refactor(server): 将记忆可视化工具和统计功能整合进主服务
将原先独立的记忆可视化工具(Memory Visualizer)和LLM使用统计逻辑深度整合到项目主服务中。 主要变更包括: - **移除独立的可视化工具**: 删除了 `tools/memory_visualizer` 目录下的所有独立服务器、脚本和文档,清理了项目结构。 - **API路由整合**: 在主 FastAPI 应用中注册了记忆可视化工具的路由,使其成为核心功能的一部分,可通过 `/visualizer` 访问。 - **统计逻辑重构**: 将LLM使用统计的计算逻辑从API路由层 `statistic_router.py` 中剥离,迁移到 `src/chat/utils/statistic.py` 中,实现了逻辑的解耦和复用。API路由现在直接调用重构后的统计任务。 - **依赖清理与添加**: 添加了 `jinja2` 作为模板渲染的依赖,并清除了与独立可视化工具相关的旧依赖。 此次重构简化了项目的维护和部署,将原本分散的功能统一管理,提升了代码的内聚性和可维护性。
This commit is contained in:
committed by
Windpicker-owo
parent
dad6a3fc6f
commit
5702dd8a9f
@@ -4,10 +4,10 @@ from typing import Any, Literal
|
||||
|
||||
from fastapi import APIRouter, HTTPException, Query
|
||||
|
||||
from src.common.database.compatibility import db_get
|
||||
from src.common.database.core.models import LLMUsage
|
||||
from src.chat.utils.statistic import (
|
||||
StatisticOutputTask,
|
||||
)
|
||||
from src.common.logger import get_logger
|
||||
from src.config.config import model_config
|
||||
|
||||
logger = get_logger("LLM统计API")
|
||||
|
||||
@@ -37,108 +37,6 @@ COST_BY_USER = "costs_by_user"
|
||||
COST_BY_MODEL = "costs_by_model"
|
||||
COST_BY_MODULE = "costs_by_module"
|
||||
|
||||
|
||||
async def _collect_stats_in_period(start_time: datetime, end_time: datetime) -> dict[str, Any]:
|
||||
"""在指定时间段内收集LLM使用统计信息"""
|
||||
records = await db_get(
|
||||
model_class=LLMUsage,
|
||||
filters={"timestamp": {"$gte": start_time, "$lt": end_time}},
|
||||
)
|
||||
if not records:
|
||||
return {}
|
||||
|
||||
# 创建一个从 model_identifier 到 name 的映射
|
||||
model_identifier_to_name_map = {model.model_identifier: model.name for model in model_config.models}
|
||||
|
||||
stats: dict[str, Any] = {
|
||||
TOTAL_REQ_CNT: 0,
|
||||
TOTAL_COST: 0.0,
|
||||
REQ_CNT_BY_TYPE: defaultdict(int),
|
||||
REQ_CNT_BY_USER: defaultdict(int),
|
||||
REQ_CNT_BY_MODEL: defaultdict(int),
|
||||
REQ_CNT_BY_MODULE: defaultdict(int),
|
||||
IN_TOK_BY_TYPE: defaultdict(int),
|
||||
IN_TOK_BY_USER: defaultdict(int),
|
||||
IN_TOK_BY_MODEL: defaultdict(int),
|
||||
IN_TOK_BY_MODULE: defaultdict(int),
|
||||
OUT_TOK_BY_TYPE: defaultdict(int),
|
||||
OUT_TOK_BY_USER: defaultdict(int),
|
||||
OUT_TOK_BY_MODEL: defaultdict(int),
|
||||
OUT_TOK_BY_MODULE: defaultdict(int),
|
||||
TOTAL_TOK_BY_TYPE: defaultdict(int),
|
||||
TOTAL_TOK_BY_USER: defaultdict(int),
|
||||
TOTAL_TOK_BY_MODEL: defaultdict(int),
|
||||
TOTAL_TOK_BY_MODULE: defaultdict(int),
|
||||
COST_BY_TYPE: defaultdict(float),
|
||||
COST_BY_USER: defaultdict(float),
|
||||
COST_BY_MODEL: defaultdict(float),
|
||||
COST_BY_MODULE: defaultdict(float),
|
||||
}
|
||||
|
||||
for record in records:
|
||||
if not isinstance(record, dict):
|
||||
continue
|
||||
|
||||
stats[TOTAL_REQ_CNT] += 1
|
||||
|
||||
request_type = record.get("request_type") or "unknown"
|
||||
user_id = record.get("user_id") or "unknown"
|
||||
# 从数据库获取的是真实模型名 (model_identifier)
|
||||
real_model_name = record.get("model_name") or "unknown"
|
||||
module_name = request_type.split(".")[0] if "." in request_type else request_type
|
||||
|
||||
# 尝试通过真实模型名找到配置文件中的模型名
|
||||
config_model_name = model_identifier_to_name_map.get(real_model_name, real_model_name)
|
||||
|
||||
prompt_tokens = record.get("prompt_tokens") or 0
|
||||
completion_tokens = record.get("completion_tokens") or 0
|
||||
total_tokens = prompt_tokens + completion_tokens
|
||||
|
||||
cost = 0.0
|
||||
try:
|
||||
# 使用配置文件中的模型名来获取模型信息
|
||||
model_info = model_config.get_model_info(config_model_name)
|
||||
if model_info:
|
||||
input_cost = (prompt_tokens / 1000000) * model_info.price_in
|
||||
output_cost = (completion_tokens / 1000000) * model_info.price_out
|
||||
cost = round(input_cost + output_cost, 6)
|
||||
except KeyError as e:
|
||||
logger.info(str(e))
|
||||
logger.warning(f"模型 '{config_model_name}' (真实名称: '{real_model_name}') 在配置中未找到,成本计算将使用默认值 0.0")
|
||||
|
||||
stats[TOTAL_COST] += cost
|
||||
|
||||
# 按类型统计
|
||||
stats[REQ_CNT_BY_TYPE][request_type] += 1
|
||||
stats[IN_TOK_BY_TYPE][request_type] += prompt_tokens
|
||||
stats[OUT_TOK_BY_TYPE][request_type] += completion_tokens
|
||||
stats[TOTAL_TOK_BY_TYPE][request_type] += total_tokens
|
||||
stats[COST_BY_TYPE][request_type] += cost
|
||||
|
||||
# 按用户统计
|
||||
stats[REQ_CNT_BY_USER][user_id] += 1
|
||||
stats[IN_TOK_BY_USER][user_id] += prompt_tokens
|
||||
stats[OUT_TOK_BY_USER][user_id] += completion_tokens
|
||||
stats[TOTAL_TOK_BY_USER][user_id] += total_tokens
|
||||
stats[COST_BY_USER][user_id] += cost
|
||||
|
||||
# 按模型统计 (使用配置文件中的名称)
|
||||
stats[REQ_CNT_BY_MODEL][config_model_name] += 1
|
||||
stats[IN_TOK_BY_MODEL][config_model_name] += prompt_tokens
|
||||
stats[OUT_TOK_BY_MODEL][config_model_name] += completion_tokens
|
||||
stats[TOTAL_TOK_BY_MODEL][config_model_name] += total_tokens
|
||||
stats[COST_BY_MODEL][config_model_name] += cost
|
||||
|
||||
# 按模块统计
|
||||
stats[REQ_CNT_BY_MODULE][module_name] += 1
|
||||
stats[IN_TOK_BY_MODULE][module_name] += prompt_tokens
|
||||
stats[OUT_TOK_BY_MODULE][module_name] += completion_tokens
|
||||
stats[TOTAL_TOK_BY_MODULE][module_name] += total_tokens
|
||||
stats[COST_BY_MODULE][module_name] += cost
|
||||
|
||||
return stats
|
||||
|
||||
|
||||
@router.get("/llm/stats")
|
||||
async def get_llm_stats(
|
||||
period_type: Literal[
|
||||
@@ -179,7 +77,8 @@ async def get_llm_stats(
|
||||
if start_time is None:
|
||||
raise HTTPException(status_code=400, detail="无法确定查询的起始时间")
|
||||
|
||||
period_stats = await _collect_stats_in_period(start_time, end_time)
|
||||
stats_data = await StatisticOutputTask._collect_model_request_for_period([("custom", start_time)])
|
||||
period_stats = stats_data.get("custom", {})
|
||||
|
||||
if not period_stats:
|
||||
return {"period": {"start": start_time.isoformat(), "end": end_time.isoformat()}, "data": {}}
|
||||
|
||||
Reference in New Issue
Block a user