Merge pull request #28 from Gardelll/dev

修复一些LLM响应解析问题和添加memory.use_judge配置项
This commit is contained in:
拾风
2025-12-11 15:46:22 +08:00
committed by GitHub
5 changed files with 50 additions and 16 deletions

View File

@@ -4,6 +4,7 @@ import binascii
import hashlib
import io
import json
import json_repair
import os
import random
import re
@@ -1022,6 +1023,15 @@ class EmojiManager:
- 必须是表情包,非普通截图。
- 图中文字不超过5个。
请确保你的最终输出是严格的JSON对象不要添加任何额外解释或文本。
输出格式:
```json
{{
"detailed_description": "",
"keywords": [],
"refined_sentence": "",
"is_compliant": true
}}
```
"""
image_data_for_vlm, image_format_for_vlm = image_base64, image_format
@@ -1041,16 +1051,14 @@ class EmojiManager:
if not vlm_response_str:
continue
match = re.search(r"\{.*\}", vlm_response_str, re.DOTALL)
if match:
vlm_response_json = json.loads(match.group(0))
description = vlm_response_json.get("detailed_description", "")
emotions = vlm_response_json.get("keywords", [])
refined_description = vlm_response_json.get("refined_sentence", "")
is_compliant = vlm_response_json.get("is_compliant", False)
if description and emotions and refined_description:
logger.info("[VLM分析] 成功解析VLM返回的JSON数据。")
break
vlm_response_json = self._parse_json_response(vlm_response_str)
description = vlm_response_json.get("detailed_description", "")
emotions = vlm_response_json.get("keywords", [])
refined_description = vlm_response_json.get("refined_sentence", "")
is_compliant = vlm_response_json.get("is_compliant", False)
if description and emotions and refined_description:
logger.info("[VLM分析] 成功解析VLM返回的JSON数据。")
break
logger.warning("[VLM分析] VLM返回的JSON数据不完整或格式错误准备重试。")
except (json.JSONDecodeError, AttributeError) as e:
logger.error(f"VLM JSON解析失败 (第 {i+1}/3 次): {e}")
@@ -1195,6 +1203,29 @@ class EmojiManager:
logger.error(f"[错误] 删除异常处理文件时出错: {remove_error}")
return False
@classmethod
def _parse_json_response(cls, response: str) -> dict[str, Any] | None:
"""解析 LLM 的 JSON 响应"""
try:
# 尝试提取 JSON 代码块
json_match = re.search(r"```json\s*(.*?)\s*```", response, re.DOTALL)
if json_match:
json_str = json_match.group(1)
else:
# 尝试直接解析
json_str = response.strip()
# 移除可能的注释
json_str = re.sub(r"//.*", "", json_str)
json_str = re.sub(r"/\*.*?\*/", "", json_str, flags=re.DOTALL)
data = json_repair.loads(json_str)
return data
except json.JSONDecodeError as e:
logger.warning(f"JSON 解析失败: {e}, 响应: {response[:200]}")
return None
emoji_manager = None

View File

@@ -614,7 +614,7 @@ class DefaultReplyer:
# 使用统一管理器的智能检索Judge模型决策
search_result = await unified_manager.search_memories(
query_text=query_text,
use_judge=True,
use_judge=global_config.memory.use_judge,
recent_chat_history=chat_history, # 传递最近聊天历史
)
@@ -1799,8 +1799,9 @@ class DefaultReplyer:
)
if content:
# 移除 [SPLIT] 标记,防止消息被分割
content = content.replace("[SPLIT]", "")
if not global_config.response_splitter.enable or global_config.response_splitter.split_mode != 'llm':
# 移除 [SPLIT] 标记,防止消息被分割
content = content.replace("[SPLIT]", "")
# 应用统一的格式过滤器
from src.chat.utils.utils import filter_system_format_content

View File

@@ -514,6 +514,7 @@ class MemoryConfig(ValidatedConfigBase):
short_term_decay_factor: float = Field(default=0.98, description="衰减因子")
# 长期记忆层配置
use_judge: bool = Field(default=True, description="使用评判模型决定是否检索长期记忆")
long_term_batch_size: int = Field(default=10, description="批量转移大小")
long_term_decay_factor: float = Field(default=0.95, description="衰减因子")
long_term_auto_transfer_interval: int = Field(default=60, description="自动转移间隔(秒)")

View File

@@ -235,7 +235,7 @@ class KFCContextBuilder:
search_result = await unified_manager.search_memories(
query_text=query_text,
use_judge=True,
use_judge=config.memory.use_judge,
recent_chat_history=chat_history,
)