knowledge系统对应修改
This commit is contained in:
@@ -19,14 +19,10 @@ class CompareNumbersTool(BaseTool):
|
||||
|
||||
name = "compare_numbers"
|
||||
description = "使用工具 比较两个数的大小,返回较大的数"
|
||||
parameters = {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"num1": {"type": "number", "description": "第一个数字"},
|
||||
"num2": {"type": "number", "description": "第二个数字"},
|
||||
},
|
||||
"required": ["num1", "num2"],
|
||||
}
|
||||
parameters = [
|
||||
("num1", "number", "第一个数字", True),
|
||||
("num2", "number", "第二个数字", True),
|
||||
]
|
||||
|
||||
async def execute(self, function_args: dict[str, Any]) -> dict[str, Any]:
|
||||
"""执行比较两个数的大小
|
||||
|
||||
@@ -8,7 +8,10 @@ from . import prompt_template
|
||||
from .knowledge_lib import INVALID_ENTITY
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
from json_repair import repair_json
|
||||
|
||||
|
||||
def _extract_json_from_text(text: str):
|
||||
# sourcery skip: assign-if-exp, extract-method
|
||||
"""从文本中提取JSON数据的高容错方法"""
|
||||
if text is None:
|
||||
logger.error("输入文本为None")
|
||||
@@ -42,7 +45,9 @@ def _extract_json_from_text(text: str):
|
||||
logger.error(f"JSON提取失败: {e}, 原始文本: {text[:100] if text else 'None'}...")
|
||||
return []
|
||||
|
||||
|
||||
def _entity_extract(llm_req: LLMRequest, paragraph: str) -> List[str]:
|
||||
# sourcery skip: reintroduce-else, swap-if-else-branches, use-named-expression
|
||||
"""对段落进行实体提取,返回提取出的实体列表(JSON格式)"""
|
||||
entity_extract_context = prompt_template.build_entity_extract_context(paragraph)
|
||||
|
||||
@@ -50,15 +55,11 @@ def _entity_extract(llm_req: LLMRequest, paragraph: str) -> List[str]:
|
||||
try:
|
||||
# 如果当前已有事件循环在运行,使用它
|
||||
loop = asyncio.get_running_loop()
|
||||
future = asyncio.run_coroutine_threadsafe(
|
||||
llm_req.generate_response_async(entity_extract_context), loop
|
||||
)
|
||||
response, (reasoning_content, model_name) = future.result()
|
||||
future = asyncio.run_coroutine_threadsafe(llm_req.generate_response_async(entity_extract_context), loop)
|
||||
response, _ = future.result()
|
||||
except RuntimeError:
|
||||
# 如果没有运行中的事件循环,直接使用 asyncio.run
|
||||
response, (reasoning_content, model_name) = asyncio.run(
|
||||
llm_req.generate_response_async(entity_extract_context)
|
||||
)
|
||||
response, _ = asyncio.run(llm_req.generate_response_async(entity_extract_context))
|
||||
|
||||
# 添加调试日志
|
||||
logger.debug(f"LLM返回的原始响应: {response}")
|
||||
@@ -67,19 +68,17 @@ def _entity_extract(llm_req: LLMRequest, paragraph: str) -> List[str]:
|
||||
|
||||
# 检查返回的是否为有效的实体列表
|
||||
if not isinstance(entity_extract_result, list):
|
||||
# 如果不是列表,可能是字典格式,尝试从中提取列表
|
||||
if isinstance(entity_extract_result, dict):
|
||||
# 尝试常见的键名
|
||||
for key in ['entities', 'result', 'data', 'items']:
|
||||
if key in entity_extract_result and isinstance(entity_extract_result[key], list):
|
||||
entity_extract_result = entity_extract_result[key]
|
||||
break
|
||||
else:
|
||||
# 如果找不到合适的列表,抛出异常
|
||||
raise Exception(f"实体提取结果格式错误,期望列表但得到: {type(entity_extract_result)}")
|
||||
else:
|
||||
raise Exception(f"实体提取结果格式错误,期望列表但得到: {type(entity_extract_result)}")
|
||||
if not isinstance(entity_extract_result, dict):
|
||||
raise ValueError(f"实体提取结果格式错误,期望列表但得到: {type(entity_extract_result)}")
|
||||
|
||||
# 尝试常见的键名
|
||||
for key in ["entities", "result", "data", "items"]:
|
||||
if key in entity_extract_result and isinstance(entity_extract_result[key], list):
|
||||
entity_extract_result = entity_extract_result[key]
|
||||
break
|
||||
else:
|
||||
# 如果找不到合适的列表,抛出异常
|
||||
raise ValueError(f"实体提取结果格式错误,期望列表但得到: {type(entity_extract_result)}")
|
||||
# 过滤无效实体
|
||||
entity_extract_result = [
|
||||
entity
|
||||
@@ -87,8 +86,8 @@ def _entity_extract(llm_req: LLMRequest, paragraph: str) -> List[str]:
|
||||
if (entity is not None) and (entity != "") and (entity not in INVALID_ENTITY)
|
||||
]
|
||||
|
||||
if len(entity_extract_result) == 0:
|
||||
raise Exception("实体提取结果为空")
|
||||
if not entity_extract_result:
|
||||
raise ValueError("实体提取结果为空")
|
||||
|
||||
return entity_extract_result
|
||||
|
||||
@@ -103,15 +102,11 @@ def _rdf_triple_extract(llm_req: LLMRequest, paragraph: str, entities: list) ->
|
||||
try:
|
||||
# 如果当前已有事件循环在运行,使用它
|
||||
loop = asyncio.get_running_loop()
|
||||
future = asyncio.run_coroutine_threadsafe(
|
||||
llm_req.generate_response_async(rdf_extract_context), loop
|
||||
)
|
||||
response, (reasoning_content, model_name) = future.result()
|
||||
future = asyncio.run_coroutine_threadsafe(llm_req.generate_response_async(rdf_extract_context), loop)
|
||||
response, _ = future.result()
|
||||
except RuntimeError:
|
||||
# 如果没有运行中的事件循环,直接使用 asyncio.run
|
||||
response, (reasoning_content, model_name) = asyncio.run(
|
||||
llm_req.generate_response_async(rdf_extract_context)
|
||||
)
|
||||
response, _ = asyncio.run(llm_req.generate_response_async(rdf_extract_context))
|
||||
|
||||
# 添加调试日志
|
||||
logger.debug(f"RDF LLM返回的原始响应: {response}")
|
||||
@@ -120,23 +115,26 @@ def _rdf_triple_extract(llm_req: LLMRequest, paragraph: str, entities: list) ->
|
||||
|
||||
# 检查返回的是否为有效的三元组列表
|
||||
if not isinstance(rdf_triple_result, list):
|
||||
# 如果不是列表,可能是字典格式,尝试从中提取列表
|
||||
if isinstance(rdf_triple_result, dict):
|
||||
# 尝试常见的键名
|
||||
for key in ['triples', 'result', 'data', 'items']:
|
||||
if key in rdf_triple_result and isinstance(rdf_triple_result[key], list):
|
||||
rdf_triple_result = rdf_triple_result[key]
|
||||
break
|
||||
else:
|
||||
# 如果找不到合适的列表,抛出异常
|
||||
raise Exception(f"RDF三元组提取结果格式错误,期望列表但得到: {type(rdf_triple_result)}")
|
||||
else:
|
||||
raise Exception(f"RDF三元组提取结果格式错误,期望列表但得到: {type(rdf_triple_result)}")
|
||||
if not isinstance(rdf_triple_result, dict):
|
||||
raise ValueError(f"RDF三元组提取结果格式错误,期望列表但得到: {type(rdf_triple_result)}")
|
||||
|
||||
# 尝试常见的键名
|
||||
for key in ["triples", "result", "data", "items"]:
|
||||
if key in rdf_triple_result and isinstance(rdf_triple_result[key], list):
|
||||
rdf_triple_result = rdf_triple_result[key]
|
||||
break
|
||||
else:
|
||||
# 如果找不到合适的列表,抛出异常
|
||||
raise ValueError(f"RDF三元组提取结果格式错误,期望列表但得到: {type(rdf_triple_result)}")
|
||||
# 验证三元组格式
|
||||
for triple in rdf_triple_result:
|
||||
if not isinstance(triple, list) or len(triple) != 3 or (triple[0] is None or triple[1] is None or triple[2] is None) or "" in triple:
|
||||
raise Exception("RDF提取结果格式错误")
|
||||
if (
|
||||
not isinstance(triple, list)
|
||||
or len(triple) != 3
|
||||
or (triple[0] is None or triple[1] is None or triple[2] is None)
|
||||
or "" in triple
|
||||
):
|
||||
raise ValueError("RDF提取结果格式错误")
|
||||
|
||||
return rdf_triple_result
|
||||
|
||||
|
||||
@@ -162,7 +162,7 @@ class KGManager:
|
||||
ent_hash_list = list(ent_hash_list)
|
||||
|
||||
synonym_hash_set = set()
|
||||
synonym_result = dict()
|
||||
synonym_result = {}
|
||||
|
||||
# rich 进度条
|
||||
total = len(ent_hash_list)
|
||||
|
||||
@@ -5,13 +5,15 @@ from .global_logger import logger
|
||||
|
||||
# from . import prompt_template
|
||||
from .embedding_store import EmbeddingManager
|
||||
|
||||
# from .llm_client import LLMClient
|
||||
from .kg_manager import KGManager
|
||||
|
||||
# from .lpmmconfig import global_config
|
||||
from .utils.dyn_topk import dyn_select_top_k
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
from src.chat.utils.utils import get_embedding
|
||||
from src.config.config import global_config
|
||||
from src.config.config import global_config, model_config
|
||||
|
||||
MAX_KNOWLEDGE_LENGTH = 10000 # 最大知识长度
|
||||
|
||||
@@ -21,15 +23,10 @@ class QAManager:
|
||||
self,
|
||||
embed_manager: EmbeddingManager,
|
||||
kg_manager: KGManager,
|
||||
|
||||
):
|
||||
self.embed_manager = embed_manager
|
||||
self.kg_manager = kg_manager
|
||||
# TODO: API-Adapter修改标记
|
||||
self.qa_model = LLMRequest(
|
||||
model=global_config.model.lpmm_qa,
|
||||
request_type="lpmm.qa"
|
||||
)
|
||||
self.qa_model = LLMRequest(model_set=model_config.model_task_config.lpmm_qa, request_type="lpmm.qa")
|
||||
|
||||
async def process_query(self, question: str) -> Tuple[List[Tuple[str, float, float]], Optional[Dict[str, float]]]:
|
||||
"""处理查询"""
|
||||
|
||||
Reference in New Issue
Block a user