Merge remote-tracking branch 'origin/main-fix' into main-fix
# Conflicts: # src/plugins/personality/big5_test.py # src/plugins/personality/combined_test.py # src/plugins/personality/questionnaire.py # src/plugins/personality/renqingziji.py # src/plugins/personality/scene.py
This commit is contained in:
4
bot.py
4
bot.py
@@ -221,7 +221,9 @@ def check_eula():
|
||||
# 如果EULA或隐私条款有更新,提示用户重新确认
|
||||
if eula_updated or privacy_updated:
|
||||
print("EULA或隐私条款内容已更新,请在阅读后重新确认,继续运行视为同意更新后的以上两款协议")
|
||||
print(f'输入"同意"或"confirmed"或设置环境变量"EULA_AGREE={eula_new_hash}"和"PRIVACY_AGREE={privacy_new_hash}"继续运行')
|
||||
print(
|
||||
f'输入"同意"或"confirmed"或设置环境变量"EULA_AGREE={eula_new_hash}"和"PRIVACY_AGREE={privacy_new_hash}"继续运行'
|
||||
)
|
||||
while True:
|
||||
user_input = input().strip().lower()
|
||||
if user_input in ["同意", "confirmed"]:
|
||||
|
||||
@@ -147,9 +147,7 @@ enable_check = false # 是否要检查表情包是不是合适的喵
|
||||
check_prompt = "符合公序良俗" # 检查表情包的标准呢
|
||||
|
||||
[others]
|
||||
enable_advance_output = true # 是否要显示更多的运行信息呢
|
||||
enable_kuuki_read = true # 让机器人能够"察言观色"喵
|
||||
enable_debug_output = false # 是否启用调试输出喵
|
||||
enable_friend_chat = false # 是否启用好友聊天喵
|
||||
|
||||
[groups]
|
||||
|
||||
@@ -115,9 +115,7 @@ talk_frequency_down = [] # 降低回复频率的群号
|
||||
ban_user_id = [] # 禁止回复的用户QQ号
|
||||
|
||||
[others]
|
||||
enable_advance_output = true # 是否启用高级输出
|
||||
enable_kuuki_read = true # 是否启用读空气功能
|
||||
enable_debug_output = false # 是否启用调试输出
|
||||
enable_friend_chat = false # 是否启用好友聊天
|
||||
|
||||
# 模型配置
|
||||
|
||||
@@ -320,7 +320,7 @@ sudo systemctl enable bot.service # 启动bot服务
|
||||
sudo systemctl status bot.service # 检查bot服务状态
|
||||
```
|
||||
|
||||
```python
|
||||
```bash
|
||||
python bot.py # 运行麦麦
|
||||
```
|
||||
|
||||
|
||||
BIN
requirements.txt
BIN
requirements.txt
Binary file not shown.
@@ -31,9 +31,10 @@ _handler_registry: Dict[str, List[int]] = {}
|
||||
current_file_path = Path(__file__).resolve()
|
||||
LOG_ROOT = "logs"
|
||||
|
||||
ENABLE_ADVANCE_OUTPUT = False
|
||||
SIMPLE_OUTPUT = os.getenv("SIMPLE_OUTPUT", "false")
|
||||
print(f"SIMPLE_OUTPUT: {SIMPLE_OUTPUT}")
|
||||
|
||||
if ENABLE_ADVANCE_OUTPUT:
|
||||
if not SIMPLE_OUTPUT:
|
||||
# 默认全局配置
|
||||
DEFAULT_CONFIG = {
|
||||
# 日志级别配置
|
||||
@@ -85,7 +86,6 @@ MEMORY_STYLE_CONFIG = {
|
||||
},
|
||||
}
|
||||
|
||||
# 海马体日志样式配置
|
||||
SENDER_STYLE_CONFIG = {
|
||||
"advanced": {
|
||||
"console_format": (
|
||||
@@ -152,17 +152,17 @@ CHAT_STYLE_CONFIG = {
|
||||
"file_format": ("{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 见闻 | {message}"),
|
||||
},
|
||||
"simple": {
|
||||
"console_format": ("<green>{time:MM-DD HH:mm}</green> | <light-blue>见闻</light-blue> | {message}"),
|
||||
"console_format": ("<green>{time:MM-DD HH:mm}</green> | <light-blue>见闻</light-blue> | <green>{message}</green>"), # noqa: E501
|
||||
"file_format": ("{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 见闻 | {message}"),
|
||||
},
|
||||
}
|
||||
|
||||
# 根据ENABLE_ADVANCE_OUTPUT选择配置
|
||||
MEMORY_STYLE_CONFIG = MEMORY_STYLE_CONFIG["advanced"] if ENABLE_ADVANCE_OUTPUT else MEMORY_STYLE_CONFIG["simple"]
|
||||
TOPIC_STYLE_CONFIG = TOPIC_STYLE_CONFIG["advanced"] if ENABLE_ADVANCE_OUTPUT else TOPIC_STYLE_CONFIG["simple"]
|
||||
SENDER_STYLE_CONFIG = SENDER_STYLE_CONFIG["advanced"] if ENABLE_ADVANCE_OUTPUT else SENDER_STYLE_CONFIG["simple"]
|
||||
LLM_STYLE_CONFIG = LLM_STYLE_CONFIG["advanced"] if ENABLE_ADVANCE_OUTPUT else LLM_STYLE_CONFIG["simple"]
|
||||
CHAT_STYLE_CONFIG = CHAT_STYLE_CONFIG["advanced"] if ENABLE_ADVANCE_OUTPUT else CHAT_STYLE_CONFIG["simple"]
|
||||
# 根据SIMPLE_OUTPUT选择配置
|
||||
MEMORY_STYLE_CONFIG = MEMORY_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else MEMORY_STYLE_CONFIG["advanced"]
|
||||
TOPIC_STYLE_CONFIG = TOPIC_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else TOPIC_STYLE_CONFIG["advanced"]
|
||||
SENDER_STYLE_CONFIG = SENDER_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else SENDER_STYLE_CONFIG["advanced"]
|
||||
LLM_STYLE_CONFIG = LLM_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else LLM_STYLE_CONFIG["advanced"]
|
||||
CHAT_STYLE_CONFIG = CHAT_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else CHAT_STYLE_CONFIG["advanced"]
|
||||
|
||||
|
||||
def is_registered_module(record: dict) -> bool:
|
||||
|
||||
@@ -98,6 +98,7 @@ async def _(bot: Bot, event: MessageEvent, state: T_State):
|
||||
else:
|
||||
await chat_bot.handle_message(event, bot)
|
||||
|
||||
|
||||
@notice_matcher.handle()
|
||||
async def _(bot: Bot, event: NoticeEvent, state: T_State):
|
||||
logger.debug(f"收到通知:{event}")
|
||||
@@ -110,7 +111,7 @@ async def build_memory_task():
|
||||
"""每build_memory_interval秒执行一次记忆构建"""
|
||||
logger.debug("[记忆构建]------------------------------------开始构建记忆--------------------------------------")
|
||||
start_time = time.time()
|
||||
await hippocampus.operation_build_memory(chat_size=20)
|
||||
await hippocampus.operation_build_memory()
|
||||
end_time = time.time()
|
||||
logger.success(
|
||||
f"[记忆构建]--------------------------记忆构建完成:耗时: {end_time - start_time:.2f} "
|
||||
|
||||
@@ -154,7 +154,7 @@ class ChatBot:
|
||||
)
|
||||
# 开始思考的时间点
|
||||
thinking_time_point = round(time.time(), 2)
|
||||
logger.info(f"开始思考的时间点: {thinking_time_point}")
|
||||
# logger.debug(f"开始思考的时间点: {thinking_time_point}")
|
||||
think_id = "mt" + str(thinking_time_point)
|
||||
thinking_message = MessageThinking(
|
||||
message_id=think_id,
|
||||
@@ -424,7 +424,6 @@ class ChatBot:
|
||||
if event.group_id not in global_config.talk_allowed_groups:
|
||||
return
|
||||
|
||||
|
||||
# 获取合并转发消息的详细信息
|
||||
forward_info = await bot.get_forward_msg(message_id=event.message_id)
|
||||
messages = forward_info["messages"]
|
||||
@@ -456,11 +455,7 @@ class ChatBot:
|
||||
# 构建群聊信息(如果是群聊)
|
||||
group_info = None
|
||||
if isinstance(event, GroupMessageEvent):
|
||||
group_info = GroupInfo(
|
||||
group_id=event.group_id,
|
||||
group_name=None,
|
||||
platform="qq"
|
||||
)
|
||||
group_info = GroupInfo(group_id=event.group_id, group_name=None, platform="qq")
|
||||
|
||||
# 创建消息对象
|
||||
message_cq = MessageRecvCQ(
|
||||
@@ -512,5 +507,6 @@ class ChatBot:
|
||||
else:
|
||||
return f"[{seg_type}]"
|
||||
|
||||
|
||||
# 创建全局ChatBot实例
|
||||
chat_bot = ChatBot()
|
||||
|
||||
@@ -68,9 +68,9 @@ class BotConfig:
|
||||
MODEL_V3_PROBABILITY: float = 0.1 # V3模型概率
|
||||
MODEL_R1_DISTILL_PROBABILITY: float = 0.1 # R1蒸馏模型概率
|
||||
|
||||
enable_advance_output: bool = False # 是否启用高级输出
|
||||
# enable_advance_output: bool = False # 是否启用高级输出
|
||||
enable_kuuki_read: bool = True # 是否启用读空气功能
|
||||
enable_debug_output: bool = False # 是否启用调试输出
|
||||
# enable_debug_output: bool = False # 是否启用调试输出
|
||||
enable_friend_chat: bool = False # 是否启用好友聊天
|
||||
|
||||
mood_update_interval: float = 1.0 # 情绪更新间隔 单位秒
|
||||
@@ -106,6 +106,11 @@ class BotConfig:
|
||||
memory_forget_time: int = 24 # 记忆遗忘时间(小时)
|
||||
memory_forget_percentage: float = 0.01 # 记忆遗忘比例
|
||||
memory_compress_rate: float = 0.1 # 记忆压缩率
|
||||
build_memory_sample_num: int = 10 # 记忆构建采样数量
|
||||
build_memory_sample_length: int = 20 # 记忆构建采样长度
|
||||
memory_build_distribution: list = field(
|
||||
default_factory=lambda: [4,2,0.6,24,8,0.4]
|
||||
) # 记忆构建分布,参数:分布1均值,标准差,权重,分布2均值,标准差,权重
|
||||
memory_ban_words: list = field(
|
||||
default_factory=lambda: ["表情包", "图片", "回复", "聊天记录"]
|
||||
) # 添加新的配置项默认值
|
||||
@@ -315,6 +320,20 @@ class BotConfig:
|
||||
"memory_forget_percentage", config.memory_forget_percentage
|
||||
)
|
||||
config.memory_compress_rate = memory_config.get("memory_compress_rate", config.memory_compress_rate)
|
||||
if config.INNER_VERSION in SpecifierSet(">=0.0.11"):
|
||||
config.memory_build_distribution = memory_config.get(
|
||||
"memory_build_distribution",
|
||||
config.memory_build_distribution
|
||||
)
|
||||
config.build_memory_sample_num = memory_config.get(
|
||||
"build_memory_sample_num",
|
||||
config.build_memory_sample_num
|
||||
)
|
||||
config.build_memory_sample_length = memory_config.get(
|
||||
"build_memory_sample_length",
|
||||
config.build_memory_sample_length
|
||||
)
|
||||
|
||||
|
||||
def remote(parent: dict):
|
||||
remote_config = parent["remote"]
|
||||
@@ -351,10 +370,10 @@ class BotConfig:
|
||||
|
||||
def others(parent: dict):
|
||||
others_config = parent["others"]
|
||||
config.enable_advance_output = others_config.get("enable_advance_output", config.enable_advance_output)
|
||||
# config.enable_advance_output = others_config.get("enable_advance_output", config.enable_advance_output)
|
||||
config.enable_kuuki_read = others_config.get("enable_kuuki_read", config.enable_kuuki_read)
|
||||
if config.INNER_VERSION in SpecifierSet(">=0.0.7"):
|
||||
config.enable_debug_output = others_config.get("enable_debug_output", config.enable_debug_output)
|
||||
# config.enable_debug_output = others_config.get("enable_debug_output", config.enable_debug_output)
|
||||
config.enable_friend_chat = others_config.get("enable_friend_chat", config.enable_friend_chat)
|
||||
|
||||
# 版本表达式:>=1.0.0,<2.0.0
|
||||
|
||||
@@ -220,7 +220,7 @@ class MessageManager:
|
||||
|
||||
message_timeout = container.get_timeout_messages()
|
||||
if message_timeout:
|
||||
logger.warning(f"发现{len(message_timeout)}条超时消息")
|
||||
logger.debug(f"发现{len(message_timeout)}条超时消息")
|
||||
for msg in message_timeout:
|
||||
if msg == message_earliest:
|
||||
continue
|
||||
|
||||
@@ -141,21 +141,21 @@ class PromptBuilder:
|
||||
logger.debug(f"知识检索耗时: {(end_time - start_time):.3f}秒")
|
||||
|
||||
prompt = f"""
|
||||
今天是{current_date},现在是{current_time},你今天的日程是:\
|
||||
`<schedule>`\n
|
||||
{bot_schedule.today_schedule}\n
|
||||
`</schedule>`\n
|
||||
{prompt_info}\n
|
||||
{memory_prompt}\n
|
||||
{chat_target}\n
|
||||
{chat_talking_prompt}\n
|
||||
现在"{sender_name}"说的:\n
|
||||
`<UserMessage>`\n
|
||||
{message_txt}\n
|
||||
`</UserMessage>`\n
|
||||
今天是{current_date},现在是{current_time},你今天的日程是:
|
||||
`<schedule>`
|
||||
{bot_schedule.today_schedule}
|
||||
`</schedule>`
|
||||
{prompt_info}
|
||||
{memory_prompt}
|
||||
{chat_target}
|
||||
{chat_talking_prompt}
|
||||
现在"{sender_name}"说的:
|
||||
`<UserMessage>`
|
||||
{message_txt}
|
||||
`</UserMessage>`
|
||||
引起了你的注意,{relation_prompt_all}{mood_prompt}\n
|
||||
`<MainRule>`
|
||||
你的网名叫{global_config.BOT_NICKNAME},{prompt_personality}。
|
||||
你的网名叫{global_config.BOT_NICKNAME},有人也叫你{"/".join(global_config.BOT_ALIAS_NAMES)},{prompt_personality},{prompt_personality}。
|
||||
正在{bot_schedule_now_activity}的你同时也在一边{chat_target_2},现在请你读读之前的聊天记录,然后给出日常且口语化的回复,平淡一些,
|
||||
尽量简短一些。{keywords_reaction_prompt}请注意把握聊天内容,不要刻意突出自身学科背景,不要回复的太有条理,可以有个性。
|
||||
{prompt_ger}
|
||||
|
||||
@@ -76,18 +76,11 @@ def calculate_information_content(text):
|
||||
|
||||
|
||||
def get_closest_chat_from_db(length: int, timestamp: str):
|
||||
"""从数据库中获取最接近指定时间戳的聊天记录
|
||||
|
||||
Args:
|
||||
length: 要获取的消息数量
|
||||
timestamp: 时间戳
|
||||
|
||||
Returns:
|
||||
list: 消息记录列表,每个记录包含时间和文本信息
|
||||
"""
|
||||
# print(f"获取最接近指定时间戳的聊天记录,长度: {length}, 时间戳: {timestamp}")
|
||||
# print(f"当前时间: {timestamp},转换后时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(timestamp))}")
|
||||
chat_records = []
|
||||
closest_record = db.messages.find_one({"time": {"$lte": timestamp}}, sort=[("time", -1)])
|
||||
|
||||
# print(f"最接近的记录: {closest_record}")
|
||||
if closest_record:
|
||||
closest_time = closest_record["time"]
|
||||
chat_id = closest_record["chat_id"] # 获取chat_id
|
||||
@@ -102,7 +95,9 @@ def get_closest_chat_from_db(length: int, timestamp: str):
|
||||
.sort("time", 1)
|
||||
.limit(length)
|
||||
)
|
||||
|
||||
# print(f"获取到的记录: {chat_records}")
|
||||
length = len(chat_records)
|
||||
# print(f"获取到的记录长度: {length}")
|
||||
# 转换记录格式
|
||||
formatted_records = []
|
||||
for record in chat_records:
|
||||
|
||||
@@ -112,7 +112,7 @@ class ImageManager:
|
||||
# 查询缓存的描述
|
||||
cached_description = self._get_description_from_db(image_hash, "emoji")
|
||||
if cached_description:
|
||||
logger.info(f"缓存表情包描述: {cached_description}")
|
||||
logger.debug(f"缓存表情包描述: {cached_description}")
|
||||
return f"[表情包:{cached_description}]"
|
||||
|
||||
# 调用AI获取描述
|
||||
|
||||
@@ -18,6 +18,7 @@ from ..chat.utils import (
|
||||
)
|
||||
from ..models.utils_model import LLM_request
|
||||
from src.common.logger import get_module_logger, LogConfig, MEMORY_STYLE_CONFIG
|
||||
from src.plugins.memory_system.sample_distribution import MemoryBuildScheduler
|
||||
|
||||
# 定义日志配置
|
||||
memory_config = LogConfig(
|
||||
@@ -25,6 +26,11 @@ memory_config = LogConfig(
|
||||
console_format=MEMORY_STYLE_CONFIG["console_format"],
|
||||
file_format=MEMORY_STYLE_CONFIG["file_format"],
|
||||
)
|
||||
# print(f"memory_config: {memory_config}")
|
||||
# print(f"MEMORY_STYLE_CONFIG: {MEMORY_STYLE_CONFIG}")
|
||||
# print(f"MEMORY_STYLE_CONFIG['console_format']: {MEMORY_STYLE_CONFIG['console_format']}")
|
||||
# print(f"MEMORY_STYLE_CONFIG['file_format']: {MEMORY_STYLE_CONFIG['file_format']}")
|
||||
|
||||
|
||||
logger = get_module_logger("memory_system", config=memory_config)
|
||||
|
||||
@@ -195,25 +201,17 @@ class Hippocampus:
|
||||
return hash(f"{nodes[0]}:{nodes[1]}")
|
||||
|
||||
def random_get_msg_snippet(self, target_timestamp: float, chat_size: int, max_memorized_time_per_msg: int) -> list:
|
||||
"""随机抽取一段时间内的消息片段
|
||||
Args:
|
||||
- target_timestamp: 目标时间戳
|
||||
- chat_size: 抽取的消息数量
|
||||
- max_memorized_time_per_msg: 每条消息的最大记忆次数
|
||||
|
||||
Returns:
|
||||
- list: 抽取出的消息记录列表
|
||||
|
||||
"""
|
||||
try_count = 0
|
||||
# 最多尝试三次抽取
|
||||
# 最多尝试2次抽取
|
||||
while try_count < 3:
|
||||
messages = get_closest_chat_from_db(length=chat_size, timestamp=target_timestamp)
|
||||
if messages:
|
||||
# print(f"抽取到的消息: {messages}")
|
||||
# 检查messages是否均没有达到记忆次数限制
|
||||
for message in messages:
|
||||
if message["memorized_times"] >= max_memorized_time_per_msg:
|
||||
messages = None
|
||||
# print(f"抽取到的消息提取次数达到限制,跳过")
|
||||
break
|
||||
if messages:
|
||||
# 成功抽取短期消息样本
|
||||
@@ -224,63 +222,48 @@ class Hippocampus:
|
||||
)
|
||||
return messages
|
||||
try_count += 1
|
||||
# 三次尝试均失败
|
||||
return None
|
||||
|
||||
def get_memory_sample(self, chat_size=20, time_frequency=None):
|
||||
"""获取记忆样本
|
||||
|
||||
Returns:
|
||||
list: 消息记录列表,每个元素是一个消息记录字典列表
|
||||
"""
|
||||
def get_memory_sample(self):
|
||||
# 硬编码:每条消息最大记忆次数
|
||||
# 如有需求可写入global_config
|
||||
if time_frequency is None:
|
||||
time_frequency = {"near": 2, "mid": 4, "far": 3}
|
||||
max_memorized_time_per_msg = 3
|
||||
|
||||
current_timestamp = datetime.datetime.now().timestamp()
|
||||
# 创建双峰分布的记忆调度器
|
||||
scheduler = MemoryBuildScheduler(
|
||||
n_hours1=global_config.memory_build_distribution[0], # 第一个分布均值(4小时前)
|
||||
std_hours1=global_config.memory_build_distribution[1], # 第一个分布标准差
|
||||
weight1=global_config.memory_build_distribution[2], # 第一个分布权重 60%
|
||||
n_hours2=global_config.memory_build_distribution[3], # 第二个分布均值(24小时前)
|
||||
std_hours2=global_config.memory_build_distribution[4], # 第二个分布标准差
|
||||
weight2=global_config.memory_build_distribution[5], # 第二个分布权重 40%
|
||||
total_samples=global_config.build_memory_sample_num # 总共生成10个时间点
|
||||
)
|
||||
|
||||
# 生成时间戳数组
|
||||
timestamps = scheduler.get_timestamp_array()
|
||||
# logger.debug(f"生成的时间戳数组: {timestamps}")
|
||||
# print(f"生成的时间戳数组: {timestamps}")
|
||||
# print(f"时间戳的实际时间: {[time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(ts)) for ts in timestamps]}")
|
||||
logger.info(f"回忆往事: {[time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(ts)) for ts in timestamps]}")
|
||||
chat_samples = []
|
||||
|
||||
# 短期:1h 中期:4h 长期:24h
|
||||
logger.debug("正在抽取短期消息样本")
|
||||
for i in range(time_frequency.get("near")):
|
||||
random_time = current_timestamp - random.randint(1, 3600)
|
||||
messages = self.random_get_msg_snippet(random_time, chat_size, max_memorized_time_per_msg)
|
||||
for timestamp in timestamps:
|
||||
messages = self.random_get_msg_snippet(
|
||||
timestamp,
|
||||
global_config.build_memory_sample_length,
|
||||
max_memorized_time_per_msg
|
||||
)
|
||||
if messages:
|
||||
logger.debug(f"成功抽取短期消息样本{len(messages)}条")
|
||||
time_diff = (datetime.datetime.now().timestamp() - timestamp) / 3600
|
||||
logger.debug(f"成功抽取 {time_diff:.1f} 小时前的消息样本,共{len(messages)}条")
|
||||
# print(f"成功抽取 {time_diff:.1f} 小时前的消息样本,共{len(messages)}条")
|
||||
chat_samples.append(messages)
|
||||
else:
|
||||
logger.warning(f"第{i}次短期消息样本抽取失败")
|
||||
|
||||
logger.debug("正在抽取中期消息样本")
|
||||
for i in range(time_frequency.get("mid")):
|
||||
random_time = current_timestamp - random.randint(3600, 3600 * 4)
|
||||
messages = self.random_get_msg_snippet(random_time, chat_size, max_memorized_time_per_msg)
|
||||
if messages:
|
||||
logger.debug(f"成功抽取中期消息样本{len(messages)}条")
|
||||
chat_samples.append(messages)
|
||||
else:
|
||||
logger.warning(f"第{i}次中期消息样本抽取失败")
|
||||
|
||||
logger.debug("正在抽取长期消息样本")
|
||||
for i in range(time_frequency.get("far")):
|
||||
random_time = current_timestamp - random.randint(3600 * 4, 3600 * 24)
|
||||
messages = self.random_get_msg_snippet(random_time, chat_size, max_memorized_time_per_msg)
|
||||
if messages:
|
||||
logger.debug(f"成功抽取长期消息样本{len(messages)}条")
|
||||
chat_samples.append(messages)
|
||||
else:
|
||||
logger.warning(f"第{i}次长期消息样本抽取失败")
|
||||
logger.debug(f"时间戳 {timestamp} 的消息样本抽取失败")
|
||||
|
||||
return chat_samples
|
||||
|
||||
async def memory_compress(self, messages: list, compress_rate=0.1):
|
||||
"""压缩消息记录为记忆
|
||||
|
||||
Returns:
|
||||
tuple: (压缩记忆集合, 相似主题字典)
|
||||
"""
|
||||
if not messages:
|
||||
return set(), {}
|
||||
|
||||
@@ -313,15 +296,23 @@ class Hippocampus:
|
||||
topics_response = await self.llm_topic_judge.generate_response(self.find_topic_llm(input_text, topic_num))
|
||||
|
||||
# 过滤topics
|
||||
# 从配置文件获取需要过滤的关键词列表
|
||||
filter_keywords = global_config.memory_ban_words
|
||||
|
||||
# 将topics_response[0]中的中文逗号、顿号、空格都替换成英文逗号
|
||||
# 然后按逗号分割成列表,并去除每个topic前后的空白字符
|
||||
topics = [
|
||||
topic.strip()
|
||||
for topic in topics_response[0].replace(",", ",").replace("、", ",").replace(" ", ",").split(",")
|
||||
if topic.strip()
|
||||
]
|
||||
|
||||
# 过滤掉包含禁用关键词的topic
|
||||
# any()检查topic中是否包含任何一个filter_keywords中的关键词
|
||||
# 只保留不包含禁用关键词的topic
|
||||
filtered_topics = [topic for topic in topics if not any(keyword in topic for keyword in filter_keywords)]
|
||||
|
||||
logger.info(f"过滤后话题: {filtered_topics}")
|
||||
logger.debug(f"过滤后话题: {filtered_topics}")
|
||||
|
||||
# 创建所有话题的请求任务
|
||||
tasks = []
|
||||
@@ -331,31 +322,42 @@ class Hippocampus:
|
||||
tasks.append((topic.strip(), task))
|
||||
|
||||
# 等待所有任务完成
|
||||
compressed_memory = set()
|
||||
# 初始化压缩后的记忆集合和相似主题字典
|
||||
compressed_memory = set() # 存储压缩后的(主题,内容)元组
|
||||
similar_topics_dict = {} # 存储每个话题的相似主题列表
|
||||
|
||||
# 遍历每个主题及其对应的LLM任务
|
||||
for topic, task in tasks:
|
||||
response = await task
|
||||
if response:
|
||||
# 将主题和LLM生成的内容添加到压缩记忆中
|
||||
compressed_memory.add((topic, response[0]))
|
||||
# 为每个话题查找相似的已存在主题
|
||||
|
||||
# 为当前主题寻找相似的已存在主题
|
||||
existing_topics = list(self.memory_graph.G.nodes())
|
||||
similar_topics = []
|
||||
|
||||
# 计算当前主题与每个已存在主题的相似度
|
||||
for existing_topic in existing_topics:
|
||||
# 使用jieba分词,将主题转换为词集合
|
||||
topic_words = set(jieba.cut(topic))
|
||||
existing_words = set(jieba.cut(existing_topic))
|
||||
|
||||
all_words = topic_words | existing_words
|
||||
v1 = [1 if word in topic_words else 0 for word in all_words]
|
||||
v2 = [1 if word in existing_words else 0 for word in all_words]
|
||||
# 构建词向量用于计算余弦相似度
|
||||
all_words = topic_words | existing_words # 所有不重复的词
|
||||
v1 = [1 if word in topic_words else 0 for word in all_words] # 当前主题的词向量
|
||||
v2 = [1 if word in existing_words else 0 for word in all_words] # 已存在主题的词向量
|
||||
|
||||
# 计算余弦相似度
|
||||
similarity = cosine_similarity(v1, v2)
|
||||
|
||||
if similarity >= 0.6:
|
||||
# 如果相似度超过阈值,添加到相似主题列表
|
||||
if similarity >= 0.7:
|
||||
similar_topics.append((existing_topic, similarity))
|
||||
|
||||
# 按相似度降序排序,只保留前3个最相似的主题
|
||||
similar_topics.sort(key=lambda x: x[1], reverse=True)
|
||||
similar_topics = similar_topics[:5]
|
||||
similar_topics = similar_topics[:3]
|
||||
similar_topics_dict[topic] = similar_topics
|
||||
|
||||
return compressed_memory, similar_topics_dict
|
||||
@@ -372,10 +374,10 @@ class Hippocampus:
|
||||
)
|
||||
return topic_num
|
||||
|
||||
async def operation_build_memory(self, chat_size=20):
|
||||
time_frequency = {"near": 1, "mid": 4, "far": 4}
|
||||
memory_samples = self.get_memory_sample(chat_size, time_frequency)
|
||||
|
||||
async def operation_build_memory(self):
|
||||
memory_samples = self.get_memory_sample()
|
||||
all_added_nodes = []
|
||||
all_added_edges = []
|
||||
for i, messages in enumerate(memory_samples, 1):
|
||||
all_topics = []
|
||||
# 加载进度可视化
|
||||
@@ -387,12 +389,13 @@ class Hippocampus:
|
||||
|
||||
compress_rate = global_config.memory_compress_rate
|
||||
compressed_memory, similar_topics_dict = await self.memory_compress(messages, compress_rate)
|
||||
logger.info(f"压缩后记忆数量: {len(compressed_memory)},似曾相识的话题: {len(similar_topics_dict)}")
|
||||
logger.debug(f"压缩后记忆数量: {compressed_memory},似曾相识的话题: {similar_topics_dict}")
|
||||
|
||||
current_time = datetime.datetime.now().timestamp()
|
||||
logger.debug(f"添加节点: {', '.join(topic for topic, _ in compressed_memory)}")
|
||||
all_added_nodes.extend(topic for topic, _ in compressed_memory)
|
||||
|
||||
for topic, memory in compressed_memory:
|
||||
logger.info(f"添加节点: {topic}")
|
||||
self.memory_graph.add_dot(topic, memory)
|
||||
all_topics.append(topic)
|
||||
|
||||
@@ -402,7 +405,8 @@ class Hippocampus:
|
||||
for similar_topic, similarity in similar_topics:
|
||||
if topic != similar_topic:
|
||||
strength = int(similarity * 10)
|
||||
logger.info(f"连接相似节点: {topic} 和 {similar_topic} (强度: {strength})")
|
||||
logger.debug(f"连接相似节点: {topic} 和 {similar_topic} (强度: {strength})")
|
||||
all_added_edges.append(f"{topic}-{similar_topic}")
|
||||
self.memory_graph.G.add_edge(
|
||||
topic,
|
||||
similar_topic,
|
||||
@@ -414,9 +418,13 @@ class Hippocampus:
|
||||
# 连接同批次的相关话题
|
||||
for i in range(len(all_topics)):
|
||||
for j in range(i + 1, len(all_topics)):
|
||||
logger.info(f"连接同批次节点: {all_topics[i]} 和 {all_topics[j]}")
|
||||
logger.debug(f"连接同批次节点: {all_topics[i]} 和 {all_topics[j]}")
|
||||
all_added_edges.append(f"{all_topics[i]}-{all_topics[j]}")
|
||||
self.memory_graph.connect_dot(all_topics[i], all_topics[j])
|
||||
|
||||
logger.success(f"更新记忆: {', '.join(all_added_nodes)}")
|
||||
logger.success(f"强化连接: {', '.join(all_added_edges)}")
|
||||
# logger.success(f"强化连接: {', '.join(all_added_edges)}")
|
||||
self.sync_memory_to_db()
|
||||
|
||||
def sync_memory_to_db(self):
|
||||
|
||||
@@ -7,11 +7,9 @@ import sys
|
||||
import time
|
||||
from collections import Counter
|
||||
from pathlib import Path
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import networkx as nx
|
||||
from dotenv import load_dotenv
|
||||
from src.common.logger import get_module_logger
|
||||
import jieba
|
||||
|
||||
# from chat.config import global_config
|
||||
@@ -19,6 +17,7 @@ import jieba
|
||||
root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../.."))
|
||||
sys.path.append(root_path)
|
||||
|
||||
from src.common.logger import get_module_logger # noqa: E402
|
||||
from src.common.database import db # noqa E402
|
||||
from src.plugins.memory_system.offline_llm import LLMModel # noqa E402
|
||||
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
170
src/plugins/memory_system/sample_distribution.py
Normal file
170
src/plugins/memory_system/sample_distribution.py
Normal file
@@ -0,0 +1,170 @@
|
||||
import numpy as np
|
||||
from scipy import stats
|
||||
from datetime import datetime, timedelta
|
||||
|
||||
class DistributionVisualizer:
|
||||
def __init__(self, mean=0, std=1, skewness=0, sample_size=10):
|
||||
"""
|
||||
初始化分布可视化器
|
||||
|
||||
参数:
|
||||
mean (float): 期望均值
|
||||
std (float): 标准差
|
||||
skewness (float): 偏度
|
||||
sample_size (int): 样本大小
|
||||
"""
|
||||
self.mean = mean
|
||||
self.std = std
|
||||
self.skewness = skewness
|
||||
self.sample_size = sample_size
|
||||
self.samples = None
|
||||
|
||||
def generate_samples(self):
|
||||
"""生成具有指定参数的样本"""
|
||||
if self.skewness == 0:
|
||||
# 对于无偏度的情况,直接使用正态分布
|
||||
self.samples = np.random.normal(loc=self.mean, scale=self.std, size=self.sample_size)
|
||||
else:
|
||||
# 使用 scipy.stats 生成具有偏度的分布
|
||||
self.samples = stats.skewnorm.rvs(a=self.skewness,
|
||||
loc=self.mean,
|
||||
scale=self.std,
|
||||
size=self.sample_size)
|
||||
|
||||
def get_weighted_samples(self):
|
||||
"""获取加权后的样本数列"""
|
||||
if self.samples is None:
|
||||
self.generate_samples()
|
||||
# 将样本值乘以样本大小
|
||||
return self.samples * self.sample_size
|
||||
|
||||
def get_statistics(self):
|
||||
"""获取分布的统计信息"""
|
||||
if self.samples is None:
|
||||
self.generate_samples()
|
||||
|
||||
return {
|
||||
"均值": np.mean(self.samples),
|
||||
"标准差": np.std(self.samples),
|
||||
"实际偏度": stats.skew(self.samples)
|
||||
}
|
||||
|
||||
class MemoryBuildScheduler:
|
||||
def __init__(self,
|
||||
n_hours1, std_hours1, weight1,
|
||||
n_hours2, std_hours2, weight2,
|
||||
total_samples=50):
|
||||
"""
|
||||
初始化记忆构建调度器
|
||||
|
||||
参数:
|
||||
n_hours1 (float): 第一个分布的均值(距离现在的小时数)
|
||||
std_hours1 (float): 第一个分布的标准差(小时)
|
||||
weight1 (float): 第一个分布的权重
|
||||
n_hours2 (float): 第二个分布的均值(距离现在的小时数)
|
||||
std_hours2 (float): 第二个分布的标准差(小时)
|
||||
weight2 (float): 第二个分布的权重
|
||||
total_samples (int): 要生成的总时间点数量
|
||||
"""
|
||||
# 归一化权重
|
||||
total_weight = weight1 + weight2
|
||||
self.weight1 = weight1 / total_weight
|
||||
self.weight2 = weight2 / total_weight
|
||||
|
||||
self.n_hours1 = n_hours1
|
||||
self.std_hours1 = std_hours1
|
||||
self.n_hours2 = n_hours2
|
||||
self.std_hours2 = std_hours2
|
||||
self.total_samples = total_samples
|
||||
self.base_time = datetime.now()
|
||||
|
||||
def generate_time_samples(self):
|
||||
"""生成混合分布的时间采样点"""
|
||||
# 根据权重计算每个分布的样本数
|
||||
samples1 = int(self.total_samples * self.weight1)
|
||||
samples2 = self.total_samples - samples1
|
||||
|
||||
# 生成两个正态分布的小时偏移
|
||||
hours_offset1 = np.random.normal(
|
||||
loc=self.n_hours1,
|
||||
scale=self.std_hours1,
|
||||
size=samples1
|
||||
)
|
||||
|
||||
hours_offset2 = np.random.normal(
|
||||
loc=self.n_hours2,
|
||||
scale=self.std_hours2,
|
||||
size=samples2
|
||||
)
|
||||
|
||||
# 合并两个分布的偏移
|
||||
hours_offset = np.concatenate([hours_offset1, hours_offset2])
|
||||
|
||||
# 将偏移转换为实际时间戳(使用绝对值确保时间点在过去)
|
||||
timestamps = [self.base_time - timedelta(hours=abs(offset)) for offset in hours_offset]
|
||||
|
||||
# 按时间排序(从最早到最近)
|
||||
return sorted(timestamps)
|
||||
|
||||
def get_timestamp_array(self):
|
||||
"""返回时间戳数组"""
|
||||
timestamps = self.generate_time_samples()
|
||||
return [int(t.timestamp()) for t in timestamps]
|
||||
|
||||
def print_time_samples(timestamps, show_distribution=True):
|
||||
"""打印时间样本和分布信息"""
|
||||
print(f"\n生成的{len(timestamps)}个时间点分布:")
|
||||
print("序号".ljust(5), "时间戳".ljust(25), "距现在(小时)")
|
||||
print("-" * 50)
|
||||
|
||||
now = datetime.now()
|
||||
time_diffs = []
|
||||
|
||||
for i, timestamp in enumerate(timestamps, 1):
|
||||
hours_diff = (now - timestamp).total_seconds() / 3600
|
||||
time_diffs.append(hours_diff)
|
||||
print(f"{str(i).ljust(5)} {timestamp.strftime('%Y-%m-%d %H:%M:%S').ljust(25)} {hours_diff:.2f}")
|
||||
|
||||
# 打印统计信息
|
||||
print("\n统计信息:")
|
||||
print(f"平均时间偏移:{np.mean(time_diffs):.2f}小时")
|
||||
print(f"标准差:{np.std(time_diffs):.2f}小时")
|
||||
print(f"最早时间:{min(timestamps).strftime('%Y-%m-%d %H:%M:%S')} ({max(time_diffs):.2f}小时前)")
|
||||
print(f"最近时间:{max(timestamps).strftime('%Y-%m-%d %H:%M:%S')} ({min(time_diffs):.2f}小时前)")
|
||||
|
||||
if show_distribution:
|
||||
# 计算时间分布的直方图
|
||||
hist, bins = np.histogram(time_diffs, bins=40)
|
||||
print("\n时间分布(每个*代表一个时间点):")
|
||||
for i in range(len(hist)):
|
||||
if hist[i] > 0:
|
||||
print(f"{bins[i]:6.1f}-{bins[i+1]:6.1f}小时: {'*' * int(hist[i])}")
|
||||
|
||||
# 使用示例
|
||||
if __name__ == "__main__":
|
||||
# 创建一个双峰分布的记忆调度器
|
||||
scheduler = MemoryBuildScheduler(
|
||||
n_hours1=12, # 第一个分布均值(12小时前)
|
||||
std_hours1=8, # 第一个分布标准差
|
||||
weight1=0.7, # 第一个分布权重 70%
|
||||
n_hours2=36, # 第二个分布均值(36小时前)
|
||||
std_hours2=24, # 第二个分布标准差
|
||||
weight2=0.3, # 第二个分布权重 30%
|
||||
total_samples=50 # 总共生成50个时间点
|
||||
)
|
||||
|
||||
# 生成时间分布
|
||||
timestamps = scheduler.generate_time_samples()
|
||||
|
||||
# 打印结果,包含分布可视化
|
||||
print_time_samples(timestamps, show_distribution=True)
|
||||
|
||||
# 打印时间戳数组
|
||||
timestamp_array = scheduler.get_timestamp_array()
|
||||
print("\n时间戳数组(Unix时间戳):")
|
||||
print("[", end="")
|
||||
for i, ts in enumerate(timestamp_array):
|
||||
if i > 0:
|
||||
print(", ", end="")
|
||||
print(ts, end="")
|
||||
print("]")
|
||||
@@ -4,10 +4,9 @@
|
||||
# from .questionnaire import PERSONALITY_QUESTIONS, FACTOR_DESCRIPTIONS
|
||||
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from src.plugins.personality.questionnaire import PERSONALITY_QUESTIONS,FACTOR_DESCRIPTIONS
|
||||
import random
|
||||
|
||||
current_dir = Path(__file__).resolve().parent
|
||||
project_root = current_dir.parent.parent.parent
|
||||
@@ -16,7 +15,7 @@ env_path = project_root / ".env.prod"
|
||||
root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../.."))
|
||||
sys.path.append(root_path)
|
||||
|
||||
|
||||
from src.plugins.personality.questionnaire import PERSONALITY_QUESTIONS, FACTOR_DESCRIPTIONS # noqa: E402
|
||||
|
||||
|
||||
class BigFiveTest:
|
||||
@@ -37,7 +36,7 @@ class BigFiveTest:
|
||||
print("\n请认真阅读每个描述,选择最符合您实际情况的选项。\n")
|
||||
|
||||
# 创建题目序号到题目的映射
|
||||
questions_map = {q['id']: q for q in self.questions}
|
||||
questions_map = {q["id"]: q for q in self.questions}
|
||||
|
||||
# 获取所有题目ID并随机打乱顺序
|
||||
question_ids = list(questions_map.keys())
|
||||
@@ -65,35 +64,25 @@ class BigFiveTest:
|
||||
def calculate_scores(self, answers):
|
||||
"""计算各维度得分"""
|
||||
results = {}
|
||||
factor_questions = {
|
||||
"外向性": [],
|
||||
"神经质": [],
|
||||
"严谨性": [],
|
||||
"开放性": [],
|
||||
"宜人性": []
|
||||
}
|
||||
factor_questions = {"外向性": [], "神经质": [], "严谨性": [], "开放性": [], "宜人性": []}
|
||||
|
||||
# 将题目按因子分类
|
||||
for q in self.questions:
|
||||
factor_questions[q['factor']].append(q)
|
||||
factor_questions[q["factor"]].append(q)
|
||||
|
||||
# 计算每个维度的得分
|
||||
for factor, questions in factor_questions.items():
|
||||
total_score = 0
|
||||
for q in questions:
|
||||
score = answers[q['id']]
|
||||
score = answers[q["id"]]
|
||||
# 处理反向计分题目
|
||||
if q['reverse_scoring']:
|
||||
if q["reverse_scoring"]:
|
||||
score = 7 - score # 6分量表反向计分为7减原始分
|
||||
total_score += score
|
||||
|
||||
# 计算平均分
|
||||
avg_score = round(total_score / len(questions), 2)
|
||||
results[factor] = {
|
||||
"得分": avg_score,
|
||||
"题目数": len(questions),
|
||||
"总分": total_score
|
||||
}
|
||||
results[factor] = {"得分": avg_score, "题目数": len(questions), "总分": total_score}
|
||||
|
||||
return results
|
||||
|
||||
@@ -101,6 +90,7 @@ class BigFiveTest:
|
||||
"""获取因子的详细描述"""
|
||||
return self.factors[factor]
|
||||
|
||||
|
||||
def main():
|
||||
test = BigFiveTest()
|
||||
results = test.run_test()
|
||||
@@ -112,9 +102,10 @@ def main():
|
||||
print(f"平均分: {data['得分']} (总分: {data['总分']}, 题目数: {data['题目数']})")
|
||||
print("-" * 30)
|
||||
description = test.get_factor_description(factor)
|
||||
print("维度说明:", description['description'][:100] + "...")
|
||||
print("\n特征词:", ", ".join(description['trait_words']))
|
||||
print("维度说明:", description["description"][:100] + "...")
|
||||
print("\n特征词:", ", ".join(description["trait_words"]))
|
||||
print("=" * 50)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
@@ -1,14 +1,11 @@
|
||||
from typing import Dict
|
||||
import json
|
||||
import os
|
||||
import random
|
||||
from pathlib import Path
|
||||
import sys
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from typing import Dict
|
||||
import random
|
||||
from scipy import stats # 添加scipy导入用于t检验
|
||||
from src.plugins.personality.big5_test import BigFiveTest
|
||||
from src.plugins.personality.renqingziji import PersonalityEvaluator_direct
|
||||
from src.plugins.personality.questionnaire import FACTOR_DESCRIPTIONS, PERSONALITY_QUESTIONS
|
||||
|
||||
current_dir = Path(__file__).resolve().parent
|
||||
project_root = current_dir.parent.parent.parent
|
||||
@@ -17,6 +14,9 @@ env_path = project_root / ".env.prod"
|
||||
root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../.."))
|
||||
sys.path.append(root_path)
|
||||
|
||||
from src.plugins.personality.big5_test import BigFiveTest # noqa: E402
|
||||
from src.plugins.personality.renqingziji import PersonalityEvaluator_direct # noqa: E402
|
||||
from src.plugins.personality.questionnaire import FACTOR_DESCRIPTIONS, PERSONALITY_QUESTIONS # noqa: E402
|
||||
|
||||
|
||||
class CombinedPersonalityTest:
|
||||
@@ -52,10 +52,7 @@ class CombinedPersonalityTest:
|
||||
questionnaire_results = self.run_questionnaire()
|
||||
|
||||
# 转换问卷结果格式以便比较
|
||||
questionnaire_scores = {
|
||||
factor: data["得分"]
|
||||
for factor, data in questionnaire_results.items()
|
||||
}
|
||||
questionnaire_scores = {factor: data["得分"] for factor, data in questionnaire_results.items()}
|
||||
|
||||
# 运行情景测试
|
||||
print("\n=== 第二部分:情景反应测评 ===")
|
||||
@@ -75,7 +72,7 @@ class CombinedPersonalityTest:
|
||||
def run_questionnaire(self):
|
||||
"""运行问卷测试部分"""
|
||||
# 创建题目序号到题目的映射
|
||||
questions_map = {q['id']: q for q in PERSONALITY_QUESTIONS}
|
||||
questions_map = {q["id"]: q for q in PERSONALITY_QUESTIONS}
|
||||
|
||||
# 获取所有题目ID并随机打乱顺序
|
||||
question_ids = list(questions_map.keys())
|
||||
@@ -108,35 +105,25 @@ class CombinedPersonalityTest:
|
||||
def calculate_questionnaire_scores(self, answers):
|
||||
"""计算问卷测试的维度得分"""
|
||||
results = {}
|
||||
factor_questions = {
|
||||
"外向性": [],
|
||||
"神经质": [],
|
||||
"严谨性": [],
|
||||
"开放性": [],
|
||||
"宜人性": []
|
||||
}
|
||||
factor_questions = {"外向性": [], "神经质": [], "严谨性": [], "开放性": [], "宜人性": []}
|
||||
|
||||
# 将题目按因子分类
|
||||
for q in PERSONALITY_QUESTIONS:
|
||||
factor_questions[q['factor']].append(q)
|
||||
factor_questions[q["factor"]].append(q)
|
||||
|
||||
# 计算每个维度的得分
|
||||
for factor, questions in factor_questions.items():
|
||||
total_score = 0
|
||||
for q in questions:
|
||||
score = answers[q['id']]
|
||||
score = answers[q["id"]]
|
||||
# 处理反向计分题目
|
||||
if q['reverse_scoring']:
|
||||
if q["reverse_scoring"]:
|
||||
score = 7 - score # 6分量表反向计分为7减原始分
|
||||
total_score += score
|
||||
|
||||
# 计算平均分
|
||||
avg_score = round(total_score / len(questions), 2)
|
||||
results[factor] = {
|
||||
"得分": avg_score,
|
||||
"题目数": len(questions),
|
||||
"总分": total_score
|
||||
}
|
||||
results[factor] = {"得分": avg_score, "题目数": len(questions), "总分": total_score}
|
||||
|
||||
return results
|
||||
|
||||
@@ -161,11 +148,7 @@ class CombinedPersonalityTest:
|
||||
continue
|
||||
|
||||
print("\n正在评估您的描述...")
|
||||
scores = self.scenario_test.evaluate_response(
|
||||
scenario_data["场景"],
|
||||
response,
|
||||
scenario_data["评估维度"]
|
||||
)
|
||||
scores = self.scenario_test.evaluate_response(scenario_data["场景"], response, scenario_data["评估维度"])
|
||||
|
||||
# 更新分数
|
||||
for dimension, score in scores.items():
|
||||
@@ -187,10 +170,7 @@ class CombinedPersonalityTest:
|
||||
# 计算平均分
|
||||
for dimension in final_scores:
|
||||
if dimension_counts[dimension] > 0:
|
||||
final_scores[dimension] = round(
|
||||
final_scores[dimension] / dimension_counts[dimension],
|
||||
2
|
||||
)
|
||||
final_scores[dimension] = round(final_scores[dimension] / dimension_counts[dimension], 2)
|
||||
|
||||
return final_scores
|
||||
|
||||
@@ -226,9 +206,13 @@ class CombinedPersonalityTest:
|
||||
std_diff = (sum((x - mean_diff) ** 2 for x in diffs) / (len(diffs) - 1)) ** 0.5
|
||||
|
||||
# 计算效应量 (Cohen's d)
|
||||
pooled_std = ((sum((x - sum(questionnaire_values)/len(questionnaire_values))**2 for x in questionnaire_values) +
|
||||
sum((x - sum(scenario_values)/len(scenario_values))**2 for x in scenario_values)) /
|
||||
(2 * len(self.dimensions) - 2)) ** 0.5
|
||||
pooled_std = (
|
||||
(
|
||||
sum((x - sum(questionnaire_values) / len(questionnaire_values)) ** 2 for x in questionnaire_values)
|
||||
+ sum((x - sum(scenario_values) / len(scenario_values)) ** 2 for x in scenario_values)
|
||||
)
|
||||
/ (2 * len(self.dimensions) - 2)
|
||||
) ** 0.5
|
||||
|
||||
if pooled_std != 0:
|
||||
cohens_d = abs(mean_diff / pooled_std)
|
||||
@@ -270,12 +254,14 @@ class CombinedPersonalityTest:
|
||||
for dimension in self.dimensions:
|
||||
diff = abs(questionnaire_scores[dimension] - scenario_scores[dimension])
|
||||
if diff >= 1.0: # 差异大于等于1分视为显著
|
||||
significant_diffs.append({
|
||||
significant_diffs.append(
|
||||
{
|
||||
"dimension": dimension,
|
||||
"diff": diff,
|
||||
"questionnaire": questionnaire_scores[dimension],
|
||||
"scenario": scenario_scores[dimension]
|
||||
})
|
||||
"scenario": scenario_scores[dimension],
|
||||
}
|
||||
)
|
||||
|
||||
if significant_diffs:
|
||||
print("\n\n显著差异分析:")
|
||||
@@ -287,7 +273,7 @@ class CombinedPersonalityTest:
|
||||
print(f"差异值:{diff['diff']:.2f}")
|
||||
|
||||
# 分析可能的原因
|
||||
if diff['questionnaire'] > diff['scenario']:
|
||||
if diff["questionnaire"] > diff["scenario"]:
|
||||
print("可能原因:在问卷中的自我评价较高,但在具体情景中的表现较为保守。")
|
||||
else:
|
||||
print("可能原因:在具体情景中表现出更多该维度特征,而在问卷自评时较为保守。")
|
||||
@@ -298,7 +284,7 @@ class CombinedPersonalityTest:
|
||||
"测试时间": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
||||
"问卷测评结果": questionnaire_scores,
|
||||
"情景测评结果": scenario_scores,
|
||||
"维度说明": FACTOR_DESCRIPTIONS
|
||||
"维度说明": FACTOR_DESCRIPTIONS,
|
||||
}
|
||||
|
||||
# 确保目录存在
|
||||
@@ -313,6 +299,7 @@ class CombinedPersonalityTest:
|
||||
|
||||
print(f"\n完整的测评结果已保存到:{filename}")
|
||||
|
||||
|
||||
def load_existing_results():
|
||||
"""检查并加载已有的测试结果"""
|
||||
results_dir = "results"
|
||||
@@ -320,15 +307,13 @@ def load_existing_results():
|
||||
return None
|
||||
|
||||
# 获取所有personality_combined开头的文件
|
||||
result_files = [f for f in os.listdir(results_dir)
|
||||
if f.startswith("personality_combined_") and f.endswith(".json")]
|
||||
result_files = [f for f in os.listdir(results_dir) if f.startswith("personality_combined_") and f.endswith(".json")]
|
||||
|
||||
if not result_files:
|
||||
return None
|
||||
|
||||
# 按文件修改时间排序,获取最新的结果文件
|
||||
latest_file = max(result_files,
|
||||
key=lambda f: os.path.getmtime(os.path.join(results_dir, f)))
|
||||
latest_file = max(result_files, key=lambda f: os.path.getmtime(os.path.join(results_dir, f)))
|
||||
|
||||
print(f"\n发现已有的测试结果:{latest_file}")
|
||||
try:
|
||||
@@ -339,6 +324,7 @@ def load_existing_results():
|
||||
print(f"读取结果文件时出错:{str(e)}")
|
||||
return None
|
||||
|
||||
|
||||
def main():
|
||||
test = CombinedPersonalityTest()
|
||||
|
||||
@@ -358,5 +344,6 @@ def main():
|
||||
print("\n未找到已有的测试结果,开始新的测试...")
|
||||
test.run_combined_test()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,7 +1,9 @@
|
||||
# 人格测试问卷题目 王孟成, 戴晓阳, & 姚树桥. (2011). 中国大五人格问卷的初步编制Ⅲ:简式版的制定及信效度检验.
|
||||
# 中国临床心理学杂志, 19(04), Article 04.
|
||||
# 王孟成, 戴晓阳, & 姚树桥. (2010). 中国大五人格问卷的初步编制Ⅰ:理论框架与信度分析.
|
||||
# 中国临床心理学杂志, 18(05), Article 05.
|
||||
# 人格测试问卷题目
|
||||
# 王孟成, 戴晓阳, & 姚树桥. (2011).
|
||||
# 中国大五人格问卷的初步编制Ⅲ:简式版的制定及信效度检验. 中国临床心理学杂志, 19(04), Article 04.
|
||||
|
||||
# 王孟成, 戴晓阳, & 姚树桥. (2010).
|
||||
# 中国大五人格问卷的初步编制Ⅰ:理论框架与信度分析. 中国临床心理学杂志, 18(05), Article 05.
|
||||
|
||||
PERSONALITY_QUESTIONS = [
|
||||
# 神经质维度 (F1)
|
||||
@@ -9,168 +11,132 @@ PERSONALITY_QUESTIONS = [
|
||||
{"id": 2, "content": "我常感到害怕", "factor": "神经质", "reverse_scoring": False},
|
||||
{"id": 3, "content": "有时我觉得自己一无是处", "factor": "神经质", "reverse_scoring": False},
|
||||
{"id": 4, "content": "我很少感到忧郁或沮丧", "factor": "神经质", "reverse_scoring": True},
|
||||
{"id": 5, "content": "别人一句漫不经心的话,我常会联系在自己身上",
|
||||
"factor": "神经质", "reverse_scoring": False},
|
||||
{"id": 6, "content": "在面对压力时,我有种快要崩溃的感觉",
|
||||
"factor": "神经质", "reverse_scoring": False},
|
||||
{"id": 7, "content": "我常担忧一些无关紧要的事情",
|
||||
"factor": "神经质", "reverse_scoring": False},
|
||||
{"id": 8, "content": "我常常感到内心不踏实",
|
||||
"factor": "神经质", "reverse_scoring": False},
|
||||
|
||||
{"id": 5, "content": "别人一句漫不经心的话,我常会联系在自己身上", "factor": "神经质", "reverse_scoring": False},
|
||||
{"id": 6, "content": "在面对压力时,我有种快要崩溃的感觉", "factor": "神经质", "reverse_scoring": False},
|
||||
{"id": 7, "content": "我常担忧一些无关紧要的事情", "factor": "神经质", "reverse_scoring": False},
|
||||
{"id": 8, "content": "我常常感到内心不踏实", "factor": "神经质", "reverse_scoring": False},
|
||||
# 严谨性维度 (F2)
|
||||
{"id": 9, "content": "在工作上,我常只求能应付过去便可",
|
||||
"factor": "严谨性", "reverse_scoring": True},
|
||||
{"id": 10, "content": "一旦确定了目标,我会坚持努力地实现它",
|
||||
"factor": "严谨性", "reverse_scoring": False},
|
||||
{"id": 11, "content": "我常常是仔细考虑之后才做出决定",
|
||||
"factor": "严谨性", "reverse_scoring": False},
|
||||
{"id": 12, "content": "别人认为我是个慎重的人",
|
||||
"factor": "严谨性", "reverse_scoring": False},
|
||||
{"id": 13, "content": "做事讲究逻辑和条理是我的一个特点",
|
||||
"factor": "严谨性", "reverse_scoring": False},
|
||||
{"id": 14, "content": "我喜欢一开头就把事情计划好",
|
||||
"factor": "严谨性", "reverse_scoring": False},
|
||||
{"id": 15, "content": "我工作或学习很勤奋",
|
||||
"factor": "严谨性", "reverse_scoring": False},
|
||||
{"id": 16, "content": "我是个倾尽全力做事的人",
|
||||
"factor": "严谨性", "reverse_scoring": False},
|
||||
|
||||
{"id": 9, "content": "在工作上,我常只求能应付过去便可", "factor": "严谨性", "reverse_scoring": True},
|
||||
{"id": 10, "content": "一旦确定了目标,我会坚持努力地实现它", "factor": "严谨性", "reverse_scoring": False},
|
||||
{"id": 11, "content": "我常常是仔细考虑之后才做出决定", "factor": "严谨性", "reverse_scoring": False},
|
||||
{"id": 12, "content": "别人认为我是个慎重的人", "factor": "严谨性", "reverse_scoring": False},
|
||||
{"id": 13, "content": "做事讲究逻辑和条理是我的一个特点", "factor": "严谨性", "reverse_scoring": False},
|
||||
{"id": 14, "content": "我喜欢一开头就把事情计划好", "factor": "严谨性", "reverse_scoring": False},
|
||||
{"id": 15, "content": "我工作或学习很勤奋", "factor": "严谨性", "reverse_scoring": False},
|
||||
{"id": 16, "content": "我是个倾尽全力做事的人", "factor": "严谨性", "reverse_scoring": False},
|
||||
# 宜人性维度 (F3)
|
||||
{"id": 17, "content": "尽管人类社会存在着一些阴暗的东西(如战争、罪恶、欺诈),"
|
||||
"我仍然相信人性总的来说是善良的", "factor": "宜人性", "reverse_scoring": False},
|
||||
{"id": 18, "content": "我觉得大部分人基本上是心怀善意的",
|
||||
"factor": "宜人性", "reverse_scoring": False},
|
||||
{"id": 19, "content": "虽然社会上有骗子,但我觉得大部分人还是可信的",
|
||||
"factor": "宜人性", "reverse_scoring": False},
|
||||
{"id": 20, "content": "我不太关心别人是否受到不公正的待遇",
|
||||
"factor": "宜人性", "reverse_scoring": True},
|
||||
{"id": 21, "content": "我时常觉得别人的痛苦与我无关",
|
||||
"factor": "宜人性", "reverse_scoring": True},
|
||||
{"id": 22, "content": "我常为那些遭遇不幸的人感到难过",
|
||||
"factor": "宜人性", "reverse_scoring": False},
|
||||
{"id": 23, "content": "我是那种只照顾好自己,不替别人担忧的人",
|
||||
"factor": "宜人性", "reverse_scoring": True},
|
||||
{"id": 24, "content": "当别人向我诉说不幸时,我常感到难过",
|
||||
"factor": "宜人性", "reverse_scoring": False},
|
||||
|
||||
{
|
||||
"id": 17,
|
||||
"content": "尽管人类社会存在着一些阴暗的东西(如战争、罪恶、欺诈),我仍然相信人性总的来说是善良的",
|
||||
"factor": "宜人性",
|
||||
"reverse_scoring": False,
|
||||
},
|
||||
{"id": 18, "content": "我觉得大部分人基本上是心怀善意的", "factor": "宜人性", "reverse_scoring": False},
|
||||
{"id": 19, "content": "虽然社会上有骗子,但我觉得大部分人还是可信的", "factor": "宜人性", "reverse_scoring": False},
|
||||
{"id": 20, "content": "我不太关心别人是否受到不公正的待遇", "factor": "宜人性", "reverse_scoring": True},
|
||||
{"id": 21, "content": "我时常觉得别人的痛苦与我无关", "factor": "宜人性", "reverse_scoring": True},
|
||||
{"id": 22, "content": "我常为那些遭遇不幸的人感到难过", "factor": "宜人性", "reverse_scoring": False},
|
||||
{"id": 23, "content": "我是那种只照顾好自己,不替别人担忧的人", "factor": "宜人性", "reverse_scoring": True},
|
||||
{"id": 24, "content": "当别人向我诉说不幸时,我常感到难过", "factor": "宜人性", "reverse_scoring": False},
|
||||
# 开放性维度 (F4)
|
||||
{"id": 25, "content": "我的想象力相当丰富",
|
||||
"factor": "开放性", "reverse_scoring": False},
|
||||
{"id": 26, "content": "我头脑中经常充满生动的画面",
|
||||
"factor": "开放性", "reverse_scoring": False},
|
||||
{"id": 27, "content": "我对许多事情有着很强的好奇心",
|
||||
"factor": "开放性", "reverse_scoring": False},
|
||||
{"id": 28, "content": "我喜欢冒险",
|
||||
"factor": "开放性", "reverse_scoring": False},
|
||||
{"id": 29, "content": "我是个勇于冒险,突破常规的人",
|
||||
"factor": "开放性", "reverse_scoring": False},
|
||||
{"id": 30, "content": "我身上具有别人没有的冒险精神",
|
||||
"factor": "开放性", "reverse_scoring": False},
|
||||
{"id": 31, "content": "我渴望学习一些新东西,即使它们与我的日常生活无关",
|
||||
"factor": "开放性", "reverse_scoring": False},
|
||||
{"id": 32, "content": "我很愿意也很容易接受那些新事物、新观点、新想法",
|
||||
"factor": "开放性", "reverse_scoring": False},
|
||||
|
||||
{"id": 25, "content": "我的想象力相当丰富", "factor": "开放性", "reverse_scoring": False},
|
||||
{"id": 26, "content": "我头脑中经常充满生动的画面", "factor": "开放性", "reverse_scoring": False},
|
||||
{"id": 27, "content": "我对许多事情有着很强的好奇心", "factor": "开放性", "reverse_scoring": False},
|
||||
{"id": 28, "content": "我喜欢冒险", "factor": "开放性", "reverse_scoring": False},
|
||||
{"id": 29, "content": "我是个勇于冒险,突破常规的人", "factor": "开放性", "reverse_scoring": False},
|
||||
{"id": 30, "content": "我身上具有别人没有的冒险精神", "factor": "开放性", "reverse_scoring": False},
|
||||
{
|
||||
"id": 31,
|
||||
"content": "我渴望学习一些新东西,即使它们与我的日常生活无关",
|
||||
"factor": "开放性",
|
||||
"reverse_scoring": False,
|
||||
},
|
||||
{
|
||||
"id": 32,
|
||||
"content": "我很愿意也很容易接受那些新事物、新观点、新想法",
|
||||
"factor": "开放性",
|
||||
"reverse_scoring": False,
|
||||
},
|
||||
# 外向性维度 (F5)
|
||||
{"id": 33, "content": "我喜欢参加社交与娱乐聚会",
|
||||
"factor": "外向性", "reverse_scoring": False},
|
||||
{"id": 34, "content": "我对人多的聚会感到乏味",
|
||||
"factor": "外向性", "reverse_scoring": True},
|
||||
{"id": 35, "content": "我尽量避免参加人多的聚会和嘈杂的环境",
|
||||
"factor": "外向性", "reverse_scoring": True},
|
||||
{"id": 36, "content": "在热闹的聚会上,我常常表现主动并尽情玩耍",
|
||||
"factor": "外向性", "reverse_scoring": False},
|
||||
{"id": 37, "content": "有我在的场合一般不会冷场",
|
||||
"factor": "外向性", "reverse_scoring": False},
|
||||
{"id": 38, "content": "我希望成为领导者而不是被领导者",
|
||||
"factor": "外向性", "reverse_scoring": False},
|
||||
{"id": 39, "content": "在一个团体中,我希望处于领导地位",
|
||||
"factor": "外向性", "reverse_scoring": False},
|
||||
{"id": 40, "content": "别人多认为我是一个热情和友好的人",
|
||||
"factor": "外向性", "reverse_scoring": False}
|
||||
{"id": 33, "content": "我喜欢参加社交与娱乐聚会", "factor": "外向性", "reverse_scoring": False},
|
||||
{"id": 34, "content": "我对人多的聚会感到乏味", "factor": "外向性", "reverse_scoring": True},
|
||||
{"id": 35, "content": "我尽量避免参加人多的聚会和嘈杂的环境", "factor": "外向性", "reverse_scoring": True},
|
||||
{"id": 36, "content": "在热闹的聚会上,我常常表现主动并尽情玩耍", "factor": "外向性", "reverse_scoring": False},
|
||||
{"id": 37, "content": "有我在的场合一般不会冷场", "factor": "外向性", "reverse_scoring": False},
|
||||
{"id": 38, "content": "我希望成为领导者而不是被领导者", "factor": "外向性", "reverse_scoring": False},
|
||||
{"id": 39, "content": "在一个团体中,我希望处于领导地位", "factor": "外向性", "reverse_scoring": False},
|
||||
{"id": 40, "content": "别人多认为我是一个热情和友好的人", "factor": "外向性", "reverse_scoring": False},
|
||||
]
|
||||
|
||||
# 因子维度说明
|
||||
FACTOR_DESCRIPTIONS = {
|
||||
"外向性": {
|
||||
"description": (
|
||||
"反映个体神经系统的强弱和动力特征。外向性主要表现为个体在人际交往和社交活动中的倾向性,"
|
||||
"包括对社交活动的兴趣、对人群的态度、社交互动中的主动程度以及在群体中的影响力。"
|
||||
"高分者倾向于积极参与社交活动,乐于与人交往,善于表达自我,并往往在群体中发挥领导作用;"
|
||||
"低分者则倾向于独处,不喜欢热闹的社交场合,表现出内向、安静的特征。"
|
||||
),
|
||||
"description": "反映个体神经系统的强弱和动力特征。外向性主要表现为个体在人际交往和社交活动中的倾向性,"
|
||||
"包括对社交活动的兴趣、"
|
||||
"对人群的态度、社交互动中的主动程度以及在群体中的影响力。高分者倾向于积极参与社交活动,乐于与人交往,善于表达自我,"
|
||||
"并往往在群体中发挥领导作用;低分者则倾向于独处,不喜欢热闹的社交场合,表现出内向、安静的特征。",
|
||||
"trait_words": ["热情", "活力", "社交", "主动"],
|
||||
"subfactors": {
|
||||
"合群性": "个体愿意与他人聚在一起,即接近人群的倾向;高分表现乐群、好交际,低分表现封闭、独处",
|
||||
"热情": "个体对待别人时所表现出的态度;高分表现热情好客,低分表现冷淡",
|
||||
"支配性": "个体喜欢指使、操纵他人,倾向于领导别人的特点;高分表现好强、发号施令,低分表现顺从、低调",
|
||||
"活跃": "个体精力充沛,活跃、主动性等特点;高分表现活跃,低分表现安静"
|
||||
}
|
||||
"活跃": "个体精力充沛,活跃、主动性等特点;高分表现活跃,低分表现安静",
|
||||
},
|
||||
},
|
||||
"神经质": {
|
||||
"description": (
|
||||
"反映个体情绪的状态和体验内心苦恼的倾向性。这个维度主要关注个体在面对压力、挫折和"
|
||||
"日常生活挑战时的情绪稳定性和适应能力。它包含了对焦虑、抑郁、愤怒等负面情绪的敏感程度,"
|
||||
"description": "反映个体情绪的状态和体验内心苦恼的倾向性。这个维度主要关注个体在面对压力、"
|
||||
"挫折和日常生活挑战时的情绪稳定性和适应能力。它包含了对焦虑、抑郁、愤怒等负面情绪的敏感程度,"
|
||||
"以及个体对这些情绪的调节和控制能力。高分者容易体验负面情绪,对压力较为敏感,情绪波动较大;"
|
||||
"低分者则表现出较强的情绪稳定性,能够较好地应对压力和挫折。"
|
||||
),
|
||||
"低分者则表现出较强的情绪稳定性,能够较好地应对压力和挫折。",
|
||||
"trait_words": ["稳定", "沉着", "从容", "坚韧"],
|
||||
"subfactors": {
|
||||
"焦虑": "个体体验焦虑感的个体差异;高分表现坐立不安,低分表现平静",
|
||||
"抑郁": "个体体验抑郁情感的个体差异;高分表现郁郁寡欢,低分表现平静",
|
||||
"敏感多疑": "个体常常关注自己的内心活动,行为和过于意识人对自己的看法、评价;"
|
||||
"高分表现敏感多疑,低分表现淡定、自信",
|
||||
"敏感多疑": "个体常常关注自己的内心活动,行为和过于意识人对自己的看法、评价;高分表现敏感多疑,"
|
||||
"低分表现淡定、自信",
|
||||
"脆弱性": "个体在危机或困难面前无力、脆弱的特点;高分表现无能、易受伤、逃避,低分表现坚强",
|
||||
"愤怒-敌意": "个体准备体验愤怒,及相关情绪的状态;高分表现暴躁易怒,低分表现平静"
|
||||
}
|
||||
"愤怒-敌意": "个体准备体验愤怒,及相关情绪的状态;高分表现暴躁易怒,低分表现平静",
|
||||
},
|
||||
},
|
||||
"严谨性": {
|
||||
"description": (
|
||||
"反映个体在目标导向行为上的组织、坚持和动机特征。这个维度体现了个体在工作、学习等"
|
||||
"目标性活动中的自我约束和行为管理能力。它涉及到个体的责任感、自律性、计划性、条理性以及"
|
||||
"完成任务的态度。高分者往往表现出强烈的责任心、良好的组织能力、谨慎的决策风格和持续的"
|
||||
"努力精神;低分者则可能表现出随意性强、缺乏规划、做事马虎或易放弃的特点。"
|
||||
),
|
||||
"description": "反映个体在目标导向行为上的组织、坚持和动机特征。这个维度体现了个体在工作、"
|
||||
"学习等目标性活动中的自我约束和行为管理能力。它涉及到个体的责任感、自律性、计划性、条理性以及完成任务的态度。"
|
||||
"高分者往往表现出强烈的责任心、良好的组织能力、谨慎的决策风格和持续的努力精神;低分者则可能表现出随意性强、"
|
||||
"缺乏规划、做事马虎或易放弃的特点。",
|
||||
"trait_words": ["负责", "自律", "条理", "勤奋"],
|
||||
"subfactors": {
|
||||
"责任心": "个体对待任务和他人认真负责,以及对自己承诺的信守;"
|
||||
"高分表现有责任心、负责任,低分表现推卸责任、逃避处罚",
|
||||
"责任心": "个体对待任务和他人认真负责,以及对自己承诺的信守;高分表现有责任心、负责任,"
|
||||
"低分表现推卸责任、逃避处罚",
|
||||
"自我控制": "个体约束自己的能力,及自始至终的坚持性;高分表现自制、有毅力,低分表现冲动、无毅力",
|
||||
"审慎性": "个体在采取具体行动前的心理状态;高分表现谨慎、小心,低分表现鲁莽、草率",
|
||||
"条理性": "个体处理事务和工作的秩序,条理和逻辑性;高分表现整洁、有秩序,低分表现混乱、遗漏",
|
||||
"勤奋": "个体工作和学习的努力程度及为达到目标而表现出的进取精神;高分表现勤奋、刻苦,低分表现懒散"
|
||||
}
|
||||
"勤奋": "个体工作和学习的努力程度及为达到目标而表现出的进取精神;高分表现勤奋、刻苦,低分表现懒散",
|
||||
},
|
||||
},
|
||||
"开放性": {
|
||||
"description": (
|
||||
"反映个体对新异事物、新观念和新经验的接受程度,以及在思维和行为方面的创新倾向。"
|
||||
"这个维度体现了个体在认知和体验方面的广度、深度和灵活性。它包括对艺术的欣赏能力、"
|
||||
"对知识的求知欲、想象力的丰富程度,以及对冒险和创新的态度。高分者往往具有丰富的想象力、"
|
||||
"广泛的兴趣、开放的思维方式和创新的倾向;低分者则倾向于保守、传统,喜欢熟悉和常规的事物。"
|
||||
),
|
||||
"description": "反映个体对新异事物、新观念和新经验的接受程度,以及在思维和行为方面的创新倾向。"
|
||||
"这个维度体现了个体在认知和体验方面的广度、深度和灵活性。它包括对艺术的欣赏能力、对知识的求知欲、想象力的丰富程度,"
|
||||
"以及对冒险和创新的态度。高分者往往具有丰富的想象力、广泛的兴趣、开放的思维方式和创新的倾向;低分者则倾向于保守、"
|
||||
"传统,喜欢熟悉和常规的事物。",
|
||||
"trait_words": ["创新", "好奇", "艺术", "冒险"],
|
||||
"subfactors": {
|
||||
"幻想": "个体富于幻想和想象的水平;高分表现想象力丰富,低分表现想象力匮乏",
|
||||
"审美": "个体对于艺术和美的敏感与热爱程度;高分表现富有艺术气息,低分表现一般对艺术不敏感",
|
||||
"好奇心": "个体对未知事物的态度;高分表现兴趣广泛、好奇心浓,低分表现兴趣少、无好奇心",
|
||||
"冒险精神": "个体愿意尝试有风险活动的个体差异;高分表现好冒险,低分表现保守",
|
||||
"价值观念": "个体对新事物、新观念、怪异想法的态度;高分表现开放、坦然接受新事物,低分则相反"
|
||||
}
|
||||
"价值观念": "个体对新事物、新观念、怪异想法的态度;高分表现开放、坦然接受新事物,低分则相反",
|
||||
},
|
||||
},
|
||||
"宜人性": {
|
||||
"description": (
|
||||
"反映个体在人际关系中的亲和倾向,体现了对他人的关心、同情和合作意愿。这个维度主要"
|
||||
"关注个体与他人互动时的态度和行为特征,包括对他人的信任程度、同理心水平、助人意愿以及"
|
||||
"在人际冲突中的处理方式。高分者通常表现出友善、富有同情心、乐于助人的特质,善于与他人"
|
||||
"建立和谐关系;低分者则可能表现出较少的人际关注,在社交互动中更注重自身利益,较少考虑"
|
||||
"他人感受。"
|
||||
),
|
||||
"description": "反映个体在人际关系中的亲和倾向,体现了对他人的关心、同情和合作意愿。"
|
||||
"这个维度主要关注个体与他人互动时的态度和行为特征,包括对他人的信任程度、同理心水平、"
|
||||
"助人意愿以及在人际冲突中的处理方式。高分者通常表现出友善、富有同情心、乐于助人的特质,善于与他人建立和谐关系;"
|
||||
"低分者则可能表现出较少的人际关注,在社交互动中更注重自身利益,较少考虑他人感受。",
|
||||
"trait_words": ["友善", "同理", "信任", "合作"],
|
||||
"subfactors": {
|
||||
"信任": "个体对他人和/或他人言论的相信程度;高分表现信任他人,低分表现怀疑",
|
||||
"体贴": "个体对别人的兴趣和需要的关注程度;高分表现体贴、温存,低分表现冷漠、不在乎",
|
||||
"同情": "个体对处于不利地位的人或物的态度;高分表现富有同情心,低分表现冷漠"
|
||||
}
|
||||
}
|
||||
"同情": "个体对处于不利地位的人或物的态度;高分表现富有同情心,低分表现冷漠",
|
||||
},
|
||||
},
|
||||
}
|
||||
@@ -1,29 +1,23 @@
|
||||
'''
|
||||
"""
|
||||
The definition of artificial personality in this paper follows the dispositional para-digm and adapts a definition of
|
||||
personality developed for humans [17]:
|
||||
Personality for a human is the "whole and organisation of relatively stable tendencies and patterns of experience and
|
||||
behaviour within one person (distinguishing it from other persons)".
|
||||
This definition is modified for artificial personality:
|
||||
Artificial personality describes the relatively stable tendencies
|
||||
and patterns of behav-iour of an AI-based machine that
|
||||
behaviour within one person (distinguishing it from other persons)". This definition is modified for artificial
|
||||
personality:
|
||||
Artificial personality describes the relatively stable tendencies and patterns of behav-iour of an AI-based machine that
|
||||
can be designed by developers and designers via different modalities, such as language, creating the impression
|
||||
of individuality of a humanized social agent when users interact with the machine.'''
|
||||
of individuality of a humanized social agent when users interact with the machine."""
|
||||
|
||||
from typing import Dict, List
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Dict, List
|
||||
|
||||
from dotenv import load_dotenv
|
||||
import sys
|
||||
|
||||
from src.plugins.personality.offline_llm import LLMModel
|
||||
from src.plugins.personality.questionnaire import FACTOR_DESCRIPTIONS
|
||||
from src.plugins.personality.scene import get_scene_by_factor, PERSONALITY_SCENES
|
||||
|
||||
'''
|
||||
"""
|
||||
第一种方案:基于情景评估的人格测定
|
||||
'''
|
||||
"""
|
||||
current_dir = Path(__file__).resolve().parent
|
||||
project_root = current_dir.parent.parent.parent
|
||||
env_path = project_root / ".env.prod"
|
||||
@@ -31,6 +25,9 @@ env_path = project_root / ".env.prod"
|
||||
root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../.."))
|
||||
sys.path.append(root_path)
|
||||
|
||||
from src.plugins.personality.scene import get_scene_by_factor, PERSONALITY_SCENES # noqa: E402
|
||||
from src.plugins.personality.questionnaire import FACTOR_DESCRIPTIONS # noqa: E402
|
||||
from src.plugins.personality.offline_llm import LLMModel # noqa: E402
|
||||
|
||||
# 加载环境变量
|
||||
if env_path.exists():
|
||||
@@ -54,6 +51,7 @@ class PersonalityEvaluator_direct:
|
||||
|
||||
# 从每个维度选择3个场景
|
||||
import random
|
||||
|
||||
scene_keys = list(scenes.keys())
|
||||
selected_scenes = random.sample(scene_keys, min(3, len(scene_keys)))
|
||||
|
||||
@@ -65,11 +63,9 @@ class PersonalityEvaluator_direct:
|
||||
other_traits = [t for t in PERSONALITY_SCENES if t != trait]
|
||||
secondary_trait = random.choice(other_traits)
|
||||
|
||||
self.scenarios.append({
|
||||
"场景": scene["scenario"],
|
||||
"评估维度": [trait, secondary_trait],
|
||||
"场景编号": scene_key
|
||||
})
|
||||
self.scenarios.append(
|
||||
{"场景": scene["scenario"], "评估维度": [trait, secondary_trait], "场景编号": scene_key}
|
||||
)
|
||||
|
||||
self.llm = LLMModel()
|
||||
|
||||
@@ -183,11 +179,7 @@ def main():
|
||||
print(f"测试场景数:{dimension_counts[trait]}")
|
||||
|
||||
# 保存结果
|
||||
result = {
|
||||
"final_scores": final_scores,
|
||||
"dimension_counts": dimension_counts,
|
||||
"scenarios": evaluator.scenarios
|
||||
}
|
||||
result = {"final_scores": final_scores, "dimension_counts": dimension_counts, "scenarios": evaluator.scenarios}
|
||||
|
||||
# 确保目录存在
|
||||
os.makedirs("results", exist_ok=True)
|
||||
|
||||
@@ -8,7 +8,7 @@ PERSONALITY_SCENES = {
|
||||
同事:「嗨!你是新来的同事吧?我是市场部的小林。」
|
||||
|
||||
同事看起来很友善,还主动介绍说:「待会午饭时间,我们部门有几个人准备一起去楼下新开的餐厅,你要一起来吗?可以认识一下其他同事。」""",
|
||||
"explanation": "这个场景通过职场社交情境,观察个体对于新环境、新社交圈的态度和反应倾向。"
|
||||
"explanation": "这个场景通过职场社交情境,观察个体对于新环境、新社交圈的态度和反应倾向。",
|
||||
},
|
||||
"场景2": {
|
||||
"scenario": """在大学班级群里,班长发起了一个组织班级联谊活动的投票:
|
||||
@@ -16,7 +16,7 @@ PERSONALITY_SCENES = {
|
||||
班长:「大家好!下周末我们准备举办一次班级联谊活动,地点在学校附近的KTV。想请大家报名参加,也欢迎大家邀请其他班级的同学!」
|
||||
|
||||
已经有几个同学在群里积极响应,有人@你问你要不要一起参加。""",
|
||||
"explanation": "通过班级活动场景,观察个体对群体社交活动的参与意愿。"
|
||||
"explanation": "通过班级活动场景,观察个体对群体社交活动的参与意愿。",
|
||||
},
|
||||
"场景3": {
|
||||
"scenario": """你在社交平台上发布了一条动态,收到了很多陌生网友的评论和私信:
|
||||
@@ -24,13 +24,14 @@ PERSONALITY_SCENES = {
|
||||
网友A:「你说的这个观点很有意思!想和你多交流一下。」
|
||||
|
||||
网友B:「我也对这个话题很感兴趣,要不要建个群一起讨论?」""",
|
||||
"explanation": "通过网络社交场景,观察个体对线上社交的态度。"
|
||||
"explanation": "通过网络社交场景,观察个体对线上社交的态度。",
|
||||
},
|
||||
"场景4": {
|
||||
"scenario": """你暗恋的对象今天主动来找你:
|
||||
|
||||
对方:「那个...我最近在准备一个演讲比赛,听说你口才很好。能不能请你帮我看看演讲稿,顺便给我一些建议?如果你有时间的话,可以一起吃个饭聊聊。」""",
|
||||
"explanation": "通过恋爱情境,观察个体在面对心仪对象时的社交表现。"
|
||||
对方:「那个...我最近在准备一个演讲比赛,听说你口才很好。能不能请你帮我看看演讲稿,顺便给我一些建议?"""
|
||||
"""如果你有时间的话,可以一起吃个饭聊聊。」""",
|
||||
"explanation": "通过恋爱情境,观察个体在面对心仪对象时的社交表现。",
|
||||
},
|
||||
"场景5": {
|
||||
"scenario": """在一次线下读书会上,主持人突然点名让你分享读后感:
|
||||
@@ -38,19 +39,18 @@ PERSONALITY_SCENES = {
|
||||
主持人:「听说你对这本书很有见解,能不能和大家分享一下你的想法?」
|
||||
|
||||
现场有二十多个陌生的读书爱好者,都期待地看着你。""",
|
||||
"explanation": "通过即兴发言场景,观察个体的社交表现欲和公众表达能力。"
|
||||
}
|
||||
"explanation": "通过即兴发言场景,观察个体的社交表现欲和公众表达能力。",
|
||||
},
|
||||
},
|
||||
|
||||
"神经质": {
|
||||
"场景1": {
|
||||
"scenario": """你正在准备一个重要的项目演示,这关系到你的晋升机会。就在演示前30分钟
|
||||
,你收到了主管发来的消息:
|
||||
"scenario": """你正在准备一个重要的项目演示,这关系到你的晋升机会。"""
|
||||
"""就在演示前30分钟,你收到了主管发来的消息:
|
||||
|
||||
主管:「临时有个变动,CEO也会来听你的演示。他对这个项目特别感兴趣。」
|
||||
|
||||
正当你准备回复时,主管又发来一条:「对了,能不能把演示时间压缩到15分钟?CEO下午还有其他安排。
|
||||
你之前准备的是30分钟的版本对吧?」""",
|
||||
"explanation": "这个场景通过突发的压力情境,观察个体在面对计划外变化时的情绪反应和调节能力。"
|
||||
正当你准备回复时,主管又发来一条:「对了,能不能把演示时间压缩到15分钟?CEO下午还有其他安排。你之前准备的是30分钟的版本对吧?」""",
|
||||
"explanation": "这个场景通过突发的压力情境,观察个体在面对计划外变化时的情绪反应和调节能力。",
|
||||
},
|
||||
"场景2": {
|
||||
"scenario": """期末考试前一天晚上,你收到了好朋友发来的消息:
|
||||
@@ -58,7 +58,7 @@ PERSONALITY_SCENES = {
|
||||
好朋友:「不好意思这么晚打扰你...我看你平时成绩很好,能不能帮我解答几个问题?我真的很担心明天的考试。」
|
||||
|
||||
你看了看时间,已经是晚上11点,而你原本计划的复习还没完成。""",
|
||||
"explanation": "通过考试压力场景,观察个体在时间紧张时的情绪管理。"
|
||||
"explanation": "通过考试压力场景,观察个体在时间紧张时的情绪管理。",
|
||||
},
|
||||
"场景3": {
|
||||
"scenario": """你在社交媒体上发表的一个观点引发了争议,有不少人开始批评你:
|
||||
@@ -68,7 +68,7 @@ PERSONALITY_SCENES = {
|
||||
网友B:「建议楼主先去补补课再来发言。」
|
||||
|
||||
评论区里的负面评论越来越多,还有人开始人身攻击。""",
|
||||
"explanation": "通过网络争议场景,观察个体面对批评时的心理承受能力。"
|
||||
"explanation": "通过网络争议场景,观察个体面对批评时的心理承受能力。",
|
||||
},
|
||||
"场景4": {
|
||||
"scenario": """你和恋人约好今天一起看电影,但在约定时间前半小时,对方发来消息:
|
||||
@@ -78,7 +78,7 @@ PERSONALITY_SCENES = {
|
||||
二十分钟后,对方又发来消息:「可能要再等等,抱歉!」
|
||||
|
||||
电影快要开始了,但对方还是没有出现。""",
|
||||
"explanation": "通过恋爱情境,观察个体对不确定性的忍耐程度。"
|
||||
"explanation": "通过恋爱情境,观察个体对不确定性的忍耐程度。",
|
||||
},
|
||||
"场景5": {
|
||||
"scenario": """在一次重要的小组展示中,你的组员在演示途中突然卡壳了:
|
||||
@@ -86,10 +86,9 @@ PERSONALITY_SCENES = {
|
||||
组员小声对你说:「我忘词了,接下来的部分是什么来着...」
|
||||
|
||||
台下的老师和同学都在等待,气氛有些尴尬。""",
|
||||
"explanation": "通过公开场合的突发状况,观察个体的应急反应和压力处理能力。"
|
||||
}
|
||||
"explanation": "通过公开场合的突发状况,观察个体的应急反应和压力处理能力。",
|
||||
},
|
||||
},
|
||||
|
||||
"严谨性": {
|
||||
"场景1": {
|
||||
"scenario": """你是团队的项目负责人,刚刚接手了一个为期两个月的重要项目。在第一次团队会议上:
|
||||
@@ -99,7 +98,7 @@ PERSONALITY_SCENES = {
|
||||
小张:「要不要先列个时间表?不过感觉太详细的计划也没必要,点到为止就行。」
|
||||
|
||||
小李:「客户那边说如果能提前完成有奖励,我觉得我们可以先做快一点的部分。」""",
|
||||
"explanation": "这个场景通过项目管理情境,体现个体在工作方法、计划性和责任心方面的特征。"
|
||||
"explanation": "这个场景通过项目管理情境,体现个体在工作方法、计划性和责任心方面的特征。",
|
||||
},
|
||||
"场景2": {
|
||||
"scenario": """期末小组作业,组长让大家分工完成一份研究报告。在截止日期前三天:
|
||||
@@ -109,7 +108,7 @@ PERSONALITY_SCENES = {
|
||||
组员B:「我这边可能还要一天才能完成,最近太忙了。」
|
||||
|
||||
组员C发来一份没有任何引用出处、可能存在抄袭的内容:「我写完了,你们看看怎么样?」""",
|
||||
"explanation": "通过学习场景,观察个体对学术规范和质量要求的重视程度。"
|
||||
"explanation": "通过学习场景,观察个体对学术规范和质量要求的重视程度。",
|
||||
},
|
||||
"场景3": {
|
||||
"scenario": """你在一个兴趣小组的群聊中,大家正在讨论举办一次线下活动:
|
||||
@@ -119,7 +118,7 @@ PERSONALITY_SCENES = {
|
||||
成员B:「对啊,随意一点挺好的。」
|
||||
|
||||
成员C:「人来了自然就热闹了。」""",
|
||||
"explanation": "通过活动组织场景,观察个体对活动计划的态度。"
|
||||
"explanation": "通过活动组织场景,观察个体对活动计划的态度。",
|
||||
},
|
||||
"场景4": {
|
||||
"scenario": """你和恋人计划一起去旅游,对方说:
|
||||
@@ -127,7 +126,7 @@ PERSONALITY_SCENES = {
|
||||
恋人:「我们就随心而行吧!订个目的地,其他的到了再说,这样更有意思。」
|
||||
|
||||
距离出发还有一周时间,但机票、住宿和具体行程都还没有确定。""",
|
||||
"explanation": "通过旅行规划场景,观察个体的计划性和对不确定性的接受程度。"
|
||||
"explanation": "通过旅行规划场景,观察个体的计划性和对不确定性的接受程度。",
|
||||
},
|
||||
"场景5": {
|
||||
"scenario": """在一个重要的团队项目中,你发现一个同事的工作存在明显错误:
|
||||
@@ -135,20 +134,19 @@ PERSONALITY_SCENES = {
|
||||
同事:「差不多就行了,反正领导也看不出来。」
|
||||
|
||||
这个错误可能不会立即造成问题,但长期来看可能会影响项目质量。""",
|
||||
"explanation": "通过工作质量场景,观察个体对细节和标准的坚持程度。"
|
||||
}
|
||||
"explanation": "通过工作质量场景,观察个体对细节和标准的坚持程度。",
|
||||
},
|
||||
},
|
||||
|
||||
"开放性": {
|
||||
"场景1": {
|
||||
"scenario": """周末下午,你的好友小美兴致勃勃地给你打电话:
|
||||
|
||||
小美:「我刚发现一个特别有意思的沉浸式艺术展!不是传统那种挂画的展览,而是把整个空间都变成了艺术品。观众要穿特制的服装,
|
||||
还要带上VR眼镜,好像还有AI实时互动!」
|
||||
小美:「我刚发现一个特别有意思的沉浸式艺术展!不是传统那种挂画的展览,而是把整个空间都变成了艺术品。"""
|
||||
"""观众要穿特制的服装,还要带上VR眼镜,好像还有AI实时互动!」
|
||||
|
||||
小美继续说:「虽然票价不便宜,但听说体验很独特。网上评价两极分化,有人说是前所未有的艺术革新,
|
||||
也有人说是哗众取宠。要不要周末一起去体验一下?」""",
|
||||
"explanation": "这个场景通过新型艺术体验,反映个体对创新事物的接受程度和尝试意愿。"
|
||||
小美继续说:「虽然票价不便宜,但听说体验很独特。网上评价两极分化,有人说是前所未有的艺术革新,也有人说是哗众取宠。"""
|
||||
"""要不要周末一起去体验一下?」""",
|
||||
"explanation": "这个场景通过新型艺术体验,反映个体对创新事物的接受程度和尝试意愿。",
|
||||
},
|
||||
"场景2": {
|
||||
"scenario": """在一节创意写作课上,老师提出了一个特别的作业:
|
||||
@@ -156,16 +154,16 @@ PERSONALITY_SCENES = {
|
||||
老师:「下周的作业是用AI写作工具协助创作一篇小说。你们可以自由探索如何与AI合作,打破传统写作方式。」
|
||||
|
||||
班上随即展开了激烈讨论,有人认为这是对创作的亵渎,也有人对这种新形式感到兴奋。""",
|
||||
"explanation": "通过新技术应用场景,观察个体对创新学习方式的态度。"
|
||||
"explanation": "通过新技术应用场景,观察个体对创新学习方式的态度。",
|
||||
},
|
||||
"场景3": {
|
||||
"scenario": """在社交媒体上,你看到一个朋友分享了一种新的生活方式:
|
||||
|
||||
「最近我在尝试'数字游牧'生活,就是一边远程工作一边环游世界。没有固定住所,住青旅或短租,认识来自世界各地的朋友。
|
||||
虽然有时会很不稳定,但这种自由的生活方式真的很棒!」
|
||||
「最近我在尝试'数字游牧'生活,就是一边远程工作一边环游世界。"""
|
||||
"""没有固定住所,住青旅或短租,认识来自世界各地的朋友。虽然有时会很不稳定,但这种自由的生活方式真的很棒!」
|
||||
|
||||
评论区里争论不断,有人向往这种生活,也有人觉得太冒险。""",
|
||||
"explanation": "通过另类生活方式,观察个体对非传统选择的态度。"
|
||||
"explanation": "通过另类生活方式,观察个体对非传统选择的态度。",
|
||||
},
|
||||
"场景4": {
|
||||
"scenario": """你的恋人突然提出了一个想法:
|
||||
@@ -173,7 +171,7 @@ PERSONALITY_SCENES = {
|
||||
恋人:「我们要不要尝试一下开放式关系?就是在保持彼此关系的同时,也允许和其他人发展感情。现在国外很多年轻人都这样。」
|
||||
|
||||
这个提议让你感到意外,你之前从未考虑过这种可能性。""",
|
||||
"explanation": "通过感情观念场景,观察个体对非传统关系模式的接受度。"
|
||||
"explanation": "通过感情观念场景,观察个体对非传统关系模式的接受度。",
|
||||
},
|
||||
"场景5": {
|
||||
"scenario": """在一次朋友聚会上,大家正在讨论未来职业规划:
|
||||
@@ -183,10 +181,9 @@ PERSONALITY_SCENES = {
|
||||
朋友B:「我想去学习生物科技,准备转行做人造肉研发。」
|
||||
|
||||
朋友C:「我在考虑加入一个区块链创业项目,虽然风险很大。」""",
|
||||
"explanation": "通过职业选择场景,观察个体对新兴领域的探索意愿。"
|
||||
}
|
||||
"explanation": "通过职业选择场景,观察个体对新兴领域的探索意愿。",
|
||||
},
|
||||
},
|
||||
|
||||
"宜人性": {
|
||||
"场景1": {
|
||||
"scenario": """在回家的公交车上,你遇到这样一幕:
|
||||
@@ -198,7 +195,7 @@ PERSONALITY_SCENES = {
|
||||
年轻人B:「现在的老年人真是...我看她包里还有菜,肯定是去菜市场买完菜回来的,这么多人都不知道叫子女开车接送。」
|
||||
|
||||
就在这时,老奶奶一个趔趄,差点摔倒。她扶住了扶手,但包里的东西洒了一些出来。""",
|
||||
"explanation": "这个场景通过公共场合的助人情境,体现个体的同理心和对他人需求的关注程度。"
|
||||
"explanation": "这个场景通过公共场合的助人情境,体现个体的同理心和对他人需求的关注程度。",
|
||||
},
|
||||
"场景2": {
|
||||
"scenario": """在班级群里,有同学发起为生病住院的同学捐款:
|
||||
@@ -208,7 +205,7 @@ PERSONALITY_SCENES = {
|
||||
同学B:「我觉得这是他家里的事,我们不方便参与吧。」
|
||||
|
||||
同学C:「但是都是同学一场,帮帮忙也是应该的。」""",
|
||||
"explanation": "通过同学互助场景,观察个体的助人意愿和同理心。"
|
||||
"explanation": "通过同学互助场景,观察个体的助人意愿和同理心。",
|
||||
},
|
||||
"场景3": {
|
||||
"scenario": """在一个网络讨论组里,有人发布了求助信息:
|
||||
@@ -219,7 +216,7 @@ PERSONALITY_SCENES = {
|
||||
「生活本来就是这样,想开点!」
|
||||
「你这样子太消极了,要积极面对。」
|
||||
「谁还没点烦心事啊,过段时间就好了。」""",
|
||||
"explanation": "通过网络互助场景,观察个体的共情能力和安慰方式。"
|
||||
"explanation": "通过网络互助场景,观察个体的共情能力和安慰方式。",
|
||||
},
|
||||
"场景4": {
|
||||
"scenario": """你的恋人向你倾诉工作压力:
|
||||
@@ -227,7 +224,7 @@ PERSONALITY_SCENES = {
|
||||
恋人:「最近工作真的好累,感觉快坚持不下去了...」
|
||||
|
||||
但今天你也遇到了很多烦心事,心情也不太好。""",
|
||||
"explanation": "通过感情关系场景,观察个体在自身状态不佳时的关怀能力。"
|
||||
"explanation": "通过感情关系场景,观察个体在自身状态不佳时的关怀能力。",
|
||||
},
|
||||
"场景5": {
|
||||
"scenario": """在一次团队项目中,新来的同事小王因为经验不足,造成了一个严重的错误。在部门会议上:
|
||||
@@ -235,11 +232,12 @@ PERSONALITY_SCENES = {
|
||||
主管:「这个错误造成了很大的损失,是谁负责的这部分?」
|
||||
|
||||
小王看起来很紧张,欲言又止。你知道是他造成的错误,同时你也是这个项目的共同负责人。""",
|
||||
"explanation": "通过职场情境,观察个体在面对他人过错时的态度和处理方式。"
|
||||
}
|
||||
}
|
||||
"explanation": "通过职场情境,观察个体在面对他人过错时的态度和处理方式。",
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def get_scene_by_factor(factor: str) -> Dict:
|
||||
"""
|
||||
根据人格因子获取对应的情景测试
|
||||
@@ -252,6 +250,7 @@ def get_scene_by_factor(factor: str) -> Dict:
|
||||
"""
|
||||
return PERSONALITY_SCENES.get(factor, None)
|
||||
|
||||
|
||||
def get_all_scenes() -> Dict:
|
||||
"""
|
||||
获取所有情景测试
|
||||
|
||||
123
src/plugins/schedule/offline_llm.py
Normal file
123
src/plugins/schedule/offline_llm.py
Normal file
@@ -0,0 +1,123 @@
|
||||
import asyncio
|
||||
import os
|
||||
import time
|
||||
from typing import Tuple, Union
|
||||
|
||||
import aiohttp
|
||||
import requests
|
||||
from src.common.logger import get_module_logger
|
||||
|
||||
logger = get_module_logger("offline_llm")
|
||||
|
||||
|
||||
class LLMModel:
|
||||
def __init__(self, model_name="deepseek-ai/DeepSeek-V3", **kwargs):
|
||||
self.model_name = model_name
|
||||
self.params = kwargs
|
||||
self.api_key = os.getenv("SILICONFLOW_KEY")
|
||||
self.base_url = os.getenv("SILICONFLOW_BASE_URL")
|
||||
|
||||
if not self.api_key or not self.base_url:
|
||||
raise ValueError("环境变量未正确加载:SILICONFLOW_KEY 或 SILICONFLOW_BASE_URL 未设置")
|
||||
|
||||
logger.info(f"API URL: {self.base_url}") # 使用 logger 记录 base_url
|
||||
|
||||
def generate_response(self, prompt: str) -> Union[str, Tuple[str, str]]:
|
||||
"""根据输入的提示生成模型的响应"""
|
||||
headers = {"Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json"}
|
||||
|
||||
# 构建请求体
|
||||
data = {
|
||||
"model": self.model_name,
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
"temperature": 0.5,
|
||||
**self.params,
|
||||
}
|
||||
|
||||
# 发送请求到完整的 chat/completions 端点
|
||||
api_url = f"{self.base_url.rstrip('/')}/chat/completions"
|
||||
logger.info(f"Request URL: {api_url}") # 记录请求的 URL
|
||||
|
||||
max_retries = 3
|
||||
base_wait_time = 15 # 基础等待时间(秒)
|
||||
|
||||
for retry in range(max_retries):
|
||||
try:
|
||||
response = requests.post(api_url, headers=headers, json=data)
|
||||
|
||||
if response.status_code == 429:
|
||||
wait_time = base_wait_time * (2**retry) # 指数退避
|
||||
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
|
||||
time.sleep(wait_time)
|
||||
continue
|
||||
|
||||
response.raise_for_status() # 检查其他响应状态
|
||||
|
||||
result = response.json()
|
||||
if "choices" in result and len(result["choices"]) > 0:
|
||||
content = result["choices"][0]["message"]["content"]
|
||||
reasoning_content = result["choices"][0]["message"].get("reasoning_content", "")
|
||||
return content, reasoning_content
|
||||
return "没有返回结果", ""
|
||||
|
||||
except Exception as e:
|
||||
if retry < max_retries - 1: # 如果还有重试机会
|
||||
wait_time = base_wait_time * (2**retry)
|
||||
logger.error(f"[回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
|
||||
time.sleep(wait_time)
|
||||
else:
|
||||
logger.error(f"请求失败: {str(e)}")
|
||||
return f"请求失败: {str(e)}", ""
|
||||
|
||||
logger.error("达到最大重试次数,请求仍然失败")
|
||||
return "达到最大重试次数,请求仍然失败", ""
|
||||
|
||||
async def generate_response_async(self, prompt: str) -> Union[str, Tuple[str, str]]:
|
||||
"""异步方式根据输入的提示生成模型的响应"""
|
||||
headers = {"Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json"}
|
||||
|
||||
# 构建请求体
|
||||
data = {
|
||||
"model": self.model_name,
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
"temperature": 0.5,
|
||||
**self.params,
|
||||
}
|
||||
|
||||
# 发送请求到完整的 chat/completions 端点
|
||||
api_url = f"{self.base_url.rstrip('/')}/chat/completions"
|
||||
logger.info(f"Request URL: {api_url}") # 记录请求的 URL
|
||||
|
||||
max_retries = 3
|
||||
base_wait_time = 15
|
||||
|
||||
async with aiohttp.ClientSession() as session:
|
||||
for retry in range(max_retries):
|
||||
try:
|
||||
async with session.post(api_url, headers=headers, json=data) as response:
|
||||
if response.status == 429:
|
||||
wait_time = base_wait_time * (2**retry) # 指数退避
|
||||
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
|
||||
await asyncio.sleep(wait_time)
|
||||
continue
|
||||
|
||||
response.raise_for_status() # 检查其他响应状态
|
||||
|
||||
result = await response.json()
|
||||
if "choices" in result and len(result["choices"]) > 0:
|
||||
content = result["choices"][0]["message"]["content"]
|
||||
reasoning_content = result["choices"][0]["message"].get("reasoning_content", "")
|
||||
return content, reasoning_content
|
||||
return "没有返回结果", ""
|
||||
|
||||
except Exception as e:
|
||||
if retry < max_retries - 1: # 如果还有重试机会
|
||||
wait_time = base_wait_time * (2**retry)
|
||||
logger.error(f"[回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
|
||||
await asyncio.sleep(wait_time)
|
||||
else:
|
||||
logger.error(f"请求失败: {str(e)}")
|
||||
return f"请求失败: {str(e)}", ""
|
||||
|
||||
logger.error("达到最大重试次数,请求仍然失败")
|
||||
return "达到最大重试次数,请求仍然失败", ""
|
||||
191
src/plugins/schedule/schedule_generator copy.py
Normal file
191
src/plugins/schedule/schedule_generator copy.py
Normal file
@@ -0,0 +1,191 @@
|
||||
import datetime
|
||||
import json
|
||||
import re
|
||||
import os
|
||||
import sys
|
||||
from typing import Dict, Union
|
||||
|
||||
|
||||
# 添加项目根目录到 Python 路径
|
||||
root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../.."))
|
||||
sys.path.append(root_path)
|
||||
|
||||
from src.common.database import db # noqa: E402
|
||||
from src.common.logger import get_module_logger # noqa: E402
|
||||
from src.plugins.schedule.offline_llm import LLMModel # noqa: E402
|
||||
from src.plugins.chat.config import global_config # noqa: E402
|
||||
|
||||
logger = get_module_logger("scheduler")
|
||||
|
||||
|
||||
class ScheduleGenerator:
|
||||
enable_output: bool = True
|
||||
|
||||
def __init__(self):
|
||||
# 使用离线LLM模型
|
||||
self.llm_scheduler = LLMModel(model_name="Pro/deepseek-ai/DeepSeek-V3", temperature=0.9)
|
||||
self.today_schedule_text = ""
|
||||
self.today_schedule = {}
|
||||
self.tomorrow_schedule_text = ""
|
||||
self.tomorrow_schedule = {}
|
||||
self.yesterday_schedule_text = ""
|
||||
self.yesterday_schedule = {}
|
||||
|
||||
async def initialize(self):
|
||||
today = datetime.datetime.now()
|
||||
tomorrow = datetime.datetime.now() + datetime.timedelta(days=1)
|
||||
yesterday = datetime.datetime.now() - datetime.timedelta(days=1)
|
||||
|
||||
self.today_schedule_text, self.today_schedule = await self.generate_daily_schedule(target_date=today)
|
||||
self.tomorrow_schedule_text, self.tomorrow_schedule = await self.generate_daily_schedule(
|
||||
target_date=tomorrow, read_only=True
|
||||
)
|
||||
self.yesterday_schedule_text, self.yesterday_schedule = await self.generate_daily_schedule(
|
||||
target_date=yesterday, read_only=True
|
||||
)
|
||||
|
||||
async def generate_daily_schedule(
|
||||
self, target_date: datetime.datetime = None, read_only: bool = False
|
||||
) -> Dict[str, str]:
|
||||
date_str = target_date.strftime("%Y-%m-%d")
|
||||
weekday = target_date.strftime("%A")
|
||||
|
||||
schedule_text = str
|
||||
|
||||
existing_schedule = db.schedule.find_one({"date": date_str})
|
||||
if existing_schedule:
|
||||
if self.enable_output:
|
||||
logger.debug(f"{date_str}的日程已存在:")
|
||||
schedule_text = existing_schedule["schedule"]
|
||||
# print(self.schedule_text)
|
||||
|
||||
elif not read_only:
|
||||
logger.debug(f"{date_str}的日程不存在,准备生成新的日程。")
|
||||
prompt = (
|
||||
f"""我是{global_config.BOT_NICKNAME},{global_config.PROMPT_SCHEDULE_GEN},请为我生成{date_str}({weekday})的日程安排,包括:"""
|
||||
+ """
|
||||
1. 早上的学习和工作安排
|
||||
2. 下午的活动和任务
|
||||
3. 晚上的计划和休息时间
|
||||
请按照时间顺序列出具体时间点和对应的活动,用一个时间点而不是时间段来表示时间,用JSON格式返回日程表,
|
||||
仅返回内容,不要返回注释,不要添加任何markdown或代码块样式,时间采用24小时制,
|
||||
格式为{"时间": "活动","时间": "活动",...}。"""
|
||||
)
|
||||
|
||||
try:
|
||||
schedule_text, _ = self.llm_scheduler.generate_response(prompt)
|
||||
db.schedule.insert_one({"date": date_str, "schedule": schedule_text})
|
||||
self.enable_output = True
|
||||
except Exception as e:
|
||||
logger.error(f"生成日程失败: {str(e)}")
|
||||
schedule_text = "生成日程时出错了"
|
||||
# print(self.schedule_text)
|
||||
else:
|
||||
if self.enable_output:
|
||||
logger.debug(f"{date_str}的日程不存在。")
|
||||
schedule_text = "忘了"
|
||||
|
||||
return schedule_text, None
|
||||
|
||||
schedule_form = self._parse_schedule(schedule_text)
|
||||
return schedule_text, schedule_form
|
||||
|
||||
def _parse_schedule(self, schedule_text: str) -> Union[bool, Dict[str, str]]:
|
||||
"""解析日程文本,转换为时间和活动的字典"""
|
||||
try:
|
||||
reg = r"\{(.|\r|\n)+\}"
|
||||
matched = re.search(reg, schedule_text)[0]
|
||||
schedule_dict = json.loads(matched)
|
||||
return schedule_dict
|
||||
except json.JSONDecodeError:
|
||||
logger.exception("解析日程失败: {}".format(schedule_text))
|
||||
return False
|
||||
|
||||
def _parse_time(self, time_str: str) -> str:
|
||||
"""解析时间字符串,转换为时间"""
|
||||
return datetime.datetime.strptime(time_str, "%H:%M")
|
||||
|
||||
def get_current_task(self) -> str:
|
||||
"""获取当前时间应该进行的任务"""
|
||||
current_time = datetime.datetime.now().strftime("%H:%M")
|
||||
|
||||
# 找到最接近当前时间的任务
|
||||
closest_time = None
|
||||
min_diff = float("inf")
|
||||
|
||||
# 检查今天的日程
|
||||
if not self.today_schedule:
|
||||
return "摸鱼"
|
||||
for time_str in self.today_schedule.keys():
|
||||
diff = abs(self._time_diff(current_time, time_str))
|
||||
if closest_time is None or diff < min_diff:
|
||||
closest_time = time_str
|
||||
min_diff = diff
|
||||
|
||||
# 检查昨天的日程中的晚间任务
|
||||
if self.yesterday_schedule:
|
||||
for time_str in self.yesterday_schedule.keys():
|
||||
if time_str >= "20:00": # 只考虑晚上8点之后的任务
|
||||
# 计算与昨天这个时间点的差异(需要加24小时)
|
||||
diff = abs(self._time_diff(current_time, time_str))
|
||||
if diff < min_diff:
|
||||
closest_time = time_str
|
||||
min_diff = diff
|
||||
return closest_time, self.yesterday_schedule[closest_time]
|
||||
|
||||
if closest_time:
|
||||
return closest_time, self.today_schedule[closest_time]
|
||||
return "摸鱼"
|
||||
|
||||
def _time_diff(self, time1: str, time2: str) -> int:
|
||||
"""计算两个时间字符串之间的分钟差"""
|
||||
if time1 == "24:00":
|
||||
time1 = "23:59"
|
||||
if time2 == "24:00":
|
||||
time2 = "23:59"
|
||||
t1 = datetime.datetime.strptime(time1, "%H:%M")
|
||||
t2 = datetime.datetime.strptime(time2, "%H:%M")
|
||||
diff = int((t2 - t1).total_seconds() / 60)
|
||||
# 考虑时间的循环性
|
||||
if diff < -720:
|
||||
diff += 1440 # 加一天的分钟
|
||||
elif diff > 720:
|
||||
diff -= 1440 # 减一天的分钟
|
||||
# print(f"时间1[{time1}]: 时间2[{time2}],差值[{diff}]分钟")
|
||||
return diff
|
||||
|
||||
def print_schedule(self):
|
||||
"""打印完整的日程安排"""
|
||||
if not self._parse_schedule(self.today_schedule_text):
|
||||
logger.warning("今日日程有误,将在下次运行时重新生成")
|
||||
db.schedule.delete_one({"date": datetime.datetime.now().strftime("%Y-%m-%d")})
|
||||
else:
|
||||
logger.info("=== 今日日程安排 ===")
|
||||
for time_str, activity in self.today_schedule.items():
|
||||
logger.info(f"时间[{time_str}]: 活动[{activity}]")
|
||||
logger.info("==================")
|
||||
self.enable_output = False
|
||||
|
||||
|
||||
async def main():
|
||||
# 使用示例
|
||||
scheduler = ScheduleGenerator()
|
||||
await scheduler.initialize()
|
||||
scheduler.print_schedule()
|
||||
print("\n当前任务:")
|
||||
print(await scheduler.get_current_task())
|
||||
|
||||
print("昨天日程:")
|
||||
print(scheduler.yesterday_schedule)
|
||||
print("今天日程:")
|
||||
print(scheduler.today_schedule)
|
||||
print("明天日程:")
|
||||
print(scheduler.tomorrow_schedule)
|
||||
|
||||
# 当作为组件导入时使用的实例
|
||||
bot_schedule = ScheduleGenerator()
|
||||
|
||||
if __name__ == "__main__":
|
||||
import asyncio
|
||||
# 当直接运行此文件时执行
|
||||
asyncio.run(main())
|
||||
@@ -5,8 +5,9 @@ from typing import Dict, Union
|
||||
|
||||
from nonebot import get_driver
|
||||
|
||||
from src.plugins.chat.config import global_config
|
||||
# 添加项目根目录到 Python 路径
|
||||
|
||||
from src.plugins.chat.config import global_config
|
||||
from ...common.database import db # 使用正确的导入语法
|
||||
from ..models.utils_model import LLM_request
|
||||
from src.common.logger import get_module_logger
|
||||
@@ -165,24 +166,5 @@ class ScheduleGenerator:
|
||||
logger.info(f"时间[{time_str}]: 活动[{activity}]")
|
||||
logger.info("==================")
|
||||
self.enable_output = False
|
||||
|
||||
|
||||
# def main():
|
||||
# # 使用示例
|
||||
# scheduler = ScheduleGenerator()
|
||||
# # new_schedule = scheduler.generate_daily_schedule()
|
||||
# scheduler.print_schedule()
|
||||
# print("\n当前任务:")
|
||||
# print(scheduler.get_current_task())
|
||||
|
||||
# print("昨天日程:")
|
||||
# print(scheduler.yesterday_schedule)
|
||||
# print("今天日程:")
|
||||
# print(scheduler.today_schedule)
|
||||
# print("明天日程:")
|
||||
# print(scheduler.tomorrow_schedule)
|
||||
|
||||
# if __name__ == "__main__":
|
||||
# main()
|
||||
|
||||
# 当作为组件导入时使用的实例
|
||||
bot_schedule = ScheduleGenerator()
|
||||
|
||||
@@ -1,8 +1,6 @@
|
||||
HOST=127.0.0.1
|
||||
PORT=8080
|
||||
|
||||
ENABLE_ADVANCE_OUTPUT=false
|
||||
|
||||
# 插件配置
|
||||
PLUGINS=["src2.plugins.chat"]
|
||||
|
||||
@@ -31,6 +29,7 @@ CHAT_ANY_WHERE_KEY=
|
||||
SILICONFLOW_KEY=
|
||||
|
||||
# 定义日志相关配置
|
||||
SIMPLE_OUTPUT=true # 精简控制台输出格式
|
||||
CONSOLE_LOG_LEVEL=INFO # 自定义日志的默认控制台输出日志级别
|
||||
FILE_LOG_LEVEL=DEBUG # 自定义日志的默认文件输出日志级别
|
||||
DEFAULT_CONSOLE_LOG_LEVEL=SUCCESS # 原生日志的控制台输出日志级别(nonebot就是这一类)
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
[inner]
|
||||
version = "0.0.10"
|
||||
version = "0.0.11"
|
||||
|
||||
#以下是给开发人员阅读的,一般用户不需要阅读
|
||||
#如果你想要修改配置文件,请在修改后将version的值进行变更
|
||||
@@ -66,12 +66,15 @@ model_r1_distill_probability = 0.1 # 麦麦回答时选择次要回复模型3
|
||||
max_response_length = 1024 # 麦麦回答的最大token数
|
||||
|
||||
[willing]
|
||||
willing_mode = "classical"
|
||||
# willing_mode = "dynamic"
|
||||
# willing_mode = "custom"
|
||||
willing_mode = "classical" # 回复意愿模式 经典模式
|
||||
# willing_mode = "dynamic" # 动态模式(可能不兼容)
|
||||
# willing_mode = "custom" # 自定义模式(可自行调整
|
||||
|
||||
[memory]
|
||||
build_memory_interval = 2000 # 记忆构建间隔 单位秒 间隔越低,麦麦学习越多,但是冗余信息也会增多
|
||||
build_memory_distribution = [4,2,0.6,24,8,0.4] # 记忆构建分布,参数:分布1均值,标准差,权重,分布2均值,标准差,权重
|
||||
build_memory_sample_num = 10 # 采样数量,数值越高记忆采样次数越多
|
||||
build_memory_sample_length = 20 # 采样长度,数值越高一段记忆内容越丰富
|
||||
memory_compress_rate = 0.1 # 记忆压缩率 控制记忆精简程度 建议保持默认,调高可以获得更多信息,但是冗余信息也会增多
|
||||
|
||||
forget_memory_interval = 1000 # 记忆遗忘间隔 单位秒 间隔越低,麦麦遗忘越频繁,记忆更精简,但更难学习
|
||||
@@ -109,9 +112,7 @@ tone_error_rate=0.2 # 声调错误概率
|
||||
word_replace_rate=0.006 # 整词替换概率
|
||||
|
||||
[others]
|
||||
enable_advance_output = false # 是否启用高级输出
|
||||
enable_kuuki_read = true # 是否启用读空气功能
|
||||
enable_debug_output = false # 是否启用调试输出
|
||||
enable_friend_chat = false # 是否启用好友聊天
|
||||
|
||||
[groups]
|
||||
@@ -120,9 +121,9 @@ talk_allowed = [
|
||||
123,
|
||||
] #可以回复消息的群
|
||||
talk_frequency_down = [] #降低回复频率的群
|
||||
ban_user_id = [] #禁止回复消息的QQ号
|
||||
ban_user_id = [] #禁止回复和读取消息的QQ号
|
||||
|
||||
[remote] #测试功能,发送统计信息,主要是看全球有多少只麦麦
|
||||
[remote] #发送统计信息,主要是看全球有多少只麦麦
|
||||
enable = true
|
||||
|
||||
|
||||
|
||||
18
webui.py
18
webui.py
@@ -4,11 +4,14 @@ import toml
|
||||
import signal
|
||||
import sys
|
||||
import requests
|
||||
|
||||
try:
|
||||
from src.common.logger import get_module_logger
|
||||
|
||||
logger = get_module_logger("webui")
|
||||
except ImportError:
|
||||
from loguru import logger
|
||||
|
||||
# 检查并创建日志目录
|
||||
log_dir = "logs/webui"
|
||||
if not os.path.exists(log_dir):
|
||||
@@ -24,11 +27,13 @@ import ast
|
||||
from packaging import version
|
||||
from decimal import Decimal
|
||||
|
||||
|
||||
def signal_handler(signum, frame):
|
||||
"""处理 Ctrl+C 信号"""
|
||||
logger.info("收到终止信号,正在关闭 Gradio 服务器...")
|
||||
sys.exit(0)
|
||||
|
||||
|
||||
# 注册信号处理器
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
|
||||
@@ -74,11 +79,10 @@ WILLING_MODE_CHOICES = [
|
||||
]
|
||||
|
||||
|
||||
|
||||
|
||||
# 添加WebUI配置文件版本
|
||||
WEBUI_VERSION = version.parse("0.0.9")
|
||||
|
||||
|
||||
# ==============================================
|
||||
# env环境配置文件读取部分
|
||||
def parse_env_config(config_file):
|
||||
@@ -445,9 +449,7 @@ def adjust_personality_less_probabilities(
|
||||
|
||||
def adjust_model_greater_probabilities(t_model_1_probability, t_model_2_probability, t_model_3_probability):
|
||||
total = (
|
||||
Decimal(str(t_model_1_probability)) +
|
||||
Decimal(str(t_model_2_probability)) +
|
||||
Decimal(str(t_model_3_probability))
|
||||
Decimal(str(t_model_1_probability)) + Decimal(str(t_model_2_probability)) + Decimal(str(t_model_3_probability))
|
||||
)
|
||||
if total > Decimal("1.0"):
|
||||
warning_message = (
|
||||
@@ -459,9 +461,7 @@ def adjust_model_greater_probabilities(t_model_1_probability, t_model_2_probabil
|
||||
|
||||
def adjust_model_less_probabilities(t_model_1_probability, t_model_2_probability, t_model_3_probability):
|
||||
total = (
|
||||
Decimal(str(t_model_1_probability))
|
||||
+ Decimal(str(t_model_2_probability))
|
||||
+ Decimal(str(t_model_3_probability))
|
||||
Decimal(str(t_model_1_probability)) + Decimal(str(t_model_2_probability)) + Decimal(str(t_model_3_probability))
|
||||
)
|
||||
if total < Decimal("1.0"):
|
||||
warning_message = (
|
||||
@@ -1212,7 +1212,7 @@ with gr.Blocks(title="MaimBot配置文件编辑") as app:
|
||||
willing_mode = gr.Dropdown(
|
||||
choices=WILLING_MODE_CHOICES,
|
||||
value=config_data["willing"]["willing_mode"],
|
||||
label="回复意愿模式"
|
||||
label="回复意愿模式",
|
||||
)
|
||||
else:
|
||||
willing_mode = gr.Textbox(visible=False, value="disabled")
|
||||
|
||||
Reference in New Issue
Block a user