perf(memory): 优化记忆系统数据库操作并修复并发问题
将消息记忆次数的更新方式从单次写入重构为批量更新,在记忆构建任务结束时统一执行,大幅减少数据库写入次数,显著提升性能。 此外,为 `HippocampusManager` 添加了异步锁,以防止记忆巩固和遗忘操作并发执行时产生竞争条件。同时,增加了节点去重逻辑,在插入数据库前检查重复的概念,确保数据一致性。
This commit is contained in:
committed by
Windpicker-owo
parent
224dc0d748
commit
53b61028c7
@@ -339,7 +339,7 @@ class NoticeHandler:
|
||||
message_id=raw_message.get("message_id",""),
|
||||
emoji_id=like_emoji_id
|
||||
)
|
||||
seg_data = Seg(type="text",data=f"{user_name}使用Emoji表情{QQ_FACE.get(like_emoji_id,"")}回复了你的消息[{target_message_text}]")
|
||||
seg_data = Seg(type="text",data=f"{user_name}使用Emoji表情{QQ_FACE.get(like_emoji_id, '')}回复了你的消息[{target_message_text}]")
|
||||
return seg_data, user_info
|
||||
|
||||
async def handle_ban_notify(self, raw_message: dict, group_id: int) -> Tuple[Seg, UserInfo] | Tuple[None, None]:
|
||||
|
||||
Reference in New Issue
Block a user