fix:优化记忆提取,修复破损的tool信息

This commit is contained in:
SengokuCola
2025-05-27 18:21:05 +08:00
parent 548a583cc7
commit 52f7cc3762
9 changed files with 110 additions and 50 deletions

View File

@@ -61,10 +61,10 @@ class ExpressionLearner:
def __init__(self) -> None: def __init__(self) -> None:
# TODO: API-Adapter修改标记 # TODO: API-Adapter修改标记
self.express_learn_model: LLMRequest = LLMRequest( self.express_learn_model: LLMRequest = LLMRequest(
model=global_config.model.normal, model=global_config.model.focus_expressor,
temperature=0.1, temperature=0.1,
max_tokens=256, max_tokens=256,
request_type="response_heartflow", request_type="learn_expression",
) )
async def get_expression_by_chat_id(self, chat_id: str) -> Tuple[List[Dict[str, str]], List[Dict[str, str]]]: async def get_expression_by_chat_id(self, chat_id: str) -> Tuple[List[Dict[str, str]], List[Dict[str, str]]]:

View File

@@ -19,6 +19,7 @@ from src.chat.focus_chat.info_processors.working_memory_processor import Working
from src.chat.focus_chat.info_processors.action_processor import ActionProcessor from src.chat.focus_chat.info_processors.action_processor import ActionProcessor
from src.chat.heart_flow.observation.hfcloop_observation import HFCloopObservation from src.chat.heart_flow.observation.hfcloop_observation import HFCloopObservation
from src.chat.heart_flow.observation.working_observation import WorkingMemoryObservation from src.chat.heart_flow.observation.working_observation import WorkingMemoryObservation
from src.chat.heart_flow.observation.structure_observation import StructureObservation
from src.chat.focus_chat.info_processors.tool_processor import ToolProcessor from src.chat.focus_chat.info_processors.tool_processor import ToolProcessor
from src.chat.focus_chat.expressors.default_expressor import DefaultExpressor from src.chat.focus_chat.expressors.default_expressor import DefaultExpressor
from src.chat.focus_chat.memory_activator import MemoryActivator from src.chat.focus_chat.memory_activator import MemoryActivator
@@ -97,6 +98,7 @@ class HeartFChatting:
self.log_prefix: str = str(chat_id) # Initial default, will be updated self.log_prefix: str = str(chat_id) # Initial default, will be updated
self.hfcloop_observation = HFCloopObservation(observe_id=self.stream_id) self.hfcloop_observation = HFCloopObservation(observe_id=self.stream_id)
self.chatting_observation = observations[0] self.chatting_observation = observations[0]
self.structure_observation = StructureObservation(observe_id=self.stream_id)
self.memory_activator = MemoryActivator() self.memory_activator = MemoryActivator()
self.working_memory = WorkingMemory(chat_id=self.stream_id) self.working_memory = WorkingMemory(chat_id=self.stream_id)
@@ -415,10 +417,12 @@ class HeartFChatting:
await self.chatting_observation.observe() await self.chatting_observation.observe()
await self.working_observation.observe() await self.working_observation.observe()
await self.hfcloop_observation.observe() await self.hfcloop_observation.observe()
await self.structure_observation.observe()
observations: List[Observation] = [] observations: List[Observation] = []
observations.append(self.chatting_observation) observations.append(self.chatting_observation)
observations.append(self.working_observation) observations.append(self.working_observation)
observations.append(self.hfcloop_observation) observations.append(self.hfcloop_observation)
observations.append(self.structure_observation)
loop_observation_info = { loop_observation_info = {
"observations": observations, "observations": observations,

View File

@@ -76,7 +76,11 @@ class StructuredInfo:
""" """
info_str = "" info_str = ""
# print(f"self.data: {self.data}")
for key, value in self.data.items(): for key, value in self.data.items():
# print(f"key: {key}, value: {value}")
info_str += f"信息类型:{key},信息内容:{value}\n" info_str += f"信息类型:{key},信息内容:{value}\n"
return info_str return info_str

View File

@@ -75,10 +75,12 @@ class ToolProcessor(BaseProcessor):
result, used_tools, prompt = await self.execute_tools(observation, running_memorys) result, used_tools, prompt = await self.execute_tools(observation, running_memorys)
# 更新WorkingObservation中的结构化信息 # 更新WorkingObservation中的结构化信息
logger.debug(f"工具调用结果: {result}")
for observation in observations: for observation in observations:
if isinstance(observation, StructureObservation): if isinstance(observation, StructureObservation):
for structured_info in result: for structured_info in result:
logger.debug(f"{self.log_prefix} 更新WorkingObservation中的结构化信息: {structured_info}") # logger.debug(f"{self.log_prefix} 更新WorkingObservation中的结构化信息: {structured_info}")
observation.add_structured_info(structured_info) observation.add_structured_info(structured_info)
working_infos = observation.get_observe_info() working_infos = observation.get_observe_info()
@@ -87,7 +89,12 @@ class ToolProcessor(BaseProcessor):
structured_info = StructuredInfo() structured_info = StructuredInfo()
if working_infos: if working_infos:
for working_info in working_infos: for working_info in working_infos:
structured_info.set_info(working_info.get("type"), working_info.get("content")) # print(f"working_info: {working_info}")
# print(f"working_info.get('type'): {working_info.get('type')}")
# print(f"working_info.get('content'): {working_info.get('content')}")
structured_info.set_info(key=working_info.get('type'), value=working_info.get('content'))
# info = structured_info.get_processed_info()
# print(f"info: {info}")
return [structured_info] return [structured_info]
@@ -155,7 +162,7 @@ class ToolProcessor(BaseProcessor):
) )
# 调用LLM专注于工具使用 # 调用LLM专注于工具使用
# logger.debug(f"开始执行工具调用{prompt}") logger.debug(f"开始执行工具调用{prompt}")
response, _, tool_calls = await self.llm_model.generate_response_tool_async(prompt=prompt, tools=tools) response, _, tool_calls = await self.llm_model.generate_response_tool_async(prompt=prompt, tools=tools)
logger.debug(f"获取到工具原始输出:\n{tool_calls}") logger.debug(f"获取到工具原始输出:\n{tool_calls}")

View File

@@ -4,24 +4,58 @@ from src.chat.heart_flow.observation.hfcloop_observation import HFCloopObservati
from src.llm_models.utils_model import LLMRequest from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config from src.config.config import global_config
from src.common.logger_manager import get_logger from src.common.logger_manager import get_logger
from src.chat.utils.prompt_builder import Prompt from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from datetime import datetime from datetime import datetime
from src.chat.memory_system.Hippocampus import HippocampusManager from src.chat.memory_system.Hippocampus import HippocampusManager
from typing import List, Dict from typing import List, Dict
import difflib import difflib
import json
from json_repair import repair_json
logger = get_logger("memory_activator") logger = get_logger("memory_activator")
def get_keywords_from_json(json_str):
"""
从JSON字符串中提取关键词列表
Args:
json_str: JSON格式的字符串
Returns:
List[str]: 关键词列表
"""
try:
# 使用repair_json修复JSON格式
fixed_json = repair_json(json_str)
# 如果repair_json返回的是字符串需要解析为Python对象
if isinstance(fixed_json, str):
result = json.loads(fixed_json)
else:
# 如果repair_json直接返回了字典对象直接使用
result = fixed_json
# 提取关键词
keywords = result.get("keywords", [])
return keywords
except Exception as e:
logger.error(f"解析关键词JSON失败: {e}")
return []
def init_prompt(): def init_prompt():
# --- Group Chat Prompt --- # --- Group Chat Prompt ---
memory_activator_prompt = """ memory_activator_prompt = """
你是一个记忆分析器,你需要根据以下信息来进行会议 你是一个记忆分析器,你需要根据以下信息来进行回忆
以下是一场聊天中的信息,请根据这些信息,总结出几个关键词作为记忆回忆的触发词 以下是一场聊天中的信息,请根据这些信息,总结出几个关键词作为记忆回忆的触发词
{obs_info_text} {obs_info_text}
历史关键词(请避免重复提取这些关键词):
{cached_keywords}
请输出一个json格式包含以下字段 请输出一个json格式包含以下字段
{{ {{
"keywords": ["关键词1", "关键词2", "关键词3",......] "keywords": ["关键词1", "关键词2", "关键词3",......]
@@ -39,6 +73,7 @@ class MemoryActivator:
model=global_config.model.memory_summary, temperature=0.7, max_tokens=50, request_type="chat_observation" model=global_config.model.memory_summary, temperature=0.7, max_tokens=50, request_type="chat_observation"
) )
self.running_memory = [] self.running_memory = []
self.cached_keywords = set() # 用于缓存历史关键词
async def activate_memory(self, observations) -> List[Dict]: async def activate_memory(self, observations) -> List[Dict]:
""" """
@@ -61,31 +96,47 @@ class MemoryActivator:
elif isinstance(observation, HFCloopObservation): elif isinstance(observation, HFCloopObservation):
obs_info_text += observation.get_observe_info() obs_info_text += observation.get_observe_info()
logger.debug(f"回忆待检索内容obs_info_text: {obs_info_text}") # logger.debug(f"回忆待检索内容obs_info_text: {obs_info_text}")
# prompt = await global_prompt_manager.format_prompt( # 将缓存的关键词转换为字符串用于prompt
# "memory_activator_prompt", cached_keywords_str = ", ".join(self.cached_keywords) if self.cached_keywords else "暂无历史关键词"
# obs_info_text=obs_info_text,
# )
# logger.debug(f"prompt: {prompt}") prompt = await global_prompt_manager.format_prompt(
"memory_activator_prompt",
# response = await self.summary_model.generate_response(prompt) obs_info_text=obs_info_text,
cached_keywords=cached_keywords_str,
# logger.debug(f"response: {response}")
# # 只取response的第一个元素字符串
# response_str = response[0]
# keywords = list(get_keywords_from_json(response_str))
# #调用记忆系统获取相关记忆
# related_memory = await HippocampusManager.get_instance().get_memory_from_topic(
# valid_keywords=keywords, max_memory_num=3, max_memory_length=2, max_depth=3
# )
related_memory = await HippocampusManager.get_instance().get_memory_from_text(
text=obs_info_text, max_memory_num=5, max_memory_length=2, max_depth=3, fast_retrieval=True
) )
logger.debug(f"prompt: {prompt}")
response = await self.summary_model.generate_response(prompt)
logger.debug(f"response: {response}")
# 只取response的第一个元素字符串
response_str = response[0]
keywords = list(get_keywords_from_json(response_str))
# 更新关键词缓存
if keywords:
# 限制缓存大小最多保留10个关键词
if len(self.cached_keywords) > 10:
# 转换为列表,移除最早的关键词
cached_list = list(self.cached_keywords)
self.cached_keywords = set(cached_list[-8:])
# 添加新的关键词到缓存
self.cached_keywords.update(keywords)
logger.debug(f"更新关键词缓存: {self.cached_keywords}")
#调用记忆系统获取相关记忆
related_memory = await HippocampusManager.get_instance().get_memory_from_topic(
valid_keywords=keywords, max_memory_num=3, max_memory_length=2, max_depth=3
)
# related_memory = await HippocampusManager.get_instance().get_memory_from_text(
# text=obs_info_text, max_memory_num=5, max_memory_length=2, max_depth=3, fast_retrieval=False
# )
# logger.debug(f"获取到的记忆: {related_memory}") # logger.debug(f"获取到的记忆: {related_memory}")
# 激活时所有已有记忆的duration+1达到3则移除 # 激活时所有已有记忆的duration+1达到3则移除

View File

@@ -36,9 +36,8 @@ def init_prompt():
{mind_info_block} {mind_info_block}
{cycle_info_block} {cycle_info_block}
{action_available_block}
请综合分析聊天内容和你看到的新消息参考聊天规划选择合适的action: 请综合分析聊天内容和你看到的新消息参考聊天规划选择合适的action:
注意除了下面动作选项之外你在群聊里不能做其他任何事情这是你能力的边界现在请你选择合适的action:
{action_options_text} {action_options_text}
@@ -126,13 +125,6 @@ class ActionPlanner:
action = "no_reply" action = "no_reply"
reasoning = f"之前选择的动作{action}已被移除,原因: {reason}" reasoning = f"之前选择的动作{action}已被移除,原因: {reason}"
using_actions = self.action_manager.get_using_actions()
action_available_block = ""
for action_name, action_info in using_actions.items():
action_description = action_info["description"]
action_available_block += f"\n你在聊天中可以使用{action_name},这个动作的描述是{action_description}\n"
action_available_block += "注意,除了上述动作选项之外,你在群聊里不能做其他任何事情,这是你能力的边界\n"
# 继续处理其他信息 # 继续处理其他信息
for info in all_plan_info: for info in all_plan_info:
if isinstance(info, ObsInfo): if isinstance(info, ObsInfo):
@@ -147,7 +139,8 @@ class ActionPlanner:
elif isinstance(info, SelfInfo): elif isinstance(info, SelfInfo):
self_info = info.get_processed_info() self_info = info.get_processed_info()
elif isinstance(info, StructuredInfo): elif isinstance(info, StructuredInfo):
_structured_info = info.get_data() structured_info = info.get_processed_info()
# print(f"structured_info: {structured_info}")
elif not isinstance(info, ActionInfo): # 跳过已处理的ActionInfo elif not isinstance(info, ActionInfo): # 跳过已处理的ActionInfo
extra_info.append(info.get_processed_info()) extra_info.append(info.get_processed_info())
@@ -178,11 +171,10 @@ class ActionPlanner:
chat_target_info=None, chat_target_info=None,
observed_messages_str=observed_messages_str, # <-- Pass local variable observed_messages_str=observed_messages_str, # <-- Pass local variable
current_mind=current_mind, # <-- Pass argument current_mind=current_mind, # <-- Pass argument
# structured_info=structured_info, # <-- Pass SubMind info structured_info=structured_info, # <-- Pass SubMind info
current_available_actions=current_available_actions, # <-- Pass determined actions current_available_actions=current_available_actions, # <-- Pass determined actions
cycle_info=cycle_info, # <-- Pass cycle info cycle_info=cycle_info, # <-- Pass cycle info
extra_info=extra_info, extra_info=extra_info,
action_available_block=action_available_block,
) )
# --- 调用 LLM (普通文本生成) --- # --- 调用 LLM (普通文本生成) ---
@@ -268,7 +260,7 @@ class ActionPlanner:
chat_target_info: Optional[dict], # Now passed as argument chat_target_info: Optional[dict], # Now passed as argument
observed_messages_str: str, observed_messages_str: str,
current_mind: Optional[str], current_mind: Optional[str],
action_available_block: str, structured_info: Optional[str],
current_available_actions: Dict[str, ActionInfo], current_available_actions: Dict[str, ActionInfo],
cycle_info: Optional[str], cycle_info: Optional[str],
extra_info: list[str], extra_info: list[str],
@@ -326,7 +318,8 @@ class ActionPlanner:
action_options_block += using_action_prompt action_options_block += using_action_prompt
extra_info_block = "\n".join(extra_info) extra_info_block = "\n".join(extra_info)
if extra_info: extra_info_block += f"\n{structured_info}"
if extra_info or structured_info:
extra_info_block = f"以下是一些额外的信息,现在请你阅读以下内容,进行决策\n{extra_info_block}\n以上是一些额外的信息,现在请你阅读以下内容,进行决策" extra_info_block = f"以下是一些额外的信息,现在请你阅读以下内容,进行决策\n{extra_info_block}\n以上是一些额外的信息,现在请你阅读以下内容,进行决策"
else: else:
extra_info_block = "" extra_info_block = ""
@@ -343,7 +336,7 @@ class ActionPlanner:
mind_info_block=mind_info_block, mind_info_block=mind_info_block,
cycle_info_block=cycle_info, cycle_info_block=cycle_info,
action_options_text=action_options_block, action_options_text=action_options_block,
action_available_block=action_available_block, # action_available_block=action_available_block,
extra_info_block=extra_info_block, extra_info_block=extra_info_block,
moderation_prompt=moderation_prompt_block, moderation_prompt=moderation_prompt_block,
) )

View File

@@ -526,12 +526,12 @@ class Hippocampus:
if not keywords: if not keywords:
return [] return []
# logger.info(f"提取的关键词: {', '.join(keywords)}") logger.info(f"提取的关键词: {', '.join(keywords)}")
# 过滤掉不存在于记忆图中的关键词 # 过滤掉不存在于记忆图中的关键词
valid_keywords = [keyword for keyword in keywords if keyword in self.memory_graph.G] valid_keywords = [keyword for keyword in keywords if keyword in self.memory_graph.G]
if not valid_keywords: if not valid_keywords:
# logger.info("没有找到有效的关键词节点") logger.info("没有找到有效的关键词节点")
return [] return []
logger.debug(f"有效的关键词: {', '.join(valid_keywords)}") logger.debug(f"有效的关键词: {', '.join(valid_keywords)}")

View File

@@ -33,10 +33,10 @@ def init_prompt() -> None:
class PersonalityExpression: class PersonalityExpression:
def __init__(self): def __init__(self):
self.express_learn_model: LLMRequest = LLMRequest( self.express_learn_model: LLMRequest = LLMRequest(
model=global_config.model.normal, model=global_config.model.focus_expressor,
temperature=0.1, temperature=0.1,
max_tokens=256, max_tokens=256,
request_type="response_heartflow", request_type="learn_expression",
) )
self.meta_file_path = os.path.join("data", "expression", "personality", "expression_style_meta.json") self.meta_file_path = os.path.join("data", "expression", "personality", "expression_style_meta.json")
self.expressions_file_path = os.path.join("data", "expression", "personality", "expressions.json") self.expressions_file_path = os.path.join("data", "expression", "personality", "expressions.json")

View File

@@ -255,7 +255,8 @@ provider = "SILICONFLOW"
pri_in = 2 pri_in = 2
pri_out = 8 pri_out = 8
#表达器模型,用于生成表达方式 #表达器模型,用于表达麦麦的想法,生成最终回复,对语言风格影响极大
#也用于表达方式学习
[model.focus_expressor] [model.focus_expressor]
name = "Pro/deepseek-ai/DeepSeek-V3" name = "Pro/deepseek-ai/DeepSeek-V3"
provider = "SILICONFLOW" provider = "SILICONFLOW"