feat:处理器处理时间上限,处理并行模式,planner和思考prompt,循环观察器大优化

feat:增加了处理器处理时间上限,记忆处理并行模式,优化了planner和思考prompt,优化了循环观察器
This commit is contained in:
SengokuCola
2025-05-30 11:04:29 +08:00
parent 8f0a4d9d2c
commit 54724ae21e
21 changed files with 233 additions and 120 deletions

View File

@@ -26,8 +26,8 @@ class NoReplyAction(BaseAction):
action_parameters = {}
action_require = [
"话题无关/无聊/不感兴趣/不懂",
"最后一条消息是你自己发的且无人回应你",
"你发送了太多消息,且无人回复",
"聊天记录中最新一条消息是你自己发的且无人回应你",
"连续发送了太多消息,且无人回复",
]
default = True

View File

@@ -28,11 +28,8 @@ class ActionModifier:
async def modify_actions(
self,
observations: Optional[List[Observation]] = None,
running_memorys: Optional[List[Dict]] = None,
**kwargs: Any,
):
# print(f"observations: {observations}")
# processed_infos = []
# 处理Observation对象
if observations:

View File

@@ -26,9 +26,8 @@ def init_prompt():
"""
你的自我认知是:
{self_info_block}
{extra_info_block}
{memory_str}
你需要基于以下信息决定如何参与对话
这些信息可能会有冲突请你整合这些信息并选择一个最合适的action
{chat_content_block}
@@ -49,7 +48,7 @@ def init_prompt():
请你以下面格式输出你选择的action
{{
"action": "action_name",
"reasoning": "你的决策理由",
"reasoning": "说明你做出该action的原因",
"参数1": "参数1的值",
"参数2": "参数2的值",
"参数3": "参数3的值",
@@ -84,13 +83,13 @@ class ActionPlanner:
self.action_manager = action_manager
async def plan(self, all_plan_info: List[InfoBase], cycle_timers: dict) -> Dict[str, Any]:
async def plan(self, all_plan_info: List[InfoBase], running_memorys: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
规划器 (Planner): 使用LLM根据上下文决定做出什么动作。
参数:
all_plan_info: 所有计划信息
cycle_timers: 计时器字典
running_memorys: 回忆信息
"""
action = "no_reply" # 默认动作
@@ -169,6 +168,7 @@ class ActionPlanner:
current_available_actions=current_available_actions, # <-- Pass determined actions
cycle_info=cycle_info, # <-- Pass cycle info
extra_info=extra_info,
running_memorys=running_memorys,
)
# --- 调用 LLM (普通文本生成) ---
@@ -259,10 +259,22 @@ class ActionPlanner:
current_available_actions: Dict[str, ActionInfo],
cycle_info: Optional[str],
extra_info: list[str],
running_memorys: List[Dict[str, Any]],
) -> str:
"""构建 Planner LLM 的提示词 (获取模板并填充数据)"""
try:
# --- Determine chat context ---
memory_str = ""
if global_config.focus_chat.parallel_processing:
memory_str = ""
if running_memorys:
memory_str = "以下是当前在聊天中,你回忆起的记忆:\n"
for running_memory in running_memorys:
memory_str += f"{running_memory['topic']}: {running_memory['content']}\n"
chat_context_description = "你现在正在一个群聊中"
chat_target_name = None # Only relevant for private
if not is_group_chat and chat_target_info:
@@ -324,6 +336,7 @@ class ActionPlanner:
planner_prompt_template = await global_prompt_manager.get_prompt_async("planner_prompt")
prompt = planner_prompt_template.format(
self_info_block=self_info_block,
memory_str=memory_str,
# bot_name=global_config.bot.nickname,
prompt_personality=personality_block,
chat_context_description=chat_context_description,