoryExtractor", "MemoryBuilder"]
__all__ = ["MemoryBuilder", "MemoryExtractor", "NodeMerger"]

View File

@@ -5,7 +5,7 @@
from __future__ import annotations
from datetime import datetime
from typing import Any, Dict, List, Optional
from typing import Any
import numpy as np
@@ -16,7 +16,6 @@ from src.memory_graph.models import (
MemoryEdge,
MemoryNode,
MemoryStatus,
MemoryType,
NodeType,
)
from src.memory_graph.storage.graph_store import GraphStore
@@ -28,7 +27,7 @@ logger = get_logger(__name__)
class MemoryBuilder:
"""
记忆构建器
负责:
1. 根据提取的元素自动构造记忆子图
2. 创建节点和边的完整结构
@@ -41,11 +40,11 @@ class MemoryBuilder:
self,
vector_store: VectorStore,
graph_store: GraphStore,
embedding_generator: Optional[Any] = None,
embedding_generator: Any | None = None,
):
"""
初始化记忆构建器
Args:
vector_store: 向量存储
graph_store: 图存储
@@ -55,13 +54,13 @@ class MemoryBuilder:
self.graph_store = graph_store
self.embedding_generator = embedding_generator
async def build_memory(self, extracted_params: Dict[str, Any]) -> Memory:
async def build_memory(self, extracted_params: dict[str, Any]) -> Memory:
"""
构建完整的记忆对象
Args:
extracted_params: 提取器返回的标准化参数
Returns:
Memory 对象(状态为 STAGED
"""
@@ -97,7 +96,7 @@ class MemoryBuilder:
edges.append(memory_type_edge)
# 4. 如果有客体,创建客体节点并连接
if "object" in extracted_params and extracted_params["object"]:
if extracted_params.get("object"):
object_node = await self._create_object_node(
content=extracted_params["object"], memory_id=memory_id
)
@@ -158,14 +157,14 @@ class MemoryBuilder:
) -> MemoryNode:
"""
创建新节点或复用已存在的相似节点
对于主体(SUBJECT)和属性(ATTRIBUTE),检查是否已存在相同内容的节点
Args:
content: 节点内容
node_type: 节点类型
memory_id: 所属记忆ID
Returns:
MemoryNode 对象
"""
@@ -190,11 +189,11 @@ class MemoryBuilder:
async def _create_topic_node(self, content: str, memory_id: str) -> MemoryNode:
"""
创建主题节点(需要生成嵌入向量)
Args:
content: 节点内容
memory_id: 所属记忆ID
Returns:
MemoryNode 对象
"""
@@ -225,11 +224,11 @@ class MemoryBuilder:
async def _create_object_node(self, content: str, memory_id: str) -> MemoryNode:
"""
创建客体节点(需要生成嵌入向量)
Args:
content: 节点内容
memory_id: 所属记忆ID
Returns:
MemoryNode 对象
"""
@@ -258,22 +257,22 @@ class MemoryBuilder:
async def _process_attributes(
self,
attributes: Dict[str, Any],
attributes: dict[str, Any],
parent_id: str,
memory_id: str,
importance: float,
) -> tuple[List[MemoryNode], List[MemoryEdge]]:
) -> tuple[list[MemoryNode], list[MemoryEdge]]:
"""
处理属性,构建属性子图
结构TOPIC -> ATTRIBUTE -> VALUE
Args:
attributes: 属性字典
parent_id: 父节点ID通常是TOPIC
memory_id: 所属记忆ID
importance: 重要性
Returns:
(属性节点列表, 属性边列表)
"""
@@ -322,10 +321,10 @@ class MemoryBuilder:
async def _generate_embedding(self, text: str) -> np.ndarray:
"""
生成文本的嵌入向量
Args:
text: 文本内容
Returns:
嵌入向量
"""
@@ -341,14 +340,14 @@ class MemoryBuilder:
async def _find_existing_node(
self, content: str, node_type: NodeType
) -> Optional[MemoryNode]:
) -> MemoryNode | None:
"""
查找已存在的完全匹配节点(用于主体和属性)
Args:
content: 节点内容
node_type: 节点类型
Returns:
已存在的节点,如果没有则返回 None
"""
@@ -369,14 +368,14 @@ class MemoryBuilder:
async def _find_similar_topic(
self, content: str, embedding: np.ndarray
) -> Optional[MemoryNode]:
) -> MemoryNode | None:
"""
查找相似的主题节点(基于语义相似度)
Args:
content: 内容
embedding: 嵌入向量
Returns:
相似节点,如果没有则返回 None
"""
@@ -414,14 +413,14 @@ class MemoryBuilder:
async def _find_similar_object(
self, content: str, embedding: np.ndarray
) -> Optional[MemoryNode]:
) -> MemoryNode | None:
"""
查找相似的客体节点(基于语义相似度)
Args:
content: 内容
embedding: 嵌入向量
Returns:
相似节点,如果没有则返回 None
"""
@@ -480,13 +479,13 @@ class MemoryBuilder:
) -> MemoryEdge:
"""
关联两个记忆(创建因果或引用边)
Args:
source_memory: 源记忆
target_memory: 目标记忆
relation_type: 关系类型(如 "导致", "引用"
importance: 重要性
Returns:
创建的边
"""
@@ -525,7 +524,7 @@ class MemoryBuilder:
logger.error(f"记忆关联失败: {e}", exc_info=True)
raise RuntimeError(f"记忆关联失败: {e}")
def _find_topic_node(self, memory: Memory) -> Optional[MemoryNode]:
def _find_topic_node(self, memory: Memory) -> MemoryNode | None:
"""查找记忆中的主题节点"""
for node in memory.nodes:
if node.node_type == NodeType.TOPIC:

View File

@@ -5,7 +5,7 @@
from __future__ import annotations
from datetime import datetime
from typing import Any, Dict, Optional
from typing import Any
from src.common.logger import get_logger
from src.memory_graph.models import MemoryType
@@ -17,7 +17,7 @@ logger = get_logger(__name__)
class MemoryExtractor:
"""
记忆提取器
负责:
1. 从工具调用参数中提取记忆元素
2. 验证参数完整性和有效性
@@ -25,19 +25,19 @@ class MemoryExtractor:
4. 清洗和格式化数据
"""
def __init__(self, time_parser: Optional[TimeParser] = None):
def __init__(self, time_parser: TimeParser | None = None):
"""
初始化记忆提取器
Args:
time_parser: 时间解析器(可选)
"""
self.time_parser = time_parser or TimeParser()
def extract_from_tool_params(self, params: Dict[str, Any]) -> Dict[str, Any]:
def extract_from_tool_params(self, params: dict[str, Any]) -> dict[str, Any]:
"""
从工具参数中提取记忆元素
Args:
params: 工具调用参数,例如:
{
@@ -48,7 +48,7 @@ class MemoryExtractor:
"attributes": {"时间": "今天", "地点": "家里"},
"importance": 0.3
}
Returns:
提取和标准化后的参数字典
"""
@@ -64,11 +64,11 @@ class MemoryExtractor:
}
# 3. 提取可选的客体
if "object" in params and params["object"]:
if params.get("object"):
extracted["object"] = self._clean_text(params["object"])
# 4. 提取和标准化属性
if "attributes" in params and params["attributes"]:
if params.get("attributes"):
extracted["attributes"] = self._process_attributes(params["attributes"])
else:
extracted["attributes"] = {}
@@ -86,13 +86,13 @@ class MemoryExtractor:
logger.error(f"记忆提取失败: {e}", exc_info=True)
raise ValueError(f"记忆提取失败: {e}")
def _validate_required_params(self, params: Dict[str, Any]) -> None:
def _validate_required_params(self, params: dict[str, Any]) -> None:
"""
验证必需参数
Args:
params: 参数字典
Raises:
ValueError: 如果缺少必需参数
"""
@@ -105,10 +105,10 @@ class MemoryExtractor:
def _clean_text(self, text: Any) -> str:
"""
清洗文本
Args:
text: 输入文本
Returns:
清洗后的文本
"""
@@ -128,13 +128,13 @@ class MemoryExtractor:
def _parse_memory_type(self, type_str: str) -> MemoryType:
"""
解析记忆类型
Args:
type_str: 类型字符串
Returns:
MemoryType 枚举
Raises:
ValueError: 如果类型无效
"""
@@ -166,10 +166,10 @@ class MemoryExtractor:
def _parse_importance(self, importance: Any) -> float:
"""
解析重要性值
Args:
importance: 重要性值(可以是数字、字符串等)
Returns:
0-1之间的浮点数
"""
@@ -181,13 +181,13 @@ class MemoryExtractor:
logger.warning(f"无效的重要性值: {importance},使用默认值 0.5")
return 0.5
def _process_attributes(self, attributes: Dict[str, Any]) -> Dict[str, Any]:
def _process_attributes(self, attributes: dict[str, Any]) -> dict[str, Any]:
"""
处理属性字典
Args:
attributes: 原始属性字典
Returns:
处理后的属性字典
"""
@@ -222,10 +222,10 @@ class MemoryExtractor:
return processed
def extract_link_params(self, params: Dict[str, Any]) -> Dict[str, Any]:
def extract_link_params(self, params: dict[str, Any]) -> dict[str, Any]:
"""
提取记忆关联参数(用于 link_memories 工具)
Args:
params: 工具参数,例如:
{
@@ -234,7 +234,7 @@ class MemoryExtractor:
"relation_type": "导致",
"importance": 0.6
}
Returns:
提取后的参数
"""
@@ -266,10 +266,10 @@ class MemoryExtractor:
def validate_relation_type(self, relation_type: str) -> str:
"""
验证关系类型
Args:
relation_type: 关系类型字符串
Returns:
标准化的关系类型
"""

View File

@@ -4,11 +4,6 @@
from __future__ import annotations
from dataclasses import dataclass
from typing import List, Optional, Tuple
import numpy as np
from src.common.logger import get_logger
from src.config.official_configs import MemoryConfig
from src.memory_graph.models import MemoryNode, NodeType
@@ -21,7 +16,7 @@ logger = get_logger(__name__)
class NodeMerger:
"""
节点合并器
负责:
1. 基于语义相似度查找重复节点
2. 验证上下文匹配
@@ -36,7 +31,7 @@ class NodeMerger:
):
"""
初始化节点合并器
Args:
vector_store: 向量存储
graph_store: 图存储
@@ -54,17 +49,17 @@ class NodeMerger:
async def find_similar_nodes(
self,
node: MemoryNode,
threshold: Optional[float] = None,
threshold: float | None = None,
limit: int = 5,
) -> List[Tuple[MemoryNode, float]]:
) -> list[tuple[MemoryNode, float]]:
"""
查找与指定节点相似的节点
Args:
node: 查询节点
threshold: 相似度阈值(可选,默认使用配置值)
limit: 返回结果数量
Returns:
List of (similar_node, similarity)
"""
@@ -112,12 +107,12 @@ class NodeMerger:
) -> bool:
"""
判断两个节点是否应该合并
Args:
source_node: 源节点
target_node: 目标节点
similarity: 语义相似度
Returns:
是否应该合并
"""
@@ -157,16 +152,16 @@ class NodeMerger:
) -> bool:
"""
检查两个节点的上下文是否匹配
上下文匹配的标准:
1. 节点类型相同
2. 邻居节点有重叠
3. 邻居节点的内容相似
Args:
source_node: 源节点
target_node: 目标节点
Returns:
是否匹配
"""
@@ -207,7 +202,7 @@ class NodeMerger:
# 如果有 30% 以上的邻居重叠,认为上下文匹配
return overlap_ratio > 0.3
def _get_node_content(self, node_id: str) -> Optional[str]:
def _get_node_content(self, node_id: str) -> str | None:
"""获取节点的内容"""
memories = self.graph_store.get_memories_by_node(node_id)
if memories:
@@ -223,13 +218,13 @@ class NodeMerger:
) -> bool:
"""
合并两个节点
将 source 节点的所有边转移到 target 节点,然后删除 source
Args:
source: 源节点(将被删除)
target: 目标节点(保留)
Returns:
是否成功
"""
@@ -255,7 +250,7 @@ class NodeMerger:
def _update_memory_references(self, old_node_id: str, new_node_id: str) -> None:
"""
更新记忆中的节点引用
Args:
old_node_id: 旧节点ID
new_node_id: 新节点ID
@@ -280,16 +275,16 @@ class NodeMerger:
async def batch_merge_similar_nodes(
self,
nodes: List[MemoryNode],
progress_callback: Optional[callable] = None,
nodes: list[MemoryNode],
progress_callback: callable | None = None,
) -> dict:
"""
批量处理节点合并
Args:
nodes: 要处理的节点列表
progress_callback: 进度回调函数
Returns:
统计信息字典
"""
@@ -344,14 +339,14 @@ class NodeMerger:
self,
min_similarity: float = 0.85,
limit: int = 100,
) -> List[Tuple[str, str, float]]:
) -> list[tuple[str, str, float]]:
"""
获取待合并的候选节点对
Args:
min_similarity: 最小相似度
limit: 最大返回数量
Returns:
List of (node_id_1, node_id_2, similarity)
"""

File diff suppressed because it is too large Load Diff

View File

@@ -7,7 +7,6 @@
from __future__ import annotations
from pathlib import Path
from typing import Optional
from src.common.logger import get_logger
from src.memory_graph.manager import MemoryManager
@@ -15,56 +14,56 @@ from src.memory_graph.manager import MemoryManager
logger = get_logger(__name__)
# 全局 MemoryManager 实例
_memory_manager: Optional[MemoryManager] = None
_memory_manager: MemoryManager | None = None
_initialized: bool = False
async def initialize_memory_manager(
data_dir: Optional[Path | str] = None,
) -> Optional[MemoryManager]:
data_dir: Path | str | None = None,
) -> MemoryManager | None:
"""
初始化全局 MemoryManager
直接从 global_config.memory 读取配置
Args:
data_dir: 数据目录(可选,默认从配置读取)
Returns:
MemoryManager 实例,如果禁用则返回 None
"""
global _memory_manager, _initialized
if _initialized and _memory_manager:
logger.info("MemoryManager 已经初始化,返回现有实例")
return _memory_manager
try:
from src.config.config import global_config
# 检查是否启用
if not global_config.memory or not getattr(global_config.memory, 'enable', False):
if not global_config.memory or not getattr(global_config.memory, "enable", False):
logger.info("记忆图系统已在配置中禁用")
_initialized = False
_memory_manager = None
return None
# 处理数据目录
if data_dir is None:
data_dir = getattr(global_config.memory, 'data_dir', 'data/memory_graph')
data_dir = getattr(global_config.memory, "data_dir", "data/memory_graph")
if isinstance(data_dir, str):
data_dir = Path(data_dir)
logger.info(f"正在初始化全局 MemoryManager (data_dir={data_dir})...")
_memory_manager = MemoryManager(data_dir=data_dir)
await _memory_manager.initialize()
_initialized = True
logger.info("✅ 全局 MemoryManager 初始化成功")
return _memory_manager
except Exception as e:
logger.error(f"初始化 MemoryManager 失败: {e}", exc_info=True)
_initialized = False
@@ -72,24 +71,24 @@ async def initialize_memory_manager(
raise
def get_memory_manager() -> Optional[MemoryManager]:
def get_memory_manager() -> MemoryManager | None:
"""
获取全局 MemoryManager 实例
Returns:
MemoryManager 实例,如果未初始化则返回 None
"""
if not _initialized or _memory_manager is None:
logger.warning("MemoryManager 尚未初始化,请先调用 initialize_memory_manager()")
return None
return _memory_manager
async def shutdown_memory_manager():
"""关闭全局 MemoryManager"""
global _memory_manager, _initialized
if _memory_manager:
try:
logger.info("正在关闭全局 MemoryManager...")

View File

@@ -10,7 +10,7 @@ import uuid
from dataclasses import dataclass, field
from datetime import datetime
from enum import Enum
from typing import Any, Dict, List, Optional
from typing import Any
import numpy as np
@@ -60,8 +60,8 @@ class MemoryNode:
id: str # 节点唯一ID
content: str # 节点内容(如:"我"、"吃饭"、"白米饭"
node_type: NodeType # 节点类型
embedding: Optional[np.ndarray] = None # 语义向量(仅主题/客体需要)
metadata: Dict[str, Any] = field(default_factory=dict) # 扩展元数据
embedding: np.ndarray | None = None # 语义向量(仅主题/客体需要)
metadata: dict[str, Any] = field(default_factory=dict) # 扩展元数据
created_at: datetime = field(default_factory=datetime.now)
def __post_init__(self):
@@ -69,7 +69,7 @@ class MemoryNode:
if not self.id:
self.id = str(uuid.uuid4())
def to_dict(self) -> Dict[str, Any]:
def to_dict(self) -> dict[str, Any]:
"""转换为字典(用于序列化)"""
return {
"id": self.id,
@@ -81,7 +81,7 @@ class MemoryNode:
}
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> MemoryNode:
def from_dict(cls, data: dict[str, Any]) -> MemoryNode:
"""从字典创建节点"""
embedding = None
if data.get("embedding") is not None:
@@ -114,7 +114,7 @@ class MemoryEdge:
relation: str # 关系名称(如:"是"、"做"、"时间"、"因为"
edge_type: EdgeType # 边类型
importance: float = 0.5 # 重要性 [0-1]
metadata: Dict[str, Any] = field(default_factory=dict) # 扩展元数据
metadata: dict[str, Any] = field(default_factory=dict) # 扩展元数据
created_at: datetime = field(default_factory=datetime.now)
def __post_init__(self):
@@ -124,7 +124,7 @@ class MemoryEdge:
# 确保重要性在有效范围内
self.importance = max(0.0, min(1.0, self.importance))
def to_dict(self) -> Dict[str, Any]:
def to_dict(self) -> dict[str, Any]:
"""转换为字典(用于序列化)"""
return {
"id": self.id,
@@ -138,7 +138,7 @@ class MemoryEdge:
}
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> MemoryEdge:
def from_dict(cls, data: dict[str, Any]) -> MemoryEdge:
"""从字典创建边"""
return cls(
id=data["id"],
@@ -162,8 +162,8 @@ class Memory:
id: str # 记忆唯一ID
subject_id: str # 主体节点ID
memory_type: MemoryType # 记忆类型
nodes: List[MemoryNode] # 该记忆包含的所有节点
edges: List[MemoryEdge] # 该记忆包含的所有边
nodes: list[MemoryNode] # 该记忆包含的所有节点
edges: list[MemoryEdge] # 该记忆包含的所有边
importance: float = 0.5 # 整体重要性 [0-1]
activation: float = 0.0 # 激活度 [0-1],用于记忆整合和遗忘
status: MemoryStatus = MemoryStatus.STAGED # 记忆状态
@@ -171,7 +171,7 @@ class Memory:
last_accessed: datetime = field(default_factory=datetime.now) # 最后访问时间
access_count: int = 0 # 访问次数
decay_factor: float = 1.0 # 衰减因子(随时间变化)
metadata: Dict[str, Any] = field(default_factory=dict) # 扩展元数据
metadata: dict[str, Any] = field(default_factory=dict) # 扩展元数据
def __post_init__(self):
"""后初始化处理"""
@@ -181,7 +181,7 @@ class Memory:
self.importance = max(0.0, min(1.0, self.importance))
self.activation = max(0.0, min(1.0, self.activation))
def to_dict(self) -> Dict[str, Any]:
def to_dict(self) -> dict[str, Any]:
"""转换为字典(用于序列化)"""
return {
"id": self.id,
@@ -200,7 +200,7 @@ class Memory:
}
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> Memory:
def from_dict(cls, data: dict[str, Any]) -> Memory:
"""从字典创建记忆"""
return cls(
id=data["id"],
@@ -223,14 +223,14 @@ class Memory:
self.last_accessed = datetime.now()
self.access_count += 1
def get_node_by_id(self, node_id: str) -> Optional[MemoryNode]:
def get_node_by_id(self, node_id: str) -> MemoryNode | None:
"""根据ID获取节点"""
for node in self.nodes:
if node.id == node_id:
return node
return None
def get_subject_node(self) -> Optional[MemoryNode]:
def get_subject_node(self) -> MemoryNode | None:
"""获取主体节点"""
return self.get_node_by_id(self.subject_id)
@@ -274,10 +274,10 @@ class StagedMemory:
memory: Memory # 原始记忆对象
status: MemoryStatus = MemoryStatus.STAGED # 状态
created_at: datetime = field(default_factory=datetime.now)
consolidated_at: Optional[datetime] = None # 整理时间
merge_history: List[str] = field(default_factory=list) # 被合并的节点ID列表
consolidated_at: datetime | None = None # 整理时间
merge_history: list[str] = field(default_factory=list) # 被合并的节点ID列表
def to_dict(self) -> Dict[str, Any]:
def to_dict(self) -> dict[str, Any]:
"""转换为字典"""
return {
"memory": self.memory.to_dict(),
@@ -288,7 +288,7 @@ class StagedMemory:
}
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> StagedMemory:
def from_dict(cls, data: dict[str, Any]) -> StagedMemory:
"""从字典创建临时记忆"""
return cls(
memory=Memory.from_dict(data["memory"]),

View File

@@ -52,16 +52,16 @@ class CreateMemoryTool(BaseTool):
示例:"我最近在学Python想找数据分析的工作"
→ 调用1{{subject:"[从历史提取真实名字]", memory_type:"事实", topic:"学习", object:"Python", attributes:{{时间:"最近", 状态:"进行中"}}, importance:0.7}}
→ 调用2{{subject:"[从历史提取真实名字]", memory_type:"目标", topic:"求职", object:"数据分析岗位", attributes:{{状态:"计划中"}}, importance:0.8}}"""
parameters: ClassVar[list[tuple[str, ToolParamType, str, bool, list[str] | None]]] = [
("subject", ToolParamType.STRING, "记忆主体(重要!)。从对话历史中提取真实发送人名字。示例:如果看到'Prou(12345678): 我喜欢...'subject应填'Prou';如果看到'张三: 我在...'subject应填'张三'。❌禁止使用'用户'这种泛指,必须用具体名字!", True, None),
("memory_type", ToolParamType.STRING, "记忆类型。【事件】=有明确时间点的动作(昨天吃饭、明天开会)【事实】=稳定状态(职业是程序员、住在北京)【观点】=主观看法(喜欢/讨厌/认为)【关系】=人际关系(朋友、同事)", True, ["事件", "事实", "关系", "观点"]),
("topic", ToolParamType.STRING, "记忆的核心内容(做什么/是什么状态/什么关系)。必须明确、具体,包含关键动词或状态词", True, None),
("object", ToolParamType.STRING, "记忆涉及的对象或目标。如果topic已经很完整可以不填如果有明确对象建议填写", False, None),
("attributes", ToolParamType.STRING, "详细属性JSON格式字符串。强烈建议包含时间具体到日期和小时分钟、地点、状态、原因等上下文信息。例{\"时间\":\"2025-11-06 12:00\",\"地点\":\"公司\",\"状态\":\"进行中\",\"原因\":\"项目需要\"}", False, None),
("attributes", ToolParamType.STRING, '详细属性JSON格式字符串。强烈建议包含时间具体到日期和小时分钟、地点、状态、原因等上下文信息。例{"时间":"2025-11-06 12:00","地点":"公司","状态":"进行中","原因":"项目需要"}', False, None),
("importance", ToolParamType.FLOAT, "重要性评分 0.0-1.0。参考日常琐事0.3-0.4一般对话0.5-0.6重要信息0.7-0.8核心记忆0.9-1.0。不确定时用0.5", False, None),
]
available_for_llm = True
async def execute(self, function_args: dict[str, Any]) -> dict[str, Any]:
@@ -69,20 +69,20 @@ class CreateMemoryTool(BaseTool):
try:
# 获取全局 memory_manager
from src.memory_graph.manager_singleton import get_memory_manager
manager = get_memory_manager()
if not manager:
return {
"name": self.name,
"content": "记忆系统未初始化"
}
# 提取参数
subject = function_args.get("subject", "")
memory_type = function_args.get("memory_type", "")
topic = function_args.get("topic", "")
obj = function_args.get("object")
# 处理 attributes可能是字符串或字典
attributes_raw = function_args.get("attributes", {})
if isinstance(attributes_raw, str):
@@ -93,9 +93,9 @@ class CreateMemoryTool(BaseTool):
attributes = {}
else:
attributes = attributes_raw
importance = function_args.get("importance", 0.5)
# 创建记忆
memory = await manager.create_memory(
subject=subject,
@@ -105,7 +105,7 @@ class CreateMemoryTool(BaseTool):
attributes=attributes,
importance=importance,
)
if memory:
logger.info(f"[CreateMemoryTool] 成功创建记忆: {memory.id}")
return {
@@ -119,12 +119,12 @@ class CreateMemoryTool(BaseTool):
"content": "创建记忆失败",
"memory_id": None,
}
except Exception as e:
logger.error(f"[CreateMemoryTool] 执行失败: {e}", exc_info=True)
return {
"name": self.name,
"content": f"创建记忆时出错: {str(e)}"
"content": f"创建记忆时出错: {e!s}"
}
@@ -133,33 +133,33 @@ class LinkMemoriesTool(BaseTool):
name = "link_memories"
description = "在两个记忆之间建立关联关系。用于连接相关的记忆,形成知识网络。"
parameters: ClassVar[list[tuple[str, ToolParamType, str, bool, list[str] | None]]] = [
("source_query", ToolParamType.STRING, "源记忆的搜索查询(如记忆的主题关键词)", True, None),
("target_query", ToolParamType.STRING, "目标记忆的搜索查询", True, None),
("relation", ToolParamType.STRING, "关系类型", True, ["导致", "引用", "相似", "相反", "部分"]),
("strength", ToolParamType.FLOAT, "关系强度0.0-1.0默认0.7", False, None),
]
available_for_llm = False # 暂不对 LLM 开放
async def execute(self, function_args: dict[str, Any]) -> dict[str, Any]:
"""执行关联记忆"""
try:
from src.memory_graph.manager_singleton import get_memory_manager
manager = get_memory_manager()
if not manager:
return {
"name": self.name,
"content": "记忆系统未初始化"
}
source_query = function_args.get("source_query", "")
target_query = function_args.get("target_query", "")
relation = function_args.get("relation", "引用")
strength = function_args.get("strength", 0.7)
# 关联记忆
success = await manager.link_memories(
source_description=source_query,
@@ -167,7 +167,7 @@ class LinkMemoriesTool(BaseTool):
relation_type=relation,
importance=strength,
)
if success:
logger.info(f"[LinkMemoriesTool] 成功关联记忆: {source_query} -> {target_query}")
return {
@@ -179,12 +179,12 @@ class LinkMemoriesTool(BaseTool):
"name": self.name,
"content": "关联记忆失败,可能找不到匹配的记忆"
}
except Exception as e:
logger.error(f"[LinkMemoriesTool] 执行失败: {e}", exc_info=True)
return {
"name": self.name,
"content": f"关联记忆时出错: {str(e)}"
"content": f"关联记忆时出错: {e!s}"
}
@@ -193,39 +193,39 @@ class SearchMemoriesTool(BaseTool):
name = "search_memories"
description = "搜索相关的记忆。根据查询词搜索记忆库,返回最相关的记忆。"
parameters: ClassVar[list[tuple[str, ToolParamType, str, bool, list[str] | None]]] = [
("query", ToolParamType.STRING, "搜索查询词,描述想要找什么样的记忆", True, None),
("top_k", ToolParamType.INTEGER, "返回的记忆数量默认5", False, None),
("min_importance", ToolParamType.FLOAT, "最低重要性阈值0.0-1.0),只返回重要性不低于此值的记忆", False, None),
]
available_for_llm = False # 暂不对 LLM 开放,记忆检索在提示词构建时自动执行
async def execute(self, function_args: dict[str, Any]) -> dict[str, Any]:
"""执行搜索记忆"""
try:
from src.memory_graph.manager_singleton import get_memory_manager
manager = get_memory_manager()
if not manager:
return {
"name": self.name,
"content": "记忆系统未初始化"
}
query = function_args.get("query", "")
top_k = function_args.get("top_k", 5)
min_importance_raw = function_args.get("min_importance")
min_importance = float(min_importance_raw) if min_importance_raw is not None else 0.0
# 搜索记忆
memories = await manager.search_memories(
query=query,
top_k=top_k,
min_importance=min_importance,
)
if memories:
# 格式化结果
result_lines = [f"找到 {len(memories)} 条相关记忆:\n"]
@@ -236,10 +236,10 @@ class SearchMemoriesTool(BaseTool):
result_lines.append(
f"{i}. [{mem_type}] {topic} (重要性: {importance:.2f})"
)
result_text = "\n".join(result_lines)
logger.info(f"[SearchMemoriesTool] 搜索成功: 查询='{query}', 结果数={len(memories)}")
return {
"name": self.name,
"content": result_text
@@ -249,10 +249,10 @@ class SearchMemoriesTool(BaseTool):
"name": self.name,
"content": f"未找到与 '{query}' 相关的记忆"
}
except Exception as e:
logger.error(f"[SearchMemoriesTool] 执行失败: {e}", exc_info=True)
return {
"name": self.name,
"content": f"搜索记忆时出错: {str(e)}"
"content": f"搜索记忆时出错: {e!s}"
}

View File

@@ -5,4 +5,4 @@
from src.memory_graph.storage.graph_store import GraphStore
from src.memory_graph.storage.vector_store import VectorStore
__all__ = ["VectorStore", "GraphStore"]
__all__ = ["GraphStore", "VectorStore"]

View File

@@ -4,12 +4,10 @@
from __future__ import annotations
from typing import Dict, List, Optional, Set, Tuple
import networkx as nx
from src.common.logger import get_logger
from src.memory_graph.models import Memory, MemoryEdge, MemoryNode
from src.memory_graph.models import Memory, MemoryEdge
logger = get_logger(__name__)
@@ -17,7 +15,7 @@ logger = get_logger(__name__)
class GraphStore:
"""
图存储封装类
负责:
1. 记忆图的构建和维护
2. 节点和边的快速查询
@@ -31,17 +29,17 @@ class GraphStore:
self.graph = nx.DiGraph()
# 索引记忆ID -> 记忆对象
self.memory_index: Dict[str, Memory] = {}
self.memory_index: dict[str, Memory] = {}
# 索引节点ID -> 所属记忆ID集合
self.node_to_memories: Dict[str, Set[str]] = {}
self.node_to_memories: dict[str, set[str]] = {}
logger.info("初始化图存储")
def add_memory(self, memory: Memory) -> None:
"""
添加记忆到图
Args:
memory: 要添加的记忆
"""
@@ -84,34 +82,34 @@ class GraphStore:
logger.error(f"添加记忆失败: {e}", exc_info=True)
raise
def get_memory_by_id(self, memory_id: str) -> Optional[Memory]:
def get_memory_by_id(self, memory_id: str) -> Memory | None:
"""
根据ID获取记忆
Args:
memory_id: 记忆ID
Returns:
记忆对象或 None
"""
return self.memory_index.get(memory_id)
def get_all_memories(self) -> List[Memory]:
def get_all_memories(self) -> list[Memory]:
"""
获取所有记忆
Returns:
所有记忆的列表
"""
return list(self.memory_index.values())
def get_memories_by_node(self, node_id: str) -> List[Memory]:
def get_memories_by_node(self, node_id: str) -> list[Memory]:
"""
获取包含指定节点的所有记忆
Args:
node_id: 节点ID
Returns:
记忆列表
"""
@@ -121,14 +119,14 @@ class GraphStore:
memory_ids = self.node_to_memories[node_id]
return [self.memory_index[mid] for mid in memory_ids if mid in self.memory_index]
def get_edges_from_node(self, node_id: str, relation_types: Optional[List[str]] = None) -> List[Dict]:
def get_edges_from_node(self, node_id: str, relation_types: list[str] | None = None) -> list[dict]:
"""
获取从指定节点出发的所有边
Args:
node_id: 源节点ID
relation_types: 关系类型过滤(可选)
Returns:
边信息列表
"""
@@ -155,16 +153,16 @@ class GraphStore:
return edges
def get_neighbors(
self, node_id: str, direction: str = "out", relation_types: Optional[List[str]] = None
) -> List[Tuple[str, Dict]]:
self, node_id: str, direction: str = "out", relation_types: list[str] | None = None
) -> list[tuple[str, dict]]:
"""
获取节点的邻居节点
Args:
node_id: 节点ID
direction: 方向 ("out"=出边, "in"=入边, "both"=双向)
relation_types: 关系类型过滤
Returns:
List of (neighbor_id, edge_data)
"""
@@ -187,15 +185,15 @@ class GraphStore:
return neighbors
def find_path(self, source_id: str, target_id: str, max_length: Optional[int] = None) -> Optional[List[str]]:
def find_path(self, source_id: str, target_id: str, max_length: int | None = None) -> list[str] | None:
"""
查找两个节点之间的最短路径
Args:
source_id: 源节点ID
target_id: 目标节点ID
max_length: 最大路径长度(可选)
Returns:
路径节点ID列表或 None如果不存在路径
"""
@@ -220,18 +218,18 @@ class GraphStore:
def bfs_expand(
self,
start_nodes: List[str],
start_nodes: list[str],
depth: int = 1,
relation_types: Optional[List[str]] = None,
) -> Set[str]:
relation_types: list[str] | None = None,
) -> set[str]:
"""
从起始节点进行广度优先搜索扩展
Args:
start_nodes: 起始节点ID列表
depth: 扩展深度
relation_types: 关系类型过滤
Returns:
扩展到的所有节点ID集合
"""
@@ -256,13 +254,13 @@ class GraphStore:
return visited
def get_subgraph(self, node_ids: List[str]) -> nx.DiGraph:
def get_subgraph(self, node_ids: list[str]) -> nx.DiGraph:
"""
获取包含指定节点的子图
Args:
node_ids: 节点ID列表
Returns:
NetworkX 子图
"""
@@ -271,7 +269,7 @@ class GraphStore:
def merge_nodes(self, source_id: str, target_id: str) -> None:
"""
合并两个节点将source的所有边转移到target然后删除source
Args:
source_id: 源节点ID将被删除
target_id: 目标节点ID保留
@@ -308,13 +306,13 @@ class GraphStore:
logger.error(f"合并节点失败: {e}", exc_info=True)
raise
def get_node_degree(self, node_id: str) -> Tuple[int, int]:
def get_node_degree(self, node_id: str) -> tuple[int, int]:
"""
获取节点的度数
Args:
node_id: 节点ID
Returns:
(in_degree, out_degree)
"""
@@ -323,7 +321,7 @@ class GraphStore:
return (self.graph.in_degree(node_id), self.graph.out_degree(node_id))
def get_statistics(self) -> Dict[str, int]:
def get_statistics(self) -> dict[str, int]:
"""获取图的统计信息"""
return {
"total_nodes": self.graph.number_of_nodes(),
@@ -332,10 +330,10 @@ class GraphStore:
"connected_components": nx.number_weakly_connected_components(self.graph),
}
def to_dict(self) -> Dict:
def to_dict(self) -> dict:
"""
将图转换为字典(用于持久化)
Returns:
图的字典表示
"""
@@ -356,13 +354,13 @@ class GraphStore:
}
@classmethod
def from_dict(cls, data: Dict) -> GraphStore:
def from_dict(cls, data: dict) -> GraphStore:
"""
从字典加载图
Args:
data: 图的字典表示
Returns:
GraphStore 实例
"""
@@ -406,7 +404,6 @@ class GraphStore:
规则:对于图中每条边(u, v, data),会尝试将该边注入到所有包含 u 或 v 的记忆中(避免遗漏跨记忆边)。
已存在的边(通过 edge.id 检查)将不会重复添加。
"""
from src.memory_graph.models import MemoryEdge
# 构建快速查重索引memory_id -> set(edge_id)
existing_edges = {mid: {e.id for e in mem.edges} for mid, mem in self.memory_index.items()}
@@ -465,10 +462,10 @@ class GraphStore:
def remove_memory(self, memory_id: str) -> bool:
"""
从图中删除指定记忆
Args:
memory_id: 要删除的记忆ID
Returns:
是否删除成功
"""
@@ -477,9 +474,9 @@ class GraphStore:
if memory_id not in self.memory_index:
logger.warning(f"记忆不存在,无法删除: {memory_id}")
return False
memory = self.memory_index[memory_id]
# 2. 从节点映射中移除此记忆
for node in memory.nodes:
if node.id in self.node_to_memories:
@@ -489,13 +486,13 @@ class GraphStore:
if self.graph.has_node(node.id):
self.graph.remove_node(node.id)
del self.node_to_memories[node.id]
# 3. 从记忆索引中移除
del self.memory_index[memory_id]
logger.info(f"成功删除记忆: {memory_id}")
return True
except Exception as e:
logger.error(f"删除记忆失败 {memory_id}: {e}", exc_info=True)
return False

View File

@@ -8,14 +8,12 @@ import asyncio
import json
from datetime import datetime
from pathlib import Path
from typing import Optional
import orjson
from src.common.logger import get_logger
from src.memory_graph.models import Memory, StagedMemory
from src.memory_graph.models import StagedMemory
from src.memory_graph.storage.graph_store import GraphStore
from src.memory_graph.storage.vector_store import VectorStore
logger = get_logger(__name__)
@@ -23,7 +21,7 @@ logger = get_logger(__name__)
class PersistenceManager:
"""
持久化管理器
负责:
1. 图数据的保存和加载
2. 定期自动保存
@@ -39,7 +37,7 @@ class PersistenceManager:
):
"""
初始化持久化管理器
Args:
data_dir: 数据存储目录
graph_file_name: 图数据文件名
@@ -55,7 +53,7 @@ class PersistenceManager:
self.backup_dir.mkdir(parents=True, exist_ok=True)
self.auto_save_interval = auto_save_interval
self._auto_save_task: Optional[asyncio.Task] = None
self._auto_save_task: asyncio.Task | None = None
self._running = False
logger.info(f"初始化持久化管理器: data_dir={data_dir}")
@@ -63,7 +61,7 @@ class PersistenceManager:
async def save_graph_store(self, graph_store: GraphStore) -> None:
"""
保存图存储到文件
Args:
graph_store: 图存储对象
"""
@@ -95,10 +93,10 @@ class PersistenceManager:
logger.error(f"保存图数据失败: {e}", exc_info=True)
raise
async def load_graph_store(self) -> Optional[GraphStore]:
async def load_graph_store(self) -> GraphStore | None:
"""
从文件加载图存储
Returns:
GraphStore 对象,如果文件不存在则返回 None
"""
@@ -129,7 +127,7 @@ class PersistenceManager:
async def save_staged_memories(self, staged_memories: list[StagedMemory]) -> None:
"""
保存临时记忆列表
Args:
staged_memories: 临时记忆列表
"""
@@ -158,7 +156,7 @@ class PersistenceManager:
async def load_staged_memories(self) -> list[StagedMemory]:
"""
加载临时记忆列表
Returns:
临时记忆列表
"""
@@ -179,10 +177,10 @@ class PersistenceManager:
logger.error(f"加载临时记忆失败: {e}", exc_info=True)
return []
async def create_backup(self) -> Optional[Path]:
async def create_backup(self) -> Path | None:
"""
创建当前数据的备份
Returns:
备份文件路径,如果失败则返回 None
"""
@@ -208,7 +206,7 @@ class PersistenceManager:
logger.error(f"创建备份失败: {e}", exc_info=True)
return None
async def _load_from_backup(self) -> Optional[GraphStore]:
async def _load_from_backup(self) -> GraphStore | None:
"""从最新的备份加载数据"""
try:
# 查找最新的备份文件
@@ -236,7 +234,7 @@ class PersistenceManager:
async def _cleanup_old_backups(self, keep: int = 10) -> None:
"""
清理旧备份,只保留最近的几个
Args:
keep: 保留的备份数量
"""
@@ -254,11 +252,11 @@ class PersistenceManager:
async def start_auto_save(
self,
graph_store: GraphStore,
staged_memories_getter: callable = None,
staged_memories_getter: callable | None = None,
) -> None:
"""
启动自动保存任务
Args:
graph_store: 图存储对象
staged_memories_getter: 获取临时记忆的回调函数
@@ -310,7 +308,7 @@ class PersistenceManager:
async def export_to_json(self, output_file: Path, graph_store: GraphStore) -> None:
"""
导出图数据到指定的 JSON 文件(用于数据迁移或分析)
Args:
output_file: 输出文件路径
graph_store: 图存储对象
@@ -334,13 +332,13 @@ class PersistenceManager:
logger.error(f"导出图数据失败: {e}", exc_info=True)
raise
async def import_from_json(self, input_file: Path) -> Optional[GraphStore]:
async def import_from_json(self, input_file: Path) -> GraphStore | None:
"""
从 JSON 文件导入图数据
Args:
input_file: 输入文件路径
Returns:
GraphStore 对象
"""
@@ -360,7 +358,7 @@ class PersistenceManager:
def get_data_size(self) -> dict[str, int]:
"""
获取数据文件的大小信息
Returns:
文件大小字典(字节)
"""

View File

@@ -4,9 +4,8 @@
from __future__ import annotations
import uuid
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple
from typing import Any
import numpy as np
@@ -19,7 +18,7 @@ logger = get_logger(__name__)
class VectorStore:
"""
向量存储封装类
负责:
1. 节点的语义向量存储和检索
2. 基于相似度的向量搜索
@@ -29,12 +28,12 @@ class VectorStore:
def __init__(
self,
collection_name: str = "memory_nodes",
data_dir: Optional[Path] = None,
embedding_function: Optional[Any] = None,
data_dir: Path | None = None,
embedding_function: Any | None = None,
):
"""
初始化向量存储
Args:
collection_name: ChromaDB 集合名称
data_dir: 数据存储目录
@@ -80,7 +79,7 @@ class VectorStore:
async def add_node(self, node: MemoryNode) -> None:
"""
添加节点到向量存储
Args:
node: 要添加的节点
"""
@@ -98,17 +97,17 @@ class VectorStore:
"node_type": node.node_type.value,
"created_at": node.created_at.isoformat(),
}
# 处理额外的元数据,将 list 转换为 JSON 字符串
for key, value in node.metadata.items():
if isinstance(value, (list, dict)):
import orjson
metadata[key] = orjson.dumps(value, option=orjson.OPT_NON_STR_KEYS).decode('utf-8')
metadata[key] = orjson.dumps(value, option=orjson.OPT_NON_STR_KEYS).decode("utf-8")
elif isinstance(value, (str, int, float, bool)) or value is None:
metadata[key] = value
else:
metadata[key] = str(value)
self.collection.add(
ids=[node.id],
embeddings=[node.embedding.tolist()],
@@ -122,10 +121,10 @@ class VectorStore:
logger.error(f"添加节点失败: {e}", exc_info=True)
raise
async def add_nodes_batch(self, nodes: List[MemoryNode]) -> None:
async def add_nodes_batch(self, nodes: list[MemoryNode]) -> None:
"""
批量添加节点
Args:
nodes: 节点列表
"""
@@ -151,13 +150,13 @@ class VectorStore:
}
for key, value in n.metadata.items():
if isinstance(value, (list, dict)):
metadata[key] = orjson.dumps(value, option=orjson.OPT_NON_STR_KEYS).decode('utf-8')
metadata[key] = orjson.dumps(value, option=orjson.OPT_NON_STR_KEYS).decode("utf-8")
elif isinstance(value, (str, int, float, bool)) or value is None:
metadata[key] = value # type: ignore
else:
metadata[key] = str(value)
metadatas.append(metadata)
self.collection.add(
ids=[n.id for n in valid_nodes],
embeddings=[n.embedding.tolist() for n in valid_nodes], # type: ignore
@@ -175,18 +174,18 @@ class VectorStore:
self,
query_embedding: np.ndarray,
limit: int = 10,
node_types: Optional[List[NodeType]] = None,
node_types: list[NodeType] | None = None,
min_similarity: float = 0.0,
) -> List[Tuple[str, float, Dict[str, Any]]]:
) -> list[tuple[str, float, dict[str, Any]]]:
"""
搜索相似节点
Args:
query_embedding: 查询向量
limit: 返回结果数量
node_types: 限制节点类型(可选)
min_similarity: 最小相似度阈值
Returns:
List of (node_id, similarity, metadata)
"""
@@ -214,7 +213,7 @@ class VectorStore:
if ids is not None and len(ids) > 0 and len(ids[0]) > 0:
distances = results.get("distances")
metadatas = results.get("metadatas")
for i, node_id in enumerate(ids[0]):
# ChromaDB 返回的是距离,需要转换为相似度
# 余弦距离: distance = 1 - similarity
@@ -223,15 +222,15 @@ class VectorStore:
if similarity >= min_similarity:
metadata = metadatas[0][i] if metadatas is not None and len(metadatas) > 0 else {} # type: ignore
# 解析 JSON 字符串回列表/字典
for key, value in list(metadata.items()):
if isinstance(value, str) and (value.startswith('[') or value.startswith('{')):
if isinstance(value, str) and (value.startswith("[") or value.startswith("{")):
try:
metadata[key] = orjson.loads(value)
except:
except Exception:
pass # 保持原值
similar_nodes.append((node_id, similarity, metadata))
logger.debug(f"相似节点搜索: 找到 {len(similar_nodes)} 个结果")
@@ -243,19 +242,19 @@ class VectorStore:
async def search_with_multiple_queries(
self,
query_embeddings: List[np.ndarray],
query_weights: Optional[List[float]] = None,
query_embeddings: list[np.ndarray],
query_weights: list[float] | None = None,
limit: int = 10,
node_types: Optional[List[NodeType]] = None,
node_types: list[NodeType] | None = None,
min_similarity: float = 0.0,
fusion_strategy: str = "weighted_max",
) -> List[Tuple[str, float, Dict[str, Any]]]:
) -> list[tuple[str, float, dict[str, Any]]]:
"""
多查询融合搜索
使用多个查询向量进行搜索,然后融合结果。
这能解决单一查询向量无法同时关注多个关键概念的问题。
Args:
query_embeddings: 查询向量列表
query_weights: 每个查询的权重(可选,默认均等)
@@ -266,7 +265,7 @@ class VectorStore:
- "weighted_max": 加权最大值(推荐)
- "weighted_sum": 加权求和
- "rrf": Reciprocal Rank Fusion
Returns:
融合后的节点列表 [(node_id, fused_score, metadata), ...]
"""
@@ -279,7 +278,7 @@ class VectorStore:
# 默认权重均等
if query_weights is None:
query_weights = [1.0 / len(query_embeddings)] * len(query_embeddings)
# 归一化权重
total_weight = sum(query_weights)
if total_weight > 0:
@@ -287,7 +286,7 @@ class VectorStore:
try:
# 1. 对每个查询执行搜索
all_results: Dict[str, Dict[str, Any]] = {} # node_id -> {scores, metadata}
all_results: dict[str, dict[str, Any]] = {} # node_id -> {scores, metadata}
for i, (query_emb, weight) in enumerate(zip(query_embeddings, query_weights)):
# 搜索更多结果以提高融合质量
@@ -307,13 +306,13 @@ class VectorStore:
"ranks": [],
"metadata": metadata,
}
all_results[node_id]["scores"].append((similarity, weight))
all_results[node_id]["ranks"].append((rank, weight))
# 2. 融合分数
fused_results = []
for node_id, data in all_results.items():
scores = data["scores"]
ranks = data["ranks"]
@@ -356,13 +355,13 @@ class VectorStore:
logger.error(f"多查询融合搜索失败: {e}", exc_info=True)
raise
async def get_node_by_id(self, node_id: str) -> Optional[Dict[str, Any]]:
async def get_node_by_id(self, node_id: str) -> dict[str, Any] | None:
"""
根据ID获取节点元数据
Args:
node_id: 节点ID
Returns:
节点元数据或 None
"""
@@ -378,7 +377,7 @@ class VectorStore:
if ids is not None and len(ids) > 0:
metadatas = result.get("metadatas")
embeddings = result.get("embeddings")
return {
"id": ids[0],
"metadata": metadatas[0] if metadatas is not None and len(metadatas) > 0 else {},
@@ -394,7 +393,7 @@ class VectorStore:
async def delete_node(self, node_id: str) -> None:
"""
删除节点
Args:
node_id: 节点ID
"""
@@ -412,7 +411,7 @@ class VectorStore:
async def update_node_embedding(self, node_id: str, embedding: np.ndarray) -> None:
"""
更新节点的 embedding
Args:
node_id: 节点ID
embedding: 新的向量

View File

@@ -4,12 +4,12 @@ LLM 工具接口:定义记忆系统的工具 schema 和执行逻辑
from __future__ import annotations
from typing import Any, Dict, List, Optional, Tuple
from typing import Any
from src.common.logger import get_logger
from src.memory_graph.core.builder import MemoryBuilder
from src.memory_graph.core.extractor import MemoryExtractor
from src.memory_graph.models import Memory, MemoryStatus
from src.memory_graph.models import Memory
from src.memory_graph.storage.graph_store import GraphStore
from src.memory_graph.storage.persistence import PersistenceManager
from src.memory_graph.storage.vector_store import VectorStore
@@ -21,7 +21,7 @@ logger = get_logger(__name__)
class MemoryTools:
"""
记忆系统工具集
提供给 LLM 使用的工具接口:
1. create_memory: 创建新记忆
2. link_memories: 关联两个记忆
@@ -33,7 +33,7 @@ class MemoryTools:
vector_store: VectorStore,
graph_store: GraphStore,
persistence_manager: PersistenceManager,
embedding_generator: Optional[EmbeddingGenerator] = None,
embedding_generator: EmbeddingGenerator | None = None,
max_expand_depth: int = 1,
expand_semantic_threshold: float = 0.3,
):
@@ -72,10 +72,10 @@ class MemoryTools:
self._initialized = True
@staticmethod
def get_create_memory_schema() -> Dict[str, Any]:
def get_create_memory_schema() -> dict[str, Any]:
"""
获取 create_memory 工具的 JSON schema
Returns:
工具 schema 定义
"""
@@ -145,15 +145,15 @@ class MemoryTools:
"description": "时间信息(强烈建议填写):\n- 具体日期:'2025-11-05''2025年11月'\n- 相对时间:'今天''昨天''上周''最近''3天前'\n- 时间段:'今天下午''上个月''这学期'",
},
"地点": {
"type": "string",
"type": "string",
"description": "地点信息(如涉及):\n- 具体地址、城市名、国家\n- 场所类型:'在家''公司''学校''咖啡店'"
},
"原因": {
"type": "string",
"type": "string",
"description": "为什么这样做/这样想(如明确提到)"
},
"方式": {
"type": "string",
"type": "string",
"description": "怎么做的/通过什么方式(如明确提到)"
},
"结果": {
@@ -183,10 +183,10 @@ class MemoryTools:
}
@staticmethod
def get_link_memories_schema() -> Dict[str, Any]:
def get_link_memories_schema() -> dict[str, Any]:
"""
获取 link_memories 工具的 JSON schema
Returns:
工具 schema 定义
"""
@@ -239,10 +239,10 @@ class MemoryTools:
}
@staticmethod
def get_search_memories_schema() -> Dict[str, Any]:
def get_search_memories_schema() -> dict[str, Any]:
"""
获取 search_memories 工具的 JSON schema
Returns:
工具 schema 定义
"""
@@ -307,13 +307,13 @@ class MemoryTools:
},
}
async def create_memory(self, **params) -> Dict[str, Any]:
async def create_memory(self, **params) -> dict[str, Any]:
"""
执行 create_memory 工具
Args:
**params: 工具参数
Returns:
执行结果
"""
@@ -353,13 +353,13 @@ class MemoryTools:
"message": "记忆创建失败",
}
async def link_memories(self, **params) -> Dict[str, Any]:
async def link_memories(self, **params) -> dict[str, Any]:
"""
执行 link_memories 工具
Args:
**params: 工具参数
Returns:
执行结果
"""
@@ -433,15 +433,15 @@ class MemoryTools:
"message": "记忆关联失败",
}
async def search_memories(self, **params) -> Dict[str, Any]:
async def search_memories(self, **params) -> dict[str, Any]:
"""
执行 search_memories 工具
使用多策略检索优化:
1. 查询分解(识别主要实体和概念)
2. 多查询并行检索
3. 结果融合和重排
Args:
**params: 工具参数
- query: 查询字符串
@@ -449,7 +449,7 @@ class MemoryTools:
- expand_depth: 扩展深度(暂未使用)
- use_multi_query: 是否使用多查询策略默认True
- context: 查询上下文(可选)
Returns:
搜索结果
"""
@@ -477,7 +477,7 @@ class MemoryTools:
# 2. 提取初始记忆ID来自向量搜索
initial_memory_ids = set()
memory_scores = {} # 记录每个记忆的初始分数
for node_id, similarity, metadata in similar_nodes:
if "memory_ids" in metadata:
ids = metadata["memory_ids"]
@@ -486,7 +486,7 @@ class MemoryTools:
import orjson
try:
ids = orjson.loads(ids)
except:
except Exception:
ids = [ids]
if isinstance(ids, list):
for mem_id in ids:
@@ -499,12 +499,12 @@ class MemoryTools:
expanded_memory_scores = {}
if expand_depth > 0 and initial_memory_ids:
logger.info(f"开始图扩展: 初始记忆{len(initial_memory_ids)}个, 深度={expand_depth}")
# 获取查询的embedding用于语义过滤
if self.builder.embedding_generator:
try:
query_embedding = await self.builder.embedding_generator.generate(query)
# 直接使用图扩展逻辑(避免循环依赖)
expanded_results = await self._expand_with_semantic_filter(
initial_memory_ids=list(initial_memory_ids),
@@ -513,7 +513,7 @@ class MemoryTools:
semantic_threshold=self.expand_semantic_threshold, # 使用配置的阈值
max_expanded=top_k * 2
)
# 旧代码如果需要使用Manager
# from src.memory_graph.manager import MemoryManager
# manager = MemoryManager.get_instance()
@@ -524,19 +524,18 @@ class MemoryTools:
# semantic_threshold=0.5,
# max_expanded=top_k * 2
# )
# 合并扩展结果
for mem_id, score in expanded_results:
expanded_memory_scores[mem_id] = score
expanded_memory_scores.update(dict(expanded_results))
logger.info(f"图扩展完成: 新增{len(expanded_memory_scores)}个相关记忆")
except Exception as e:
logger.warning(f"图扩展失败: {e}")
# 4. 合并初始记忆和扩展记忆
all_memory_ids = set(initial_memory_ids) | set(expanded_memory_scores.keys())
# 计算最终分数:初始记忆保持原分数,扩展记忆使用扩展分数
final_scores = {}
for mem_id in all_memory_ids:
@@ -546,7 +545,7 @@ class MemoryTools:
elif mem_id in expanded_memory_scores:
# 扩展记忆:使用图扩展分数(稍微降权)
final_scores[mem_id] = expanded_memory_scores[mem_id] * 0.8
# 按分数排序
sorted_memory_ids = sorted(
final_scores.keys(),
@@ -562,7 +561,7 @@ class MemoryTools:
# 综合评分:相似度(60%) + 重要性(30%) + 时效性(10%)
similarity_score = final_scores[memory_id]
importance_score = memory.importance
# 计算时效性分数(最近的记忆得分更高)
from datetime import datetime, timezone
now = datetime.now(timezone.utc)
@@ -573,16 +572,16 @@ class MemoryTools:
memory_time = memory.created_at
age_days = (now - memory_time).total_seconds() / 86400
recency_score = 1.0 / (1.0 + age_days / 30) # 30天半衰期
# 综合分数
final_score = (
similarity_score * 0.6 +
importance_score * 0.3 +
recency_score * 0.1
)
memories_with_scores.append((memory, final_score))
# 按综合分数排序
memories_with_scores.sort(key=lambda x: x[1], reverse=True)
memories = [mem for mem, _ in memories_with_scores[:top_k]]
@@ -624,16 +623,16 @@ class MemoryTools:
}
async def _generate_multi_queries_simple(
self, query: str, context: Optional[Dict[str, Any]] = None
) -> List[Tuple[str, float]]:
self, query: str, context: dict[str, Any] | None = None
) -> list[tuple[str, float]]:
"""
简化版多查询生成(直接在 Tools 层实现,避免循环依赖)
让小模型直接生成3-5个不同角度的查询语句。
"""
try:
from src.llm_models.utils_model import LLMRequest
from src.config.config import model_config
from src.llm_models.utils_model import LLMRequest
llm = LLMRequest(
model_set=model_config.model_task_config.utils_small,
@@ -648,10 +647,10 @@ class MemoryTools:
# 处理聊天历史提取最近5条左右的对话
recent_chat = ""
if chat_history:
lines = chat_history.strip().split('\n')
lines = chat_history.strip().split("\n")
# 取最近5条消息
recent_lines = lines[-5:] if len(lines) > 5 else lines
recent_chat = '\n'.join(recent_lines)
recent_chat = "\n".join(recent_lines)
prompt = f"""基于聊天上下文为查询生成3-5个不同角度的搜索语句JSON格式
@@ -685,36 +684,38 @@ class MemoryTools:
"""
response, _ = await llm.generate_response_async(prompt, temperature=0.3, max_tokens=250)
import orjson, re
response = re.sub(r'```json\s*', '', response)
response = re.sub(r'```\s*$', '', response).strip()
import re
import orjson
response = re.sub(r"```json\s*", "", response)
response = re.sub(r"```\s*$", "", response).strip()
data = orjson.loads(response)
queries = data.get("queries", [])
result = [(item.get("text", "").strip(), float(item.get("weight", 0.5)))
result = [(item.get("text", "").strip(), float(item.get("weight", 0.5)))
for item in queries if item.get("text", "").strip()]
if result:
logger.info(f"生成查询: {[q for q, _ in result]}")
return result
except Exception as e:
logger.warning(f"多查询生成失败: {e}")
return [(query, 1.0)]
async def _single_query_search(
self, query: str, top_k: int
) -> List[Tuple[str, float, Dict[str, Any]]]:
) -> list[tuple[str, float, dict[str, Any]]]:
"""
传统的单查询搜索
Args:
query: 查询字符串
top_k: 返回结果数
Returns:
相似节点列表 [(node_id, similarity, metadata), ...]
"""
@@ -735,30 +736,30 @@ class MemoryTools:
return similar_nodes
async def _multi_query_search(
self, query: str, top_k: int, context: Optional[Dict[str, Any]] = None
) -> List[Tuple[str, float, Dict[str, Any]]]:
self, query: str, top_k: int, context: dict[str, Any] | None = None
) -> list[tuple[str, float, dict[str, Any]]]:
"""
多查询策略搜索(简化版)
直接使用小模型生成多个查询,无需复杂的分解和组合。
步骤:
1. 让小模型生成3-5个不同角度的查询
2. 为每个查询生成嵌入
3. 并行搜索并融合结果
Args:
query: 查询字符串
top_k: 返回结果数
context: 查询上下文
Returns:
融合后的相似节点列表
"""
try:
# 1. 使用小模型生成多个查询
multi_queries = await self._generate_multi_queries_simple(query, context)
logger.debug(f"生成 {len(multi_queries)} 个查询: {multi_queries}")
# 2. 生成所有查询的嵌入
@@ -800,13 +801,13 @@ class MemoryTools:
if node.embedding is not None:
await self.vector_store.add_node(node)
async def _find_memory_by_description(self, description: str) -> Optional[Memory]:
async def _find_memory_by_description(self, description: str) -> Memory | None:
"""
通过描述查找记忆
Args:
description: 记忆描述
Returns:
找到的记忆,如果没有则返回 None
"""
@@ -827,13 +828,13 @@ class MemoryTools:
return None
# 获取最相似节点关联的记忆
node_id, similarity, metadata = similar_nodes[0]
_node_id, _similarity, metadata = similar_nodes[0]
if "memory_ids" not in metadata or not metadata["memory_ids"]:
return None
ids = metadata["memory_ids"]
# 确保是列表
if isinstance(ids, str):
import orjson
@@ -842,11 +843,11 @@ class MemoryTools:
except Exception as e:
logger.warning(f"JSON 解析失败: {e}")
ids = [ids]
if isinstance(ids, list) and ids:
memory_id = ids[0]
return self.graph_store.get_memory_by_id(memory_id)
return None
def _summarize_memory(self, memory: Memory) -> str:
@@ -862,103 +863,102 @@ class MemoryTools:
async def _expand_with_semantic_filter(
self,
initial_memory_ids: List[str],
initial_memory_ids: list[str],
query_embedding,
max_depth: int = 2,
semantic_threshold: float = 0.5,
max_expanded: int = 20
) -> List[Tuple[str, float]]:
) -> list[tuple[str, float]]:
"""
从初始记忆集合出发,沿图结构扩展,并用语义相似度过滤
Args:
initial_memory_ids: 初始记忆ID集合
query_embedding: 查询向量
max_depth: 最大扩展深度
semantic_threshold: 语义相似度阈值
max_expanded: 最多扩展多少个记忆
Returns:
List[(memory_id, relevance_score)]
"""
if not initial_memory_ids or query_embedding is None:
return []
try:
import numpy as np
visited_memories = set(initial_memory_ids)
expanded_memories: Dict[str, float] = {}
expanded_memories: dict[str, float] = {}
current_level = initial_memory_ids
for depth in range(max_depth):
next_level = []
for memory_id in current_level:
memory = self.graph_store.get_memory_by_id(memory_id)
if not memory:
continue
for node in memory.nodes:
if not node.has_embedding():
continue
try:
neighbors = list(self.graph_store.graph.neighbors(node.id))
except:
except Exception:
continue
for neighbor_id in neighbors:
neighbor_node_data = self.graph_store.graph.nodes.get(neighbor_id)
if not neighbor_node_data:
continue
neighbor_vector_data = await self.vector_store.get_node_by_id(neighbor_id)
if neighbor_vector_data is None:
continue
neighbor_embedding = neighbor_vector_data.get("embedding")
if neighbor_embedding is None:
continue
# 计算语义相似度
semantic_sim = self._cosine_similarity(
query_embedding,
neighbor_embedding
)
# 获取边权重
try:
edge_data = self.graph_store.graph.get_edge_data(node.id, neighbor_id)
edge_importance = edge_data.get("importance", 0.5) if edge_data else 0.5
except:
except Exception:
edge_importance = 0.5
# 综合评分
depth_decay = 1.0 / (depth + 1)
relevance_score = (
semantic_sim * 0.7 +
edge_importance * 0.2 +
semantic_sim * 0.7 +
edge_importance * 0.2 +
depth_decay * 0.1
)
if relevance_score < semantic_threshold:
continue
# 提取记忆ID
neighbor_memory_ids = neighbor_node_data.get("memory_ids", [])
if isinstance(neighbor_memory_ids, str):
import orjson
try:
neighbor_memory_ids = orjson.loads(neighbor_memory_ids)
except:
except Exception:
neighbor_memory_ids = [neighbor_memory_ids]
for neighbor_mem_id in neighbor_memory_ids:
if neighbor_mem_id in visited_memories:
continue
if neighbor_mem_id not in expanded_memories:
expanded_memories[neighbor_mem_id] = relevance_score
visited_memories.add(neighbor_mem_id)
@@ -968,52 +968,52 @@ class MemoryTools:
expanded_memories[neighbor_mem_id],
relevance_score
)
if not next_level or len(expanded_memories) >= max_expanded:
break
current_level = next_level[:max_expanded]
sorted_results = sorted(
expanded_memories.items(),
key=lambda x: x[1],
reverse=True
)[:max_expanded]
return sorted_results
except Exception as e:
logger.error(f"图扩展失败: {e}", exc_info=True)
return []
def _cosine_similarity(self, vec1, vec2) -> float:
"""计算余弦相似度"""
try:
import numpy as np
if not isinstance(vec1, np.ndarray):
vec1 = np.array(vec1)
if not isinstance(vec2, np.ndarray):
vec2 = np.array(vec2)
vec1_norm = np.linalg.norm(vec1)
vec2_norm = np.linalg.norm(vec2)
if vec1_norm == 0 or vec2_norm == 0:
return 0.0
similarity = np.dot(vec1, vec2) / (vec1_norm * vec2_norm)
return float(similarity)
except Exception as e:
logger.warning(f"计算余弦相似度失败: {e}")
return 0.0
@staticmethod
def get_all_tool_schemas() -> List[Dict[str, Any]]:
def get_all_tool_schemas() -> list[dict[str, Any]]:
"""
获取所有工具的 schema
Returns:
工具 schema 列表
"""

View File

@@ -5,4 +5,4 @@
from src.memory_graph.utils.embeddings import EmbeddingGenerator, get_embedding_generator
from src.memory_graph.utils.time_parser import TimeParser
__all__ = ["TimeParser", "EmbeddingGenerator", "get_embedding_generator"]
__all__ = ["EmbeddingGenerator", "TimeParser", "get_embedding_generator"]

View File

@@ -5,8 +5,6 @@
from __future__ import annotations
import asyncio
from functools import lru_cache
from typing import List, Optional
import numpy as np
@@ -18,12 +16,12 @@ logger = get_logger(__name__)
class EmbeddingGenerator:
"""
嵌入向量生成器
策略:
1. 优先使用配置的 embedding API通过 LLMRequest
2. 如果 API 不可用,回退到本地 sentence-transformers
3. 如果 sentence-transformers 未安装,使用随机向量(仅测试)
优点:
- 降低本地运算负载
- 即使未安装 sentence-transformers 也可正常运行
@@ -37,19 +35,19 @@ class EmbeddingGenerator:
):
"""
初始化嵌入生成器
Args:
use_api: 是否优先使用 API默认 True
fallback_model_name: 回退本地模型名称
"""
self.use_api = use_api
self.fallback_model_name = fallback_model_name
# API 相关
self._llm_request = None
self._api_available = False
self._api_dimension = None
# 本地模型相关
self._local_model = None
self._local_model_loaded = False
@@ -58,24 +56,24 @@ class EmbeddingGenerator:
"""初始化 embedding API"""
if self._api_available:
return
try:
from src.config.config import model_config
from src.llm_models.utils_model import LLMRequest
embedding_config = model_config.model_task_config.embedding
self._llm_request = LLMRequest(
model_set=embedding_config,
request_type="memory_graph.embedding"
)
# 获取嵌入维度
if hasattr(embedding_config, "embedding_dimension") and embedding_config.embedding_dimension:
self._api_dimension = embedding_config.embedding_dimension
self._api_available = True
logger.info(f"✅ Embedding API 初始化成功 (维度: {self._api_dimension})")
except Exception as e:
logger.warning(f"⚠️ Embedding API 初始化失败: {e}")
self._api_available = False
@@ -103,15 +101,15 @@ class EmbeddingGenerator:
async def generate(self, text: str) -> np.ndarray:
"""
生成单个文本的嵌入向量
策略:
1. 优先使用 API
2. API 失败则使用本地模型
3. 本地模型不可用则使用随机向量
Args:
text: 输入文本
Returns:
嵌入向量
"""
@@ -126,12 +124,12 @@ class EmbeddingGenerator:
embedding = await self._generate_with_api(text)
if embedding is not None:
return embedding
# 策略 2: 使用本地模型
embedding = await self._generate_with_local_model(text)
if embedding is not None:
return embedding
# 策略 3: 随机向量(仅测试)
logger.warning(f"⚠️ 所有嵌入策略失败,使用随机向量: {text[:30]}...")
dim = self._get_dimension()
@@ -142,47 +140,47 @@ class EmbeddingGenerator:
dim = self._get_dimension()
return np.random.rand(dim).astype(np.float32)
async def _generate_with_api(self, text: str) -> Optional[np.ndarray]:
async def _generate_with_api(self, text: str) -> np.ndarray | None:
"""使用 API 生成嵌入"""
try:
# 初始化 API
if not self._api_available:
await self._initialize_api()
if not self._api_available or not self._llm_request:
return None
# 调用 API
embedding_list, model_name = await self._llm_request.get_embedding(text)
if embedding_list and len(embedding_list) > 0:
embedding = np.array(embedding_list, dtype=np.float32)
logger.debug(f"🌐 API 生成嵌入: {text[:30]}... -> {len(embedding)}维 (模型: {model_name})")
return embedding
return None
except Exception as e:
logger.debug(f"API 嵌入生成失败: {e}")
return None
async def _generate_with_local_model(self, text: str) -> Optional[np.ndarray]:
async def _generate_with_local_model(self, text: str) -> np.ndarray | None:
"""使用本地模型生成嵌入"""
try:
# 加载本地模型
if not self._local_model_loaded:
self._load_local_model()
if not self._local_model_loaded or not self._local_model:
return None
# 在线程池中运行
loop = asyncio.get_event_loop()
embedding = await loop.run_in_executor(None, self._encode_single_local, text)
logger.debug(f"💻 本地生成嵌入: {text[:30]}... -> {len(embedding)}")
return embedding
except Exception as e:
logger.debug(f"本地模型嵌入生成失败: {e}")
return None
@@ -199,24 +197,24 @@ class EmbeddingGenerator:
# 优先使用 API 维度
if self._api_dimension:
return self._api_dimension
# 其次使用本地模型维度
if self._local_model_loaded and self._local_model:
try:
return self._local_model.get_sentence_embedding_dimension()
except:
except Exception:
pass
# 默认 384sentence-transformers 常用维度)
return 384
async def generate_batch(self, texts: List[str]) -> List[np.ndarray]:
async def generate_batch(self, texts: list[str]) -> list[np.ndarray]:
"""
批量生成嵌入向量
Args:
texts: 文本列表
Returns:
嵌入向量列表
"""
@@ -236,13 +234,13 @@ class EmbeddingGenerator:
results = await self._generate_batch_with_api(valid_texts)
if results:
return results
# 回退到逐个生成
results = []
for text in valid_texts:
embedding = await self.generate(text)
results.append(embedding)
logger.info(f"✅ 批量生成嵌入: {len(texts)} 个文本")
return results
@@ -251,7 +249,7 @@ class EmbeddingGenerator:
dim = self._get_dimension()
return [np.random.rand(dim).astype(np.float32) for _ in texts]
async def _generate_batch_with_api(self, texts: List[str]) -> Optional[List[np.ndarray]]:
async def _generate_batch_with_api(self, texts: list[str]) -> list[np.ndarray] | None:
"""使用 API 批量生成"""
try:
# 对于大多数 API批量调用就是多次单独调用
@@ -273,7 +271,7 @@ class EmbeddingGenerator:
# 全局单例
_global_generator: Optional[EmbeddingGenerator] = None
_global_generator: EmbeddingGenerator | None = None
def get_embedding_generator(
@@ -282,11 +280,11 @@ def get_embedding_generator(
) -> EmbeddingGenerator:
"""
获取全局嵌入生成器单例
Args:
use_api: 是否优先使用 API
fallback_model_name: 回退本地模型名称
Returns:
EmbeddingGenerator 实例
"""

View File

@@ -5,10 +5,9 @@
"""
import logging
from typing import Optional, List, Dict, Any
from datetime import datetime
from src.memory_graph.models import Memory, MemoryNode, NodeType, EdgeType, MemoryType
from src.memory_graph.models import EdgeType, Memory, MemoryType, NodeType
logger = logging.getLogger(__name__)
@@ -16,18 +15,18 @@ logger = logging.getLogger(__name__)
def format_memory_for_prompt(memory: Memory, include_metadata: bool = False) -> str:
"""
将记忆对象格式化为适合提示词的自然语言描述
根据记忆的图结构,构建完整的主谓宾描述,包含:
- 主语subject node
- 谓语/动作topic node
- 宾语/对象object node如果存在
- 属性信息attributes如时间、地点等
- 关系信息(记忆之间的关系)
Args:
memory: 记忆对象
include_metadata: 是否包含元数据(时间、重要性等)
Returns:
格式化后的自然语言描述
"""
@@ -37,24 +36,22 @@ def format_memory_for_prompt(memory: Memory, include_metadata: bool = False) ->
if not subject_node:
logger.warning(f"记忆 {memory.id} 缺少主体节点")
return "(记忆格式错误:缺少主体)"
subject_text = subject_node.content
# 2. 查找主题节点(谓语/动作)
topic_node = None
memory_type_relation = None
for edge in memory.edges:
if edge.edge_type == EdgeType.MEMORY_TYPE and edge.source_id == memory.subject_id:
topic_node = memory.get_node_by_id(edge.target_id)
memory_type_relation = edge.relation
break
if not topic_node:
logger.warning(f"记忆 {memory.id} 缺少主题节点")
return f"{subject_text}(记忆格式错误:缺少主题)"
topic_text = topic_node.content
# 3. 查找客体节点(宾语)和核心关系
object_node = None
core_relation = None
@@ -63,9 +60,9 @@ def format_memory_for_prompt(memory: Memory, include_metadata: bool = False) ->
object_node = memory.get_node_by_id(edge.target_id)
core_relation = edge.relation if edge.relation else ""
break
# 4. 收集属性节点
attributes: Dict[str, str] = {}
attributes: dict[str, str] = {}
for edge in memory.edges:
if edge.edge_type == EdgeType.ATTRIBUTE:
# 查找属性节点和值节点
@@ -73,16 +70,16 @@ def format_memory_for_prompt(memory: Memory, include_metadata: bool = False) ->
if attr_node and attr_node.node_type == NodeType.ATTRIBUTE:
# 查找这个属性的值
for value_edge in memory.edges:
if (value_edge.edge_type == EdgeType.ATTRIBUTE
if (value_edge.edge_type == EdgeType.ATTRIBUTE
and value_edge.source_id == attr_node.id):
value_node = memory.get_node_by_id(value_edge.target_id)
if value_node and value_node.node_type == NodeType.VALUE:
attributes[attr_node.content] = value_node.content
break
# 5. 构建自然语言描述
parts = []
# 主谓宾结构
if object_node is not None:
# 有完整的主谓宾
@@ -93,7 +90,7 @@ def format_memory_for_prompt(memory: Memory, include_metadata: bool = False) ->
else:
# 只有主谓
parts.append(f"{subject_text}{topic_text}")
# 添加属性信息
if attributes:
attr_parts = []
@@ -106,78 +103,78 @@ def format_memory_for_prompt(memory: Memory, include_metadata: bool = False) ->
for key, value in attributes.items():
if key not in ["时间", "地点"]:
attr_parts.append(f"{key}{value}")
if attr_parts:
parts.append(f"{' '.join(attr_parts)}")
description = "".join(parts)
# 6. 添加元数据(可选)
if include_metadata:
metadata_parts = []
# 记忆类型
if memory.memory_type:
metadata_parts.append(f"类型:{memory.memory_type.value}")
# 重要性
if memory.importance >= 0.8:
metadata_parts.append("重要")
elif memory.importance >= 0.6:
metadata_parts.append("一般")
# 时间(如果没有在属性中)
if "时间" not in attributes:
time_str = _format_relative_time(memory.created_at)
if time_str:
metadata_parts.append(time_str)
if metadata_parts:
description += f" [{', '.join(metadata_parts)}]"
return description
except Exception as e:
logger.error(f"格式化记忆失败: {e}", exc_info=True)
return f"(记忆格式化错误: {str(e)[:50]}"
def format_memories_for_prompt(
memories: List[Memory],
max_count: Optional[int] = None,
memories: list[Memory],
max_count: int | None = None,
include_metadata: bool = False,
group_by_type: bool = False
) -> str:
"""
批量格式化多条记忆为提示词文本
Args:
memories: 记忆列表
max_count: 最大记忆数量(可选)
include_metadata: 是否包含元数据
group_by_type: 是否按类型分组
Returns:
格式化后的文本,包含标题和列表
"""
if not memories:
return ""
# 限制数量
if max_count:
memories = memories[:max_count]
# 按类型分组
if group_by_type:
type_groups: Dict[MemoryType, List[Memory]] = {}
type_groups: dict[MemoryType, list[Memory]] = {}
for memory in memories:
if memory.memory_type not in type_groups:
type_groups[memory.memory_type] = []
type_groups[memory.memory_type].append(memory)
# 构建分组文本
parts = ["### 🧠 相关记忆 (Relevant Memories)", ""]
type_order = [MemoryType.FACT, MemoryType.EVENT, MemoryType.RELATION, MemoryType.OPINION]
for mem_type in type_order:
if mem_type in type_groups:
@@ -186,33 +183,33 @@ def format_memories_for_prompt(
desc = format_memory_for_prompt(memory, include_metadata)
parts.append(f"- {desc}")
parts.append("")
return "\n".join(parts)
else:
# 不分组,直接列出
parts = ["### 🧠 相关记忆 (Relevant Memories)", ""]
for memory in memories:
# 获取类型标签
type_label = memory.memory_type.value if memory.memory_type else "未知"
# 格式化记忆内容
desc = format_memory_for_prompt(memory, include_metadata)
# 添加类型标签
parts.append(f"- **[{type_label}]** {desc}")
return "\n".join(parts)
def get_memory_type_label(memory_type: str) -> str:
"""
获取记忆类型的中文标签
Args:
memory_type: 记忆类型(可能是英文或中文)
Returns:
中文标签
"""
@@ -243,27 +240,27 @@ def get_memory_type_label(memory_type: str) -> str:
"经历": "经历",
"情境": "情境",
}
# 转换为小写进行匹配
memory_type_lower = memory_type.lower() if memory_type else ""
return type_mapping.get(memory_type_lower, "未知")
def _format_relative_time(timestamp: datetime) -> Optional[str]:
def _format_relative_time(timestamp: datetime) -> str | None:
"""
格式化相对时间(如"2天前""刚才"
Args:
timestamp: 时间戳
Returns:
相对时间描述如果太久远则返回None
"""
try:
now = datetime.now()
delta = now - timestamp
if delta.total_seconds() < 60:
return "刚才"
elif delta.total_seconds() < 3600:
@@ -290,17 +287,17 @@ def _format_relative_time(timestamp: datetime) -> Optional[str]:
def format_memory_summary(memory: Memory) -> str:
"""
生成记忆的简短摘要(用于日志和调试)
Args:
memory: 记忆对象
Returns:
简短摘要
"""
try:
subject_node = memory.get_subject_node()
subject_text = subject_node.content if subject_node else "?"
topic_text = "?"
for edge in memory.edges:
if edge.edge_type == EdgeType.MEMORY_TYPE and edge.source_id == memory.subject_id:
@@ -308,7 +305,7 @@ def format_memory_summary(memory: Memory) -> str:
if topic_node:
topic_text = topic_node.content
break
return f"{subject_text} - {memory.memory_type.value if memory.memory_type else '?'}: {topic_text}"
except Exception:
return f"记忆 {memory.id[:8]}"
@@ -316,8 +313,8 @@ def format_memory_summary(memory: Memory) -> str:
# 导出主要函数
__all__ = [
'format_memory_for_prompt',
'format_memories_for_prompt',
'get_memory_type_label',
'format_memory_summary',
"format_memories_for_prompt",
"format_memory_for_prompt",
"format_memory_summary",
"get_memory_type_label",
]

View File

@@ -14,7 +14,6 @@ from __future__ import annotations
import re
from datetime import datetime, timedelta
from typing import Optional, Tuple
from src.common.logger import get_logger
@@ -24,26 +23,26 @@ logger = get_logger(__name__)
class TimeParser:
"""
时间解析器
负责将自然语言时间表达转换为标准化的绝对时间
"""
def __init__(self, reference_time: Optional[datetime] = None):
def __init__(self, reference_time: datetime | None = None):
"""
初始化时间解析器
Args:
reference_time: 参考时间(通常是当前时间)
"""
self.reference_time = reference_time or datetime.now()
def parse(self, time_str: str) -> Optional[datetime]:
def parse(self, time_str: str) -> datetime | None:
"""
解析时间字符串
Args:
time_str: 时间字符串
Returns:
标准化的datetime对象如果解析失败则返回None
"""
@@ -81,7 +80,7 @@ class TimeParser:
logger.warning(f"无法解析时间: '{time_str}',使用当前时间")
return self.reference_time
def _parse_relative_day(self, time_str: str) -> Optional[datetime]:
def _parse_relative_day(self, time_str: str) -> datetime | None:
"""
解析相对日期:今天、明天、昨天、前天、后天
"""
@@ -108,7 +107,7 @@ class TimeParser:
return None
def _parse_days_ago(self, time_str: str) -> Optional[datetime]:
def _parse_days_ago(self, time_str: str) -> datetime | None:
"""
解析 X天前/X天后、X周前/X周后、X个月前/X个月后
"""
@@ -172,7 +171,7 @@ class TimeParser:
return None
def _parse_hours_ago(self, time_str: str) -> Optional[datetime]:
def _parse_hours_ago(self, time_str: str) -> datetime | None:
"""
解析 X小时前/X小时后、X分钟前/X分钟后
"""
@@ -204,7 +203,7 @@ class TimeParser:
return None
def _parse_week_month_year(self, time_str: str) -> Optional[datetime]:
def _parse_week_month_year(self, time_str: str) -> datetime | None:
"""
解析:上周、上个月、去年、本周、本月、今年
"""
@@ -232,7 +231,7 @@ class TimeParser:
return None
def _parse_specific_date(self, time_str: str) -> Optional[datetime]:
def _parse_specific_date(self, time_str: str) -> datetime | None:
"""
解析具体日期:
- 2025-11-05
@@ -266,7 +265,7 @@ class TimeParser:
return None
def _parse_time_of_day(self, time_str: str) -> Optional[datetime]:
def _parse_time_of_day(self, time_str: str) -> datetime | None:
"""
解析一天中的时间:
- 早上、上午、中午、下午、晚上、深夜
@@ -290,7 +289,7 @@ class TimeParser:
}
# 先检查是否有具体时间点早上8点、下午3点
for period, default_hour in time_periods.items():
for period in time_periods.keys():
pattern = rf"{period}(\d{{1,2}})点?"
match = re.search(pattern, time_str)
if match:
@@ -314,13 +313,13 @@ class TimeParser:
return None
def _parse_combined_time(self, time_str: str) -> Optional[datetime]:
def _parse_combined_time(self, time_str: str) -> datetime | None:
"""
解析组合时间表达:今天下午、昨天晚上、明天早上
"""
# 先解析日期部分
date_result = None
# 相对日期关键词
relative_days = {
"今天": 0, "今日": 0,
@@ -330,16 +329,16 @@ class TimeParser:
"后天": 2, "后日": 2,
"大前天": -3, "大后天": 3,
}
for keyword, days in relative_days.items():
if keyword in time_str:
date_result = self.reference_time + timedelta(days=days)
date_result = date_result.replace(hour=0, minute=0, second=0, microsecond=0)
break
if not date_result:
return None
# 再解析时间段部分
time_periods = {
"早上": 8, "早晨": 8,
@@ -351,7 +350,7 @@ class TimeParser:
"深夜": 23,
"凌晨": 2,
}
for period, hour in time_periods.items():
if period in time_str:
# 检查是否有具体时间点
@@ -363,17 +362,17 @@ class TimeParser:
if period in ["下午", "晚上"] and hour < 12:
hour += 12
return date_result.replace(hour=hour)
# 如果没有时间段返回日期默认0点
return date_result
def _chinese_num_to_int(self, num_str: str) -> int:
"""
将中文数字转换为阿拉伯数字
Args:
num_str: 中文数字字符串(如:"""""3"
Returns:
整数
"""
@@ -418,11 +417,11 @@ class TimeParser:
def format_time(self, dt: datetime, format_type: str = "iso") -> str:
"""
格式化时间
Args:
dt: datetime对象
format_type: 格式类型 ("iso", "cn", "relative")
Returns:
格式化的时间字符串
"""
@@ -461,13 +460,13 @@ class TimeParser:
return str(dt)
def parse_time_range(self, time_str: str) -> Tuple[Optional[datetime], Optional[datetime]]:
def parse_time_range(self, time_str: str) -> tuple[datetime | None, datetime | None]:
"""
解析时间范围最近一周、最近3天
Args:
time_str: 时间范围字符串
Returns:
(start_time, end_time)
"""