better:优化表达方式和侧面人格

This commit is contained in:
SengokuCola
2025-06-25 15:53:59 +08:00
parent 276a70a671
commit 5351b7639c
9 changed files with 381 additions and 250 deletions

16
bot.py
View File

@@ -1,18 +1,21 @@
import asyncio
import hashlib
import os
from dotenv import load_dotenv
if os.path.exists(".env"):
load_dotenv(".env", override=True)
print("成功加载环境变量配置")
else:
print("未找到.env文件请确保程序所需的环境变量被正确设置")
import sys
import time
import platform
import traceback
from pathlib import Path
from dotenv import load_dotenv
from rich.traceback import install
# maim_message imports for console input
from maim_message import Seg, UserInfo, BaseMessageInfo, MessageBase
from src.chat.message_receive.bot import chat_bot
# 最早期初始化日志系统,确保所有后续模块都使用正确的日志格式
from src.common.logger import initialize_logging, get_logger, shutdown_logging
from src.main import MainSystem
@@ -22,12 +25,7 @@ initialize_logging()
logger = get_logger("main")
# 直接加载生产环境变量配置
if os.path.exists(".env"):
load_dotenv(".env", override=True)
logger.info("成功加载环境变量配置")
else:
logger.warning("未找到.env文件请确保程序所需的环境变量被正确设置")
install(extra_lines=3)

View File

@@ -0,0 +1,243 @@
from .exprssion_learner import get_expression_learner
import random
from typing import List, Dict, Tuple
from json_repair import repair_json
import json
import os
import time
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
from src.common.logger import get_logger
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
logger = get_logger("expression_selector")
def init_prompt():
expression_evaluation_prompt = """
你的名字是{bot_name}
以下是正在进行的聊天内容:
{chat_observe_info}
以下是可选的表达情境:
{all_situations}
请你分析聊天内容的语境、情绪、话题类型从上述情境中选择最适合当前聊天情境的5-10个情境。
考虑因素包括:
1. 聊天的情绪氛围(轻松、严肃、幽默等)
2. 话题类型(日常、技术、游戏、情感等)
3. 情境与当前语境的匹配度
请以JSON格式输出只需要输出选中的情境编号
例如:
{{
"selected_situations": [2, 3, 5, 7, 9, 12, 15, 18, 21, 25]
}}
例如:
{{
"selected_situations": [1, 4, 7, 9, 13, 18, 24]
}}
请严格按照JSON格式输出不要包含其他内容
"""
Prompt(expression_evaluation_prompt, "expression_evaluation_prompt")
def weighted_sample(population: List[Dict], weights: List[float], k: int) -> List[Dict]:
"""按权重随机抽样"""
if not population or not weights or k <= 0:
return []
if len(population) <= k:
return population.copy()
# 使用累积权重的方法进行加权抽样
selected = []
population_copy = population.copy()
weights_copy = weights.copy()
for _ in range(k):
if not population_copy:
break
# 选择一个元素
chosen_idx = random.choices(range(len(population_copy)), weights=weights_copy)[0]
selected.append(population_copy.pop(chosen_idx))
weights_copy.pop(chosen_idx)
return selected
class ExpressionSelector:
def __init__(self):
self.expression_learner = get_expression_learner()
# TODO: API-Adapter修改标记
self.llm_model = LLMRequest(
model=global_config.model.utils_small,
request_type="expression.selector",
)
def get_random_expressions(self, chat_id: str, style_num: int, grammar_num: int, personality_num: int) -> Tuple[List[Dict[str, str]], List[Dict[str, str]]]:
(
learnt_style_expressions,
learnt_grammar_expressions,
personality_expressions,
) = self.expression_learner.get_expression_by_chat_id(chat_id)
# 按权重抽样使用count作为权重
if learnt_style_expressions:
style_weights = [expr.get("count", 1) for expr in learnt_style_expressions]
selected_style = weighted_sample(learnt_style_expressions, style_weights, style_num)
else:
selected_style = []
if learnt_grammar_expressions:
grammar_weights = [expr.get("count", 1) for expr in learnt_grammar_expressions]
selected_grammar = weighted_sample(learnt_grammar_expressions, grammar_weights, grammar_num)
else:
selected_grammar = []
if personality_expressions:
personality_weights = [expr.get("count", 1) for expr in personality_expressions]
selected_personality = weighted_sample(personality_expressions, personality_weights, personality_num)
else:
selected_personality = []
return selected_style, selected_grammar, selected_personality
def update_expression_count(self, chat_id: str, expression: Dict[str, str], multiplier: float = 1.5):
"""更新表达方式的count值"""
if expression.get("type") == "style_personality":
# personality表达方式存储在全局文件中
file_path = os.path.join("data", "expression", "personality", "expressions.json")
else:
# style和grammar表达方式存储在对应chat_id目录中
expr_type = expression.get("type", "style")
if expr_type == "style":
file_path = os.path.join("data", "expression", "learnt_style", str(chat_id), "expressions.json")
elif expr_type == "grammar":
file_path = os.path.join("data", "expression", "learnt_grammar", str(chat_id), "expressions.json")
else:
return
if not os.path.exists(file_path):
return
try:
with open(file_path, "r", encoding="utf-8") as f:
expressions = json.load(f)
# 找到匹配的表达方式并更新count
for expr in expressions:
if (expr.get("situation") == expression.get("situation") and
expr.get("style") == expression.get("style")):
expr["count"] = expr.get("count", 1) * multiplier
expr["last_active_time"] = time.time()
break
# 保存更新后的文件
with open(file_path, "w", encoding="utf-8") as f:
json.dump(expressions, f, ensure_ascii=False, indent=2)
except Exception as e:
logger.error(f"更新表达方式count失败: {e}")
async def select_suitable_expressions_llm(self, chat_id: str, chat_info: str) -> List[Dict[str, str]]:
"""使用LLM选择适合的表达方式"""
# 1. 获取35个随机表达方式现在按权重抽取
style_exprs, grammar_exprs, personality_exprs = self.get_random_expressions(chat_id, 25, 25, 10)
# 2. 构建所有表达方式的索引和情境列表
all_expressions = []
all_situations = []
# 添加style表达方式
for expr in style_exprs:
if isinstance(expr, dict) and "situation" in expr and "style" in expr:
expr_with_type = expr.copy()
expr_with_type["type"] = "style"
all_expressions.append(expr_with_type)
all_situations.append(f"{len(all_expressions)}.{expr['situation']}")
# 添加grammar表达方式
for expr in grammar_exprs:
if isinstance(expr, dict) and "situation" in expr and "style" in expr:
expr_with_type = expr.copy()
expr_with_type["type"] = "grammar"
all_expressions.append(expr_with_type)
all_situations.append(f"{len(all_expressions)}.{expr['situation']}")
# 添加personality表达方式
for expr in personality_exprs:
if isinstance(expr, dict) and "situation" in expr and "style" in expr:
expr_with_type = expr.copy()
expr_with_type["type"] = "style_personality"
all_expressions.append(expr_with_type)
all_situations.append(f"{len(all_expressions)}.{expr['situation']}")
if not all_expressions:
logger.warning("没有找到可用的表达方式")
return []
all_situations_str = "\n".join(all_situations)
# 3. 构建prompt只包含情境不包含完整的表达方式
prompt = (await global_prompt_manager.get_prompt_async("expression_evaluation_prompt")).format(
bot_name=global_config.bot.nickname,
chat_observe_info=chat_info,
all_situations=all_situations_str,
)
print(prompt)
# 4. 调用LLM
try:
content, (_, _) = await self.llm_model.generate_response_async(prompt=prompt)
# logger.info(f"{self.log_prefix} LLM返回结果: {content}")
if not content:
logger.warning("LLM返回空结果")
return []
# 5. 解析结果
result = repair_json(content)
if isinstance(result, str):
result = json.loads(result)
if not isinstance(result, dict) or "selected_situations" not in result:
logger.error("LLM返回格式错误")
return []
selected_indices = result["selected_situations"]
# 根据索引获取完整的表达方式
valid_expressions = []
for idx in selected_indices:
if isinstance(idx, int) and 1 <= idx <= len(all_expressions):
expression = all_expressions[idx - 1] # 索引从1开始
valid_expressions.append(expression)
# 对选中的表达方式count数*1.5
self.update_expression_count(chat_id, expression, 1.5)
# logger.info(f"LLM从{len(all_expressions)}个情境中选择了{len(valid_expressions)}个")
return valid_expressions
except Exception as e:
logger.error(f"LLM处理表达方式选择时出错: {e}")
return []
init_prompt()
try:
expression_selector = ExpressionSelector()
except Exception as e:
print(f"ExpressionSelector初始化失败: {e}")

View File

@@ -29,7 +29,7 @@ def init_prompt() -> None:
4. 思考有没有特殊的梗,一并总结成语言风格
5. 例子仅供参考,请严格根据群聊内容总结!!!
注意:总结成如下格式的规律,总结的内容要详细,但具有概括性:
"xxxxxx"时,可以"xxxxxx", xxxxxx不超过20个字
"xxxxxx"时,可以"xxxxxx", xxxxxx不超过20个字,为特定句式或表达
例如:
"对某件事表示十分惊叹,有些意外"时,使用"我嘞个xxxx"
@@ -73,7 +73,7 @@ class ExpressionLearner:
request_type="expressor.learner",
)
async def get_expression_by_chat_id(self, chat_id: str) -> Tuple[List[Dict[str, str]], List[Dict[str, str]]]:
def get_expression_by_chat_id(self, chat_id: str) -> Tuple[List[Dict[str, str]], List[Dict[str, str]]]:
"""
读取/data/expression/learnt/{chat_id}/expressions.json和/data/expression/personality/expressions.json
返回(learnt_expressions, personality_expressions)

View File

@@ -1,98 +1,18 @@
import time
import random
from typing import List, Dict
from typing import List
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
from src.chat.heart_flow.observation.observation import Observation
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
from src.common.logger import get_logger
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.message_receive.chat_stream import get_chat_manager
from .base_processor import BaseProcessor
from src.chat.focus_chat.info.info_base import InfoBase
from src.chat.focus_chat.info.expression_selection_info import ExpressionSelectionInfo
from src.chat.express.exprssion_learner import get_expression_learner
from json_repair import repair_json
import json
from src.chat.express.expression_selector import expression_selector
logger = get_logger("processor")
def weighted_sample_no_replacement(items, weights, k) -> list:
"""
加权随机抽样,不允许重复
Args:
items: 待抽样的项目列表
weights: 对应项目的权重列表
k: 抽样数量
Returns:
抽样结果列表
"""
if not items or k <= 0:
return []
k = min(k, len(items))
selected = []
remaining_items = list(items)
remaining_weights = list(weights)
for _ in range(k):
if not remaining_items:
break
# 计算累积权重
total_weight = sum(remaining_weights)
if total_weight <= 0:
# 如果权重都为0或负数则随机选择
selected_index = random.randint(0, len(remaining_items) - 1)
else:
# 加权随机选择
rand_val = random.uniform(0, total_weight)
cumulative_weight = 0
selected_index = 0
for i, weight in enumerate(remaining_weights):
cumulative_weight += weight
if rand_val <= cumulative_weight:
selected_index = i
break
# 添加选中的项目
selected.append(remaining_items[selected_index])
# 移除已选中的项目
remaining_items.pop(selected_index)
remaining_weights.pop(selected_index)
return selected
def init_prompt():
expression_evaluation_prompt = """
你的名字是{bot_name}
以下是正在进行的聊天内容:
{chat_observe_info}
以下是可选的表达情境:
{all_situations}
请你分析聊天内容的语境、情绪、话题类型从上述情境中选择最适合当前聊天情境的10个情境。
考虑因素包括:
1. 聊天的情绪氛围(轻松、严肃、幽默等)
2. 话题类型(日常、技术、游戏、情感等)
3. 情境与当前语境的匹配度
请以JSON格式输出只需要输出选中的情境编号
{{
"selected_situations": [1, 3, 5, 7, 9, 12, 15, 18, 21, 25]
}}
请严格按照JSON格式输出不要包含其他内容
"""
Prompt(expression_evaluation_prompt, "expression_evaluation_prompt")
class ExpressionSelectorProcessor(BaseProcessor):
log_prefix = "表达选择器"
@@ -101,16 +21,9 @@ class ExpressionSelectorProcessor(BaseProcessor):
self.subheartflow_id = subheartflow_id
self.last_selection_time = 0
self.selection_interval = 40 # 1分钟间隔
self.selection_interval = 10 # 40秒间隔
self.cached_expressions = [] # 缓存上一次选择的表达方式
# 表达方式选择模式
self.selection_mode = getattr(global_config.expression, "selection_mode", "llm") # "llm" 或 "random"
self.llm_model = LLMRequest(
model=global_config.model.utils_small,
request_type="focus.processor.expression_selector",
)
name = get_chat_manager().get_stream_name(self.subheartflow_id)
self.log_prefix = f"[{name}] 表达选择器"
@@ -158,26 +71,20 @@ class ExpressionSelectorProcessor(BaseProcessor):
return []
try:
# 根据模式选择表达方式
# LLM模式调用LLM选择15个然后随机选5个
selected_expressions = await self._select_suitable_expressions_llm(chat_info)
# LLM模式调用LLM选择5-10个然后随机选5个
selected_expressions = await expression_selector.select_suitable_expressions_llm(self.subheartflow_id, chat_info)
cache_size = len(selected_expressions) if selected_expressions else 0
mode_desc = f"LLM模式已缓存{cache_size}个)"
if selected_expressions:
# 缓存选择的表达方式
self.cached_expressions = selected_expressions
# 更新最后选择时间
self.last_selection_time = current_time
# 从选择的表达方式中随机选5个
final_expressions = random.sample(selected_expressions, min(4, len(selected_expressions)))
# 创建表达选择信息
expression_info = ExpressionSelectionInfo()
expression_info.set_selected_expressions(final_expressions)
expression_info.set_selected_expressions(selected_expressions)
logger.info(f"{self.log_prefix} 为当前聊天选择了{len(final_expressions)}个表达方式({mode_desc}")
logger.info(f"{self.log_prefix} 为当前聊天选择了{len(selected_expressions)}个表达方式({mode_desc}")
return [expression_info]
else:
logger.debug(f"{self.log_prefix} 未选择任何表达方式")
@@ -187,104 +94,3 @@ class ExpressionSelectorProcessor(BaseProcessor):
logger.error(f"{self.log_prefix} 处理表达方式选择时出错: {e}")
return []
async def _get_random_expressions(self) -> tuple[List[Dict], List[Dict], List[Dict]]:
"""随机获取表达方式20个style20个grammar20个personality"""
expression_learner = get_expression_learner()
# 获取所有表达方式
(
learnt_style_expressions,
learnt_grammar_expressions,
personality_expressions,
) = await expression_learner.get_expression_by_chat_id(self.subheartflow_id)
# 随机选择
selected_style = random.sample(learnt_style_expressions, min(15, len(learnt_style_expressions)))
selected_grammar = random.sample(learnt_grammar_expressions, min(15, len(learnt_grammar_expressions)))
selected_personality = random.sample(personality_expressions, min(5, len(personality_expressions)))
return selected_style, selected_grammar, selected_personality
async def _select_suitable_expressions_llm(self, chat_info: str) -> List[Dict[str, str]]:
"""使用LLM选择适合的表达方式"""
# 1. 获取35个随机表达方式
style_exprs, grammar_exprs, personality_exprs = await self._get_random_expressions()
# 2. 构建所有表达方式的索引和情境列表
all_expressions = []
all_situations = []
# 添加style表达方式
for expr in style_exprs:
if isinstance(expr, dict) and "situation" in expr and "style" in expr:
expr_with_type = expr.copy()
expr_with_type["type"] = "style"
all_expressions.append(expr_with_type)
all_situations.append(f"{len(all_expressions)}. [语言风格] {expr['situation']}")
# 添加grammar表达方式
for expr in grammar_exprs:
if isinstance(expr, dict) and "situation" in expr and "style" in expr:
expr_with_type = expr.copy()
expr_with_type["type"] = "grammar"
all_expressions.append(expr_with_type)
all_situations.append(f"{len(all_expressions)}. [句法语法] {expr['situation']}")
# 添加personality表达方式
for expr in personality_exprs:
if isinstance(expr, dict) and "situation" in expr and "style" in expr:
expr_with_type = expr.copy()
expr_with_type["type"] = "personality"
all_expressions.append(expr_with_type)
all_situations.append(f"{len(all_expressions)}. [个性表达] {expr['situation']}")
if not all_expressions:
logger.warning(f"{self.log_prefix} 没有找到可用的表达方式")
return []
all_situations_str = "\n".join(all_situations)
# 3. 构建prompt只包含情境不包含完整的表达方式
prompt = (await global_prompt_manager.get_prompt_async("expression_evaluation_prompt")).format(
bot_name=global_config.bot.nickname,
chat_observe_info=chat_info,
all_situations=all_situations_str,
)
# 4. 调用LLM
try:
content, _ = await self.llm_model.generate_response_async(prompt=prompt)
# logger.info(f"{self.log_prefix} LLM返回结果: {content}")
if not content:
logger.warning(f"{self.log_prefix} LLM返回空结果")
return []
# 5. 解析结果
result = repair_json(content)
if isinstance(result, str):
result = json.loads(result)
if not isinstance(result, dict) or "selected_situations" not in result:
logger.error(f"{self.log_prefix} LLM返回格式错误")
return []
selected_indices = result["selected_situations"]
# 根据索引获取完整的表达方式
valid_expressions = []
for idx in selected_indices:
if isinstance(idx, int) and 1 <= idx <= len(all_expressions):
valid_expressions.append(all_expressions[idx - 1]) # 索引从1开始
logger.info(f"{self.log_prefix} LLM从{len(all_expressions)}个情境中选择了{len(valid_expressions)}")
return valid_expressions
except Exception as e:
logger.error(f"{self.log_prefix} LLM处理表达方式选择时出错: {e}")
return []
init_prompt()

View File

@@ -490,7 +490,7 @@ class DefaultReplyer:
learnt_style_expressions,
learnt_grammar_expressions,
personality_expressions,
) = await expression_learner.get_expression_by_chat_id(chat_stream.stream_id)
) = expression_learner.get_expression_by_chat_id(chat_stream.stream_id)
style_habbits = []
grammar_habbits = []

View File

@@ -1,7 +1,5 @@
from src.chat.express.exprssion_learner import get_expression_learner
from src.config.config import global_config
from src.common.logger import get_logger
from src.individuality.individuality import get_individuality
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
import time
@@ -10,6 +8,8 @@ from src.manager.mood_manager import mood_manager
from src.chat.memory_system.Hippocampus import hippocampus_manager
from src.chat.knowledge.knowledge_lib import qa_manager
import random
from src.person_info.person_info import get_person_info_manager
from src.chat.express.expression_selector import expression_selector
import re
from src.person_info.relationship_manager import get_relationship_manager
@@ -27,7 +27,7 @@ def init_prompt():
"""
你可以参考以下的语言习惯,如果情景合适就使用,不要盲目使用,不要生硬使用,而是结合到表达中:
{style_habbits}
请你根据情景使用以下句法,不要盲目使用,不要生硬使用,而是结合到表达中:
请你根据情景使用以下,不要盲目使用,不要生硬使用,而是结合到表达中:
{grammar_habbits}
{memory_prompt}
@@ -91,7 +91,14 @@ class PromptBuilder:
enable_planner: bool = False,
available_actions=None,
) -> str:
prompt_personality = get_individuality().get_prompt(x_person=2, level=2)
core_personality = global_config.personality.personality_core
person_info_manager = get_person_info_manager()
bot_person_id = person_info_manager.get_person_id("system", "bot_id")
short_impression = await person_info_manager.get_value(bot_person_id, "short_impression")
prompt_personality = core_personality
if short_impression:
prompt_personality += short_impression
is_group_chat = bool(chat_stream.group_info)
who_chat_in_group = []
@@ -113,40 +120,8 @@ class PromptBuilder:
relation_prompt += await relationship_manager.build_relationship_info(person)
mood_prompt = mood_manager.get_mood_prompt()
expression_learner = get_expression_learner()
(
learnt_style_expressions,
learnt_grammar_expressions,
personality_expressions,
) = await expression_learner.get_expression_by_chat_id(chat_stream.stream_id)
style_habbits = []
grammar_habbits = []
# 1. learnt_expressions加权随机选2条
if learnt_style_expressions:
weights = [expr["count"] for expr in learnt_style_expressions]
selected_learnt = weighted_sample_no_replacement(learnt_style_expressions, weights, 2)
for expr in selected_learnt:
if isinstance(expr, dict) and "situation" in expr and "style" in expr:
style_habbits.append(f"{expr['situation']}时,使用 {expr['style']}")
# 2. learnt_grammar_expressions加权随机选2条
if learnt_grammar_expressions:
weights = [expr["count"] for expr in learnt_grammar_expressions]
selected_learnt = weighted_sample_no_replacement(learnt_grammar_expressions, weights, 2)
for expr in selected_learnt:
if isinstance(expr, dict) and "situation" in expr and "style" in expr:
grammar_habbits.append(f"{expr['situation']}时,使用 {expr['style']}")
# 3. personality_expressions随机选1条
if personality_expressions:
expr = random.choice(personality_expressions)
if isinstance(expr, dict) and "situation" in expr and "style" in expr:
style_habbits.append(f"{expr['situation']}时,使用 {expr['style']}")
style_habbits_str = "\n".join(style_habbits)
grammar_habbits_str = "\n".join(grammar_habbits)
memory_prompt = ""
if global_config.memory.enable_memory:
related_memory = await hippocampus_manager.get_memory_from_text(
text=message_txt, max_memory_num=2, max_memory_length=2, max_depth=3, fast_retrieval=False
@@ -174,6 +149,37 @@ class PromptBuilder:
show_actions=True,
)
message_list_before_now_half = get_raw_msg_before_timestamp_with_chat(
chat_id=chat_stream.stream_id,
timestamp=time.time(),
limit=global_config.focus_chat.observation_context_size * 0.5,
)
chat_talking_prompt_half = build_readable_messages(
message_list_before_now_half,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="relative",
read_mark=0.0,
show_actions=True,
)
expressions = expression_selector.select_suitable_expressions_llm(chat_stream.stream_id, chat_talking_prompt_half)
style_habbits = []
grammar_habbits = []
if expressions:
for expr in expressions:
if isinstance(expr, dict) and "situation" in expr and "style" in expr:
expr_type = expr.get("type", "style")
if expr_type == "grammar":
grammar_habbits.append(f"{expr['situation']}时,使用 {expr['style']}")
else:
style_habbits.append(f"{expr['situation']}时,使用 {expr['style']}")
else:
logger.debug("没有从处理器获得表达方式,将使用空的表达方式")
style_habbits_str = "\n".join(style_habbits)
grammar_habbits_str = "\n".join(grammar_habbits)
# 关键词检测与反应
keywords_reaction_prompt = ""
try:

View File

@@ -599,7 +599,6 @@ def build_readable_messages(
copy_messages.sort(key=lambda x: x.get("time", 0))
if read_mark <= 0:
print(f"read_mark: {read_mark}")
# 没有有效的 read_mark直接格式化所有消息
formatted_string, _, pic_id_mapping, _ = _build_readable_messages_internal(
copy_messages, replace_bot_name, merge_messages, timestamp_mode, truncate

View File

@@ -1,5 +1,7 @@
from typing import Optional
import asyncio
from src.llm_models.utils_model import LLMRequest
from .personality import Personality
from .identity import Identity
from .expression_style import PersonalityExpression
@@ -10,6 +12,7 @@ import hashlib
from rich.traceback import install
from src.common.logger import get_logger
from src.person_info.person_info import get_person_info_manager
from src.config.config import global_config
install(extra_lines=3)
@@ -29,6 +32,11 @@ class Individuality:
self.bot_person_id = ""
self.meta_info_file_path = "data/personality/meta.json"
self.model = LLMRequest(
model=global_config.model.utils,
request_type="individuality.compress",
)
async def initialize(
self,
bot_nickname: str,
@@ -90,6 +98,11 @@ class Individuality:
)
logger.info("已将完整人设更新到bot的impression中")
# 创建压缩版本的short_impression
asyncio.create_task(self._create_compressed_impression(
personality_core, personality_sides, identity_detail
))
asyncio.create_task(self.express_style.extract_and_store_personality_expressions())
def to_dict(self) -> dict:
@@ -357,6 +370,71 @@ class Individuality:
logger.error(f"解析info_list失败: {info_list_json}")
return keywords
async def _create_compressed_impression(
self, personality_core: str, personality_sides: list, identity_detail: list
) -> str:
"""使用LLM创建压缩版本的impression
Args:
personality_core: 核心人格
personality_sides: 人格侧面列表
identity_detail: 身份细节列表
Returns:
str: 压缩后的impression文本
"""
# 核心人格保持不变
compressed_parts = []
if personality_core:
compressed_parts.append(f"{personality_core}")
# 准备需要压缩的内容
content_to_compress = []
if personality_sides:
content_to_compress.append(f"人格特质: {''.join(personality_sides)}")
if identity_detail:
content_to_compress.append(f"身份背景: {''.join(identity_detail)}")
if not content_to_compress:
# 如果没有需要压缩的内容,直接返回核心人格
result = "".join(compressed_parts)
return result + "" if result else ""
# 使用LLM压缩其他内容
try:
compress_content = "".join(content_to_compress)
prompt = f"""请将以下人设信息进行简洁压缩,保留主要内容,用简练的中文表达:
{compress_content}
要求:
1. 保持原意不变,尽量使用原文
2. 尽量简洁不超过30字
3. 直接输出压缩后的内容,不要解释"""
response,(_,_) = await self.model.generate_response_async(
prompt=prompt,
)
if response.strip():
compressed_parts.append(response.strip())
logger.info(f"精简人格侧面: {response.strip()}")
else:
logger.error(f"使用LLM压缩人设时出错: {response}")
except Exception as e:
logger.error(f"使用LLM压缩人设时出错: {e}")
result = "".join(compressed_parts)
# 更新short_impression字段
if result:
person_info_manager = get_person_info_manager()
await person_info_manager.update_one_field(
self.bot_person_id, "short_impression", result
)
logger.info("已将压缩人设更新到bot的short_impression中")
individuality = None

View File

@@ -109,6 +109,7 @@ class LLMRequest:
def __init__(self, model: dict, **kwargs):
# 将大写的配置键转换为小写并从config中获取实际值
try:
# print(f"model['provider']: {model['provider']}")
self.api_key = os.environ[f"{model['provider']}_KEY"]
self.base_url = os.environ[f"{model['provider']}_BASE_URL"]
except AttributeError as e: