diff --git a/.gitignore b/.gitignore
index a70c66cdf..265108181 100644
--- a/.gitignore
+++ b/.gitignore
@@ -3,7 +3,7 @@ mongodb/
NapCat.Framework.Windows.Once/
log/
src/plugins/memory
-src/plugins/chat/bot_config.toml
+config/bot_config.toml
/test
message_queue_content.txt
message_queue_content.bat
diff --git a/README.md b/README.md
index 2366fe87b..a85fcc4e8 100644
--- a/README.md
+++ b/README.md
@@ -16,11 +16,19 @@
基于llm、napcat、nonebot和mongodb的专注于群聊天的qqbot
+
+
> ⚠️ **警告**:代码可能随时更改,目前版本不一定是稳定版本
> ⚠️ **警告**:请自行了解qqbot的风险,麦麦有时候一天被腾讯肘七八次
> ⚠️ **警告**:由于麦麦一直在迭代,所以可能存在一些bug,请自行测试,包括胡言乱语(
-关于麦麦的开发和部署相关的讨论群(不建议发布无关消息)这里不会有麦麦发言!
+关于麦麦的开发和建议相关的讨论群(不建议发布无关消息)这里不会有麦麦发言!
## 开发计划TODO:LIST
@@ -29,6 +37,10 @@
- 对思考链长度限制
- 修复已知bug
- 完善文档
+- 修复转发
+- config自动生成和检测
+- log别用print
+- 给发送消息写专门的类
diff --git a/bot_config.toml b/config/bot_config_toml
similarity index 95%
rename from bot_config.toml
rename to config/bot_config_toml
index 6730f0481..b5011c7f9 100644
--- a/bot_config.toml
+++ b/config/bot_config_toml
@@ -29,6 +29,11 @@ model_r1_probability = 0.8 # 麦麦回答时选择R1模型的概率
model_v3_probability = 0.1 # 麦麦回答时选择V3模型的概率
model_r1_distill_probability = 0.1 # 麦麦回答时选择R1蒸馏模型的概率
+[memory]
+build_memory_interval = 300 # 记忆构建间隔
+
+
+
[others]
enable_advance_output = true # 开启后输出更多日志,false关闭true开启
diff --git a/env.example b/config/env.example
similarity index 100%
rename from env.example
rename to config/env.example
diff --git a/src/plugins/chat/__init__.py b/src/plugins/chat/__init__.py
index a2b54eaa5..1c25a24f1 100644
--- a/src/plugins/chat/__init__.py
+++ b/src/plugins/chat/__init__.py
@@ -1,3 +1,4 @@
+from loguru import logger
from nonebot import on_message, on_command, require, get_driver
from nonebot.adapters.onebot.v11 import Bot, GroupMessageEvent, Message, MessageSegment
from nonebot.typing import T_State
@@ -10,9 +11,6 @@ from .relationship_manager import relationship_manager
from ..schedule.schedule_generator import bot_schedule
from .willing_manager import willing_manager
-from ..memory_system.memory import memory_graph
-
-
# 获取驱动器
driver = get_driver()
@@ -21,10 +19,7 @@ Database.initialize(
global_config.MONGODB_PORT,
global_config.DATABASE_NAME
)
-
-print("\033[1;32m[初始化配置和数据库完成]\033[0m")
-
-
+print("\033[1;32m[初始化数据库完成]\033[0m")
# 导入其他模块
@@ -32,6 +27,7 @@ from .bot import ChatBot
from .emoji_manager import emoji_manager
from .message_send_control import message_sender
from .relationship_manager import relationship_manager
+from ..memory_system.memory import memory_graph,hippocampus
# 初始化表情管理器
emoji_manager.initialize()
@@ -39,21 +35,26 @@ emoji_manager.initialize()
print(f"\033[1;32m正在唤醒{global_config.BOT_NICKNAME}......\033[0m")
# 创建机器人实例
chat_bot = ChatBot(global_config)
-
# 注册消息处理器
group_msg = on_message()
-
# 创建定时任务
scheduler = require("nonebot_plugin_apscheduler").scheduler
-# 启动后台任务
+
+
@driver.on_startup
async def start_background_tasks():
"""启动后台任务"""
# 只启动表情包管理任务
asyncio.create_task(emoji_manager.start_periodic_check(interval_MINS=global_config.EMOJI_CHECK_INTERVAL))
-
bot_schedule.print_schedule()
+
+@driver.on_startup
+async def init_relationships():
+ """在 NoneBot2 启动时初始化关系管理器"""
+ print("\033[1;32m[初始化]\033[0m 正在加载用户关系数据...")
+ await relationship_manager.load_all_relationships()
+ asyncio.create_task(relationship_manager._start_relationship_manager())
@driver.on_bot_connect
async def _(bot: Bot):
@@ -68,19 +69,23 @@ async def _(bot: Bot):
print("\033[1;38;5;208m-----------开始偷表情包!-----------\033[0m")
# 启动消息发送控制任务
-@driver.on_startup
-async def init_relationships():
- """在 NoneBot2 启动时初始化关系管理器"""
- print("\033[1;32m[初始化]\033[0m 正在加载用户关系数据...")
- await relationship_manager.load_all_relationships()
- asyncio.create_task(relationship_manager._start_relationship_manager())
-
@group_msg.handle()
async def _(bot: Bot, event: GroupMessageEvent, state: T_State):
await chat_bot.handle_message(event, bot)
-
+
+'''
@scheduler.scheduled_job("interval", seconds=300000, id="monitor_relationships")
async def monitor_relationships():
"""每15秒打印一次关系数据"""
relationship_manager.print_all_relationships()
+'''
+# 添加build_memory定时任务
+@scheduler.scheduled_job("interval", seconds=global_config.build_memory_interval, id="build_memory")
+async def build_memory_task():
+ """每30秒执行一次记忆构建"""
+ print("\033[1;32m[记忆构建]\033[0m 开始构建记忆...")
+ hippocampus.build_memory(chat_size=12)
+ print("\033[1;32m[记忆构建]\033[0m 记忆构建完成")
+
+
diff --git a/src/plugins/chat/bot.py b/src/plugins/chat/bot.py
index 09ee2f063..1b5201645 100644
--- a/src/plugins/chat/bot.py
+++ b/src/plugins/chat/bot.py
@@ -83,7 +83,7 @@ class ChatBot:
await relationship_manager.update_relationship(user_id = event.user_id, data = sender_info)
await relationship_manager.update_relationship_value(user_id = event.user_id, relationship_value = 0.5)
- print(f"\033[1;32m[关系管理]\033[0m 更新关系值: {relationship_manager.get_relationship(event.user_id).relationship_value}")
+ # print(f"\033[1;32m[关系管理]\033[0m 更新关系值: {relationship_manager.get_relationship(event.user_id).relationship_value}")
message = Message(
@@ -100,14 +100,19 @@ class ChatBot:
topic = topic_identifier.identify_topic_jieba(message.processed_plain_text)
print(f"\033[1;32m[主题识别]\033[0m 主题: {topic}")
+ all_num = 0
+ interested_num = 0
if topic:
for current_topic in topic:
+ all_num += 1
first_layer_items, second_layer_items = memory_graph.get_related_item(current_topic, depth=2)
if first_layer_items:
- print(f"\033[1;32m[记忆检索-bot]\033[0m 有印象:{current_topic}")
+ interested_num += 1
+ print(f"\033[1;32m[前额叶]\033[0m 对|{current_topic}|有印象")
+ interested_rate = interested_num / all_num if all_num > 0 else 0
+
await self.storage.store_message(message, topic[0] if topic else None)
-
is_mentioned = is_mentioned_bot_in_txt(message.processed_plain_text)
@@ -117,7 +122,8 @@ class ChatBot:
is_mentioned,
self.config,
event.user_id,
- message.is_emoji
+ message.is_emoji,
+ interested_rate
)
current_willing = willing_manager.get_willing(event.group_id)
@@ -188,7 +194,8 @@ class ChatBot:
user_nickname=global_config.BOT_NICKNAME,
group_name=message.group_name,
time=bot_response_time,
- is_emoji=True
+ is_emoji=True,
+ translate_cq=False
)
message_sender.send_temp_container.add_message(bot_message)
diff --git a/src/plugins/chat/config.py b/src/plugins/chat/config.py
index 69e59ed5b..05d492789 100644
--- a/src/plugins/chat/config.py
+++ b/src/plugins/chat/config.py
@@ -6,6 +6,8 @@ import logging
import configparser
import tomli
import sys
+from loguru import logger
+from dotenv import load_dotenv
@@ -21,7 +23,7 @@ class BotConfig:
MONGODB_PASSWORD: Optional[str] = None # 默认空值
MONGODB_AUTH_SOURCE: Optional[str] = None # 默认空值
- BOT_QQ: Optional[int] = None
+ BOT_QQ: Optional[int] = 1
BOT_NICKNAME: Optional[str] = None
# 消息处理相关配置
@@ -35,6 +37,7 @@ class BotConfig:
talk_frequency_down_groups = set()
ban_user_id = set()
+ build_memory_interval: int = 60 # 记忆构建间隔(秒)
EMOJI_CHECK_INTERVAL: int = 120 # 表情包检查间隔(分钟)
EMOJI_REGISTER_INTERVAL: int = 10 # 表情包注册间隔(分钟)
@@ -45,9 +48,21 @@ class BotConfig:
enable_advance_output: bool = False # 是否启用高级输出
+ @staticmethod
+ def get_default_config_path() -> str:
+ """获取默认配置文件路径"""
+ current_dir = os.path.dirname(os.path.abspath(__file__))
+ root_dir = os.path.abspath(os.path.join(current_dir, '..', '..', '..'))
+ config_dir = os.path.join(root_dir, 'config')
+ return os.path.join(config_dir, 'bot_config.toml')
+
@classmethod
- def load_config(cls, config_path: str = "bot_config.toml") -> "BotConfig":
+ def load_config(cls, config_path: str = None) -> "BotConfig":
"""从TOML配置文件加载配置"""
+ if config_path is None:
+ config_path = cls.get_default_config_path()
+ logger.info(f"使用默认配置文件路径: {config_path}")
+
config = cls()
if os.path.exists(config_path):
with open(config_path, "rb") as f:
@@ -93,6 +108,10 @@ class BotConfig:
config.MAX_CONTEXT_SIZE = msg_config.get("max_context_size", config.MAX_CONTEXT_SIZE)
config.emoji_chance = msg_config.get("emoji_chance", config.emoji_chance)
+ if "memory" in toml_dict:
+ memory_config = toml_dict["memory"]
+ config.build_memory_interval = memory_config.get("build_memory_interval", config.build_memory_interval)
+
# 群组配置
if "groups" in toml_dict:
groups_config = toml_dict["groups"]
@@ -104,16 +123,26 @@ class BotConfig:
others_config = toml_dict["others"]
config.enable_advance_output = others_config.get("enable_advance_output", config.enable_advance_output)
- print(f"\033[1;32m成功加载配置文件: {config_path}\033[0m")
+ logger.success(f"成功加载配置文件: {config_path}")
return config
-global_config = BotConfig.load_config(".bot_config.toml")
+# 获取配置文件路径
+bot_config_path = BotConfig.get_default_config_path()
+config_dir = os.path.dirname(bot_config_path)
+env_path = os.path.join(config_dir, '.env')
-from dotenv import load_dotenv
-current_dir = os.path.dirname(os.path.abspath(__file__))
-root_dir = os.path.abspath(os.path.join(current_dir, '..', '..', '..'))
-load_dotenv(os.path.join(root_dir, '.env'))
+logger.info(f"尝试从 {bot_config_path} 加载机器人配置")
+global_config = BotConfig.load_config(config_path=bot_config_path)
+
+# 加载环境变量
+
+logger.info(f"尝试从 {env_path} 加载环境变量配置")
+if os.path.exists(env_path):
+ load_dotenv(env_path)
+ logger.success("成功加载环境变量配置")
+else:
+ logger.error(f"环境变量配置文件不存在: {env_path}")
@dataclass
class LLMConfig:
@@ -132,9 +161,5 @@ llm_config.DEEP_SEEK_BASE_URL = os.getenv('DEEP_SEEK_BASE_URL')
if not global_config.enable_advance_output:
- # 只降低日志级别而不是完全移除
- logger.remove()
- logger.add(sys.stderr, level="WARNING") # 添加一个只输出 WARNING 及以上级别的处理器
-
- # 设置 nonebot 的日志级别
- logging.getLogger('nonebot').setLevel(logging.WARNING)
+ # logger.remove()
+ pass
diff --git a/src/plugins/chat/llm_generator.py b/src/plugins/chat/llm_generator.py
index bb68d3618..2ea4d7f24 100644
--- a/src/plugins/chat/llm_generator.py
+++ b/src/plugins/chat/llm_generator.py
@@ -4,7 +4,7 @@ import asyncio
import requests
from functools import partial
from .message import Message
-from .config import BotConfig
+from .config import BotConfig, global_config
from ...common.database import Database
import random
import time
@@ -255,4 +255,4 @@ class LLMResponseGenerator:
return processed_response, emotion_tags
# 创建全局实例
-llm_response = LLMResponseGenerator(config=BotConfig())
\ No newline at end of file
+llm_response = LLMResponseGenerator(global_config)
\ No newline at end of file
diff --git a/src/plugins/chat/message.py b/src/plugins/chat/message.py
index 2e91f530e..f5ea0db0d 100644
--- a/src/plugins/chat/message.py
+++ b/src/plugins/chat/message.py
@@ -6,17 +6,13 @@ import os
from datetime import datetime
from ...common.database import Database
from PIL import Image
-from .config import BotConfig, global_config
+from .config import global_config
import urllib3
from .utils_user import get_user_nickname
from .utils_cq import parse_cq_code
from .cq_code import cq_code_tool,CQCode
Message = ForwardRef('Message') # 添加这行
-
-# 加载配置
-bot_config = BotConfig.load_config()
-
# 禁用SSL警告
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
@@ -48,6 +44,8 @@ class Message:
is_emoji: bool = False # 是否是表情包
has_emoji: bool = False # 是否包含表情包
+
+ translate_cq: bool = True # 是否翻译cq码
reply_benefits: float = 0.0
@@ -99,7 +97,7 @@ class Message:
- cq_code_list:分割出的聊天对象,包括文本和CQ码
- trans_list:翻译后的对象列表
"""
- print(f"\033[1;34m[调试信息]\033[0m 正在处理消息: {message}")
+ # print(f"\033[1;34m[调试信息]\033[0m 正在处理消息: {message}")
cq_code_dict_list = []
trans_list = []
diff --git a/src/plugins/chat/message_send_control.py b/src/plugins/chat/message_send_control.py
index cb45b3132..0ddb79c5f 100644
--- a/src/plugins/chat/message_send_control.py
+++ b/src/plugins/chat/message_send_control.py
@@ -208,7 +208,15 @@ class MessageSendControl:
print(f"\033[1;34m[调试]\033[0m 消息发送时间: {cost_time}秒")
current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(message.time))
print(f"\033[1;32m群 {group_id} 消息, 用户 {global_config.BOT_NICKNAME}, 时间: {current_time}:\033[0m {str(message.processed_plain_text)}")
- await self.storage.store_message(message, None)
+
+ if message.is_emoji:
+ message.processed_plain_text = "[表情包]"
+ await self.storage.store_message(message, None)
+ else:
+ await self.storage.store_message(message, None)
+
+
+
queue.update_send_time()
if queue.has_messages():
await asyncio.sleep(
diff --git a/src/plugins/chat/prompt_builder.py b/src/plugins/chat/prompt_builder.py
index 4e72c6304..da9037cfa 100644
--- a/src/plugins/chat/prompt_builder.py
+++ b/src/plugins/chat/prompt_builder.py
@@ -53,8 +53,8 @@ class PromptBuilder:
# 遍历所有topic
for current_topic in topic:
first_layer_items, second_layer_items = memory_graph.get_related_item(current_topic, depth=2)
- if first_layer_items:
- print(f"\033[1;32m[pb记忆检索]\033[0m 主题 '{current_topic}' 的第一层记忆: {first_layer_items}")
+ # if first_layer_items:
+ # print(f"\033[1;32m[前额叶]\033[0m 主题 '{current_topic}' 的第一层记忆: {first_layer_items}")
# 记录第一层数据
all_first_layer_items.extend(first_layer_items)
@@ -68,14 +68,14 @@ class PromptBuilder:
# 找到重叠的记忆
overlap = set(second_layer_items) & set(other_second_layer)
if overlap:
- print(f"\033[1;32m[pb记忆检索]\033[0m 发现主题 '{current_topic}' 和 '{other_topic}' 有共同的第二层记忆: {overlap}")
+ # print(f"\033[1;32m[前额叶]\033[0m 发现主题 '{current_topic}' 和 '{other_topic}' 有共同的第二层记忆: {overlap}")
overlapping_second_layer.update(overlap)
# 合并所有需要的记忆
if all_first_layer_items:
- print(f"\033[1;32m[pb记忆检索]\033[0m 合并所有需要的记忆1: {all_first_layer_items}")
+ print(f"\033[1;32m[前额叶]\033[0m 合并所有需要的记忆1: {all_first_layer_items}")
if overlapping_second_layer:
- print(f"\033[1;32m[pb记忆检索]\033[0m 合并所有需要的记忆2: {list(overlapping_second_layer)}")
+ print(f"\033[1;32m[前额叶]\033[0m 合并所有需要的记忆2: {list(overlapping_second_layer)}")
all_memories = all_first_layer_items + list(overlapping_second_layer)
diff --git a/src/plugins/chat/utils.py b/src/plugins/chat/utils.py
index 58e2280cc..4e2235805 100644
--- a/src/plugins/chat/utils.py
+++ b/src/plugins/chat/utils.py
@@ -7,6 +7,8 @@ import numpy as np
from .config import llm_config, global_config
import re
from typing import Dict
+from collections import Counter
+import math
def combine_messages(messages: List[Message]) -> str:
@@ -81,6 +83,39 @@ def cosine_similarity(v1, v2):
norm2 = np.linalg.norm(v2)
return dot_product / (norm1 * norm2)
+def calculate_information_content(text):
+ """计算文本的信息量(熵)"""
+ # 统计字符频率
+ char_count = Counter(text)
+ total_chars = len(text)
+
+ # 计算熵
+ entropy = 0
+ for count in char_count.values():
+ probability = count / total_chars
+ entropy -= probability * math.log2(probability)
+
+ return entropy
+
+def get_cloest_chat_from_db(db, length: int, timestamp: str):
+ # 从数据库中根据时间戳获取离其最近的聊天记录
+ chat_text = ''
+ closest_record = db.db.messages.find_one({"time": {"$lte": timestamp}}, sort=[('time', -1)]) # 调试输出
+ # print(f"距离time最近的消息时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(closest_record['time'])))}")
+
+ if closest_record:
+ closest_time = closest_record['time']
+ group_id = closest_record['group_id'] # 获取groupid
+ # 获取该时间戳之后的length条消息,且groupid相同
+ chat_record = list(db.db.messages.find({"time": {"$gt": closest_time}, "group_id": group_id}).sort('time', 1).limit(length))
+ for record in chat_record:
+ time_str = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(record['time'])))
+ chat_text += f'[{time_str}] {record["user_nickname"] or "用户" + str(record["user_id"])}: {record["processed_plain_text"]}\n' # 添加发送者和时间信息
+ return chat_text
+
+ return [] # 如果没有找到记录,返回空列表
+
+
def get_recent_group_messages(db, group_id: int, limit: int = 12) -> list:
"""从数据库获取群组最近的消息记录
diff --git a/src/plugins/chat/utils_image.py b/src/plugins/chat/utils_image.py
index e1a882341..9fe2c40cc 100644
--- a/src/plugins/chat/utils_image.py
+++ b/src/plugins/chat/utils_image.py
@@ -4,11 +4,9 @@ import hashlib
import time
import os
from ...common.database import Database
-from .config import BotConfig
import zlib # 用于 CRC32
import base64
-
-bot_config = BotConfig.load_config()
+from .config import global_config
def storage_image(image_data: bytes,type: str, max_size: int = 200) -> bytes:
@@ -39,12 +37,12 @@ def storage_compress_image(image_data: bytes, max_size: int = 200) -> bytes:
# 连接数据库
db = Database(
- host=bot_config.MONGODB_HOST,
- port=bot_config.MONGODB_PORT,
- db_name=bot_config.DATABASE_NAME,
- username=bot_config.MONGODB_USERNAME,
- password=bot_config.MONGODB_PASSWORD,
- auth_source=bot_config.MONGODB_AUTH_SOURCE
+ host=global_config.MONGODB_HOST,
+ port=global_config.MONGODB_PORT,
+ db_name=global_config.DATABASE_NAME,
+ username=global_config.MONGODB_USERNAME,
+ password=global_config.MONGODB_PASSWORD,
+ auth_source=global_config.MONGODB_AUTH_SOURCE
)
# 检查是否已存在相同哈希值的图片
diff --git a/src/plugins/chat/willing_manager.py b/src/plugins/chat/willing_manager.py
index df41ba42f..037c2d517 100644
--- a/src/plugins/chat/willing_manager.py
+++ b/src/plugins/chat/willing_manager.py
@@ -22,22 +22,31 @@ class WillingManager:
"""设置指定群组的回复意愿"""
self.group_reply_willing[group_id] = willing
- def change_reply_willing_received(self, group_id: int, topic: str, is_mentioned_bot: bool, config, user_id: int = None, is_emoji: bool = False) -> float:
+ def change_reply_willing_received(self, group_id: int, topic: str, is_mentioned_bot: bool, config, user_id: int = None, is_emoji: bool = False, interested_rate: float = 0) -> float:
"""改变指定群组的回复意愿并返回回复概率"""
current_willing = self.group_reply_willing.get(group_id, 0)
- if topic and current_willing < 1:
- current_willing += 0.2
- elif topic:
- current_willing += 0.05
+ print(f"初始意愿: {current_willing}")
+
+ # if topic and current_willing < 1:
+ # current_willing += 0.2
+ # elif topic:
+ # current_willing += 0.05
if is_mentioned_bot and current_willing < 1.0:
current_willing += 0.9
+ print(f"被提及, 当前意愿: {current_willing}")
elif is_mentioned_bot:
current_willing += 0.05
+ print(f"被重复提及, 当前意愿: {current_willing}")
if is_emoji:
- current_willing *= 0.2
+ current_willing *= 0.15
+ print(f"表情包, 当前意愿: {current_willing}")
+
+ if interested_rate > 0.6:
+ print(f"兴趣度: {interested_rate}, 当前意愿: {current_willing}")
+ current_willing += interested_rate-0.45
self.group_reply_willing[group_id] = min(current_willing, 3.0)
@@ -55,15 +64,15 @@ class WillingManager:
return reply_probability
def change_reply_willing_sent(self, group_id: int):
- """发送消息后降低群组的回复意愿"""
+ """开始思考后降低群组的回复意愿"""
current_willing = self.group_reply_willing.get(group_id, 0)
- self.group_reply_willing[group_id] = max(0, current_willing - 1.8)
+ self.group_reply_willing[group_id] = max(0, current_willing - 2)
def change_reply_willing_after_sent(self, group_id: int):
"""发送消息后提高群组的回复意愿"""
current_willing = self.group_reply_willing.get(group_id, 0)
if current_willing < 1:
- self.group_reply_willing[group_id] = min(1, current_willing + 0.4)
+ self.group_reply_willing[group_id] = min(1, current_willing + 0.3)
async def ensure_started(self):
"""确保衰减任务已启动"""
diff --git a/src/plugins/chat/knowledege/knowledge_library.py b/src/plugins/knowledege/knowledge_library.py
similarity index 100%
rename from src/plugins/chat/knowledege/knowledge_library.py
rename to src/plugins/knowledege/knowledge_library.py
diff --git a/src/plugins/memory_system/draw_memory.py b/src/plugins/memory_system/draw_memory.py
new file mode 100644
index 000000000..651d5fbca
--- /dev/null
+++ b/src/plugins/memory_system/draw_memory.py
@@ -0,0 +1,264 @@
+# -*- coding: utf-8 -*-
+import sys
+import jieba
+from llm_module import LLMModel
+import networkx as nx
+import matplotlib.pyplot as plt
+import math
+from collections import Counter
+import datetime
+import random
+import time
+# from chat.config import global_config
+import sys
+sys.path.append("C:/GitHub/MaiMBot") # 添加项目根目录到 Python 路径
+from src.common.database import Database # 使用正确的导入语法
+
+class Memory_graph:
+ def __init__(self):
+ self.G = nx.Graph() # 使用 networkx 的图结构
+ self.db = Database.get_instance()
+
+ def connect_dot(self, concept1, concept2):
+ self.G.add_edge(concept1, concept2)
+
+ def add_dot(self, concept, memory):
+ if concept in self.G:
+ # 如果节点已存在,将新记忆添加到现有列表中
+ if 'memory_items' in self.G.nodes[concept]:
+ if not isinstance(self.G.nodes[concept]['memory_items'], list):
+ # 如果当前不是列表,将其转换为列表
+ self.G.nodes[concept]['memory_items'] = [self.G.nodes[concept]['memory_items']]
+ self.G.nodes[concept]['memory_items'].append(memory)
+ else:
+ self.G.nodes[concept]['memory_items'] = [memory]
+ else:
+ # 如果是新节点,创建新的记忆列表
+ self.G.add_node(concept, memory_items=[memory])
+
+ def get_dot(self, concept):
+ # 检查节点是否存在于图中
+ if concept in self.G:
+ # 从图中获取节点数据
+ node_data = self.G.nodes[concept]
+ # print(node_data)
+ # 创建新的Memory_dot对象
+ return concept,node_data
+ return None
+
+ def get_related_item(self, topic, depth=1):
+ if topic not in self.G:
+ return [], []
+
+ first_layer_items = []
+ second_layer_items = []
+
+ # 获取相邻节点
+ neighbors = list(self.G.neighbors(topic))
+ # print(f"第一层: {topic}")
+
+ # 获取当前节点的记忆项
+ node_data = self.get_dot(topic)
+ if node_data:
+ concept, data = node_data
+ if 'memory_items' in data:
+ memory_items = data['memory_items']
+ if isinstance(memory_items, list):
+ first_layer_items.extend(memory_items)
+ else:
+ first_layer_items.append(memory_items)
+
+ # 只在depth=2时获取第二层记忆
+ if depth >= 2:
+ # 获取相邻节点的记忆项
+ for neighbor in neighbors:
+ # print(f"第二层: {neighbor}")
+ node_data = self.get_dot(neighbor)
+ if node_data:
+ concept, data = node_data
+ if 'memory_items' in data:
+ memory_items = data['memory_items']
+ if isinstance(memory_items, list):
+ second_layer_items.extend(memory_items)
+ else:
+ second_layer_items.append(memory_items)
+
+ return first_layer_items, second_layer_items
+
+ def store_memory(self):
+ for node in self.G.nodes():
+ dot_data = {
+ "concept": node
+ }
+ self.db.db.store_memory_dots.insert_one(dot_data)
+
+ @property
+ def dots(self):
+ # 返回所有节点对应的 Memory_dot 对象
+ return [self.get_dot(node) for node in self.G.nodes()]
+
+
+ def get_random_chat_from_db(self, length: int, timestamp: str):
+ # 从数据库中根据时间戳获取离其最近的聊天记录
+ chat_text = ''
+ closest_record = self.db.db.messages.find_one({"time": {"$lte": timestamp}}, sort=[('time', -1)]) # 调试输出
+ print(f"距离time最近的消息时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(closest_record['time'])))}")
+
+ if closest_record:
+ closest_time = closest_record['time']
+ group_id = closest_record['group_id'] # 获取groupid
+ # 获取该时间戳之后的length条消息,且groupid相同
+ chat_record = list(self.db.db.messages.find({"time": {"$gt": closest_time}, "group_id": group_id}).sort('time', 1).limit(length))
+ for record in chat_record:
+ time_str = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(record['time'])))
+ chat_text += f'[{time_str}] {record["user_nickname"] or "用户" + str(record["user_id"])}: {record["processed_plain_text"]}\n' # 添加发送者和时间信息
+ return chat_text
+
+ return [] # 如果没有找到记录,返回空列表
+
+ def save_graph_to_db(self):
+ # 清空现有的图数据
+ self.db.db.graph_data.delete_many({})
+ # 保存节点
+ for node in self.G.nodes(data=True):
+ node_data = {
+ 'concept': node[0],
+ 'memory_items': node[1].get('memory_items', []) # 默认为空列表
+ }
+ self.db.db.graph_data.nodes.insert_one(node_data)
+ # 保存边
+ for edge in self.G.edges():
+ edge_data = {
+ 'source': edge[0],
+ 'target': edge[1]
+ }
+ self.db.db.graph_data.edges.insert_one(edge_data)
+
+ def load_graph_from_db(self):
+ # 清空当前图
+ self.G.clear()
+ # 加载节点
+ nodes = self.db.db.graph_data.nodes.find()
+ for node in nodes:
+ memory_items = node.get('memory_items', [])
+ if not isinstance(memory_items, list):
+ memory_items = [memory_items] if memory_items else []
+ self.G.add_node(node['concept'], memory_items=memory_items)
+ # 加载边
+ edges = self.db.db.graph_data.edges.find()
+ for edge in edges:
+ self.G.add_edge(edge['source'], edge['target'])
+
+
+def main():
+ # 初始化数据库
+ Database.initialize(
+ "127.0.0.1",
+ 27017,
+ "MegBot"
+ )
+
+ memory_graph = Memory_graph()
+ # 创建LLM模型实例
+
+ memory_graph.load_graph_from_db()
+ # 展示两种不同的可视化方式
+ print("\n按连接数量着色的图谱:")
+ visualize_graph(memory_graph, color_by_memory=False)
+
+ print("\n按记忆数量着色的图谱:")
+ visualize_graph(memory_graph, color_by_memory=True)
+
+ # memory_graph.save_graph_to_db()
+
+ while True:
+ query = input("请输入新的查询概念(输入'退出'以结束):")
+ if query.lower() == '退出':
+ break
+ items_list = memory_graph.get_related_item(query)
+ if items_list:
+ # print(items_list)
+ for memory_item in items_list:
+ print(memory_item)
+ else:
+ print("未找到相关记忆。")
+
+
+def segment_text(text):
+ seg_text = list(jieba.cut(text))
+ return seg_text
+
+def find_topic(text, topic_num):
+ prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个话题,帮我列出来,用逗号隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要告诉我其他内容。'
+ return prompt
+
+def topic_what(text, topic):
+ prompt = f'这是一段文字:{text}。我想知道这记忆里有什么关于{topic}的话题,帮我总结成一句自然的话,可以包含时间和人物。只输出这句话就好'
+ return prompt
+
+def visualize_graph(memory_graph: Memory_graph, color_by_memory: bool = False):
+ # 设置中文字体
+ plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
+ plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
+
+ G = memory_graph.G
+
+ # 保存图到本地
+ nx.write_gml(G, "memory_graph.gml") # 保存为 GML 格式
+
+ # 根据连接条数或记忆数量设置节点颜色
+ node_colors = []
+ nodes = list(G.nodes()) # 获取图中实际的节点列表
+
+ if color_by_memory:
+ # 计算每个节点的记忆数量
+ memory_counts = []
+ for node in nodes:
+ memory_items = G.nodes[node].get('memory_items', [])
+ if isinstance(memory_items, list):
+ count = len(memory_items)
+ else:
+ count = 1 if memory_items else 0
+ memory_counts.append(count)
+ max_memories = max(memory_counts) if memory_counts else 1
+
+ for count in memory_counts:
+ # 使用不同的颜色方案:红色表示记忆多,蓝色表示记忆少
+ if max_memories > 0:
+ intensity = min(1.0, count / max_memories)
+ color = (intensity, 0, 1.0 - intensity) # 从蓝色渐变到红色
+ else:
+ color = (0, 0, 1) # 如果没有记忆,则为蓝色
+ node_colors.append(color)
+ else:
+ # 使用原来的连接数量着色方案
+ max_degree = max(G.degree(), key=lambda x: x[1])[1] if G.degree() else 1
+ for node in nodes:
+ degree = G.degree(node)
+ if max_degree > 0:
+ red = min(1.0, degree / max_degree)
+ blue = 1.0 - red
+ color = (red, 0, blue)
+ else:
+ color = (0, 0, 1)
+ node_colors.append(color)
+
+ # 绘制图形
+ plt.figure(figsize=(12, 8))
+ pos = nx.spring_layout(G, k=1, iterations=50)
+ nx.draw(G, pos,
+ with_labels=True,
+ node_color=node_colors,
+ node_size=2000,
+ font_size=10,
+ font_family='SimHei',
+ font_weight='bold')
+
+ title = '记忆图谱可视化 - ' + ('按记忆数量着色' if color_by_memory else '按连接数量着色')
+ plt.title(title, fontsize=16, fontfamily='SimHei')
+ plt.show()
+
+if __name__ == "__main__":
+ main()
+
+
diff --git a/src/plugins/memory_system/llm_module_memory_make.py b/src/plugins/memory_system/llm_module_memory_make.py
new file mode 100644
index 000000000..1abfdb2c6
--- /dev/null
+++ b/src/plugins/memory_system/llm_module_memory_make.py
@@ -0,0 +1,82 @@
+import os
+import requests
+from dotenv import load_dotenv
+from typing import Tuple, Union
+import time
+from ..chat.config import BotConfig
+
+# 获取当前文件的绝对路径
+current_dir = os.path.dirname(os.path.abspath(__file__))
+root_dir = os.path.abspath(os.path.join(current_dir, '..', '..', '..'))
+env_path = os.path.join(root_dir, 'config', '.env')
+
+# 加载环境变量
+print(f"尝试从 {env_path} 加载环境变量配置")
+if os.path.exists(env_path):
+ load_dotenv(env_path)
+ print("成功加载环境变量配置")
+else:
+ print(f"环境变量配置文件不存在: {env_path}")
+
+class LLMModel:
+ # def __init__(self, model_name="deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", **kwargs):
+ def __init__(self, model_name="Pro/deepseek-ai/DeepSeek-V3", **kwargs):
+ self.model_name = model_name
+ self.params = kwargs
+ self.api_key = os.getenv("SILICONFLOW_KEY")
+ self.base_url = os.getenv("SILICONFLOW_BASE_URL")
+
+ if not self.api_key or not self.base_url:
+ raise ValueError("环境变量未正确加载:SILICONFLOW_KEY 或 SILICONFLOW_BASE_URL 未设置")
+
+ print(f"API URL: {self.base_url}") # 打印 base_url 用于调试
+
+ def generate_response(self, prompt: str) -> Tuple[str, str]:
+ """根据输入的提示生成模型的响应"""
+ headers = {
+ "Authorization": f"Bearer {self.api_key}",
+ "Content-Type": "application/json"
+ }
+
+ # 构建请求体
+ data = {
+ "model": self.model_name,
+ "messages": [{"role": "user", "content": prompt}],
+ "temperature": 0.5,
+ **self.params
+ }
+
+ # 发送请求到完整的chat/completions端点
+ api_url = f"{self.base_url.rstrip('/')}/chat/completions"
+
+ max_retries = 3
+ base_wait_time = 15 # 基础等待时间(秒)
+
+ for retry in range(max_retries):
+ try:
+ response = requests.post(api_url, headers=headers, json=data)
+
+ if response.status_code == 429:
+ wait_time = base_wait_time * (2 ** retry) # 指数退避
+ print(f"遇到请求限制(429),等待{wait_time}秒后重试...")
+ time.sleep(wait_time)
+ continue
+
+ response.raise_for_status() # 检查其他响应状态
+
+ result = response.json()
+ if "choices" in result and len(result["choices"]) > 0:
+ content = result["choices"][0]["message"]["content"]
+ reasoning_content = result["choices"][0]["message"].get("reasoning_content", "")
+ return content, reasoning_content
+ return "没有返回结果", ""
+
+ except requests.exceptions.RequestException as e:
+ if retry < max_retries - 1: # 如果还有重试机会
+ wait_time = base_wait_time * (2 ** retry)
+ print(f"请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
+ time.sleep(wait_time)
+ else:
+ return f"请求失败: {str(e)}", ""
+
+ return "达到最大重试次数,请求仍然失败", ""
\ No newline at end of file
diff --git a/src/plugins/memory_system/memory.py b/src/plugins/memory_system/memory.py
index 3f216997f..af6aab39a 100644
--- a/src/plugins/memory_system/memory.py
+++ b/src/plugins/memory_system/memory.py
@@ -1,5 +1,4 @@
# -*- coding: utf-8 -*-
-import sys
import jieba
from .llm_module import LLMModel
import networkx as nx
@@ -11,8 +10,8 @@ import random
import time
from ..chat.config import global_config
import sys
-sys.path.append("C:/GitHub/MaiMBot") # 添加项目根目录到 Python 路径
-from src.common.database import Database # 使用正确的导入语法
+from ...common.database import Database # 使用正确的导入语法
+from ..chat.utils import calculate_information_content, get_cloest_chat_from_db
class Memory_graph:
def __init__(self):
@@ -85,54 +84,66 @@ class Memory_graph:
return first_layer_items, second_layer_items
- def store_memory(self):
- for node in self.G.nodes():
- dot_data = {
- "concept": node
- }
- self.db.db.store_memory_dots.insert_one(dot_data)
-
@property
def dots(self):
# 返回所有节点对应的 Memory_dot 对象
return [self.get_dot(node) for node in self.G.nodes()]
-
-
- def get_random_chat_from_db(self, length: int, timestamp: str):
- # 从数据库中根据时间戳获取离其最近的聊天记录
- chat_text = ''
- closest_record = self.db.db.messages.find_one({"time": {"$lte": timestamp}}, sort=[('time', -1)]) # 调试输出
- print(f"距离time最近的消息时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(closest_record['time'])))}")
-
- if closest_record:
- closest_time = closest_record['time']
- group_id = closest_record['group_id'] # 获取groupid
- # 获取该时间戳之后的length条消息,且groupid相同
- chat_record = list(self.db.db.messages.find({"time": {"$gt": closest_time}, "group_id": group_id}).sort('time', 1).limit(length))
- for record in chat_record:
- time_str = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(record['time'])))
- chat_text += f'[{time_str}] {record["user_nickname"] or "用户" + str(record["user_id"])}: {record["processed_plain_text"]}\n' # 添加发送者和时间信息
- return chat_text
-
- return [] # 如果没有找到记录,返回空列表
def save_graph_to_db(self):
- # 清空现有的图数据
- self.db.db.graph_data.delete_many({})
# 保存节点
for node in self.G.nodes(data=True):
- node_data = {
- 'concept': node[0],
- 'memory_items': node[1].get('memory_items', []) # 默认为空列表
- }
- self.db.db.graph_data.nodes.insert_one(node_data)
+ concept = node[0]
+ memory_items = node[1].get('memory_items', [])
+
+ # 查找是否存在同名节点
+ existing_node = self.db.db.graph_data.nodes.find_one({'concept': concept})
+ if existing_node:
+ # 如果存在,合并memory_items并去重
+ existing_items = existing_node.get('memory_items', [])
+ if not isinstance(existing_items, list):
+ existing_items = [existing_items] if existing_items else []
+
+ # 合并并去重
+ all_items = list(set(existing_items + memory_items))
+
+ # 更新节点
+ self.db.db.graph_data.nodes.update_one(
+ {'concept': concept},
+ {'$set': {'memory_items': all_items}}
+ )
+ else:
+ # 如果不存在,创建新节点
+ node_data = {
+ 'concept': concept,
+ 'memory_items': memory_items
+ }
+ self.db.db.graph_data.nodes.insert_one(node_data)
+
# 保存边
for edge in self.G.edges():
- edge_data = {
- 'source': edge[0],
- 'target': edge[1]
- }
- self.db.db.graph_data.edges.insert_one(edge_data)
+ source, target = edge
+
+ # 查找是否存在同样的边
+ existing_edge = self.db.db.graph_data.edges.find_one({
+ 'source': source,
+ 'target': target
+ })
+
+ if existing_edge:
+ # 如果存在,增加num属性
+ num = existing_edge.get('num', 1) + 1
+ self.db.db.graph_data.edges.update_one(
+ {'source': source, 'target': target},
+ {'$set': {'num': num}}
+ )
+ else:
+ # 如果不存在,创建新边
+ edge_data = {
+ 'source': source,
+ 'target': target,
+ 'num': 1
+ }
+ self.db.db.graph_data.edges.insert_one(edge_data)
def load_graph_from_db(self):
# 清空当前图
@@ -147,150 +158,92 @@ class Memory_graph:
# 加载边
edges = self.db.db.graph_data.edges.find()
for edge in edges:
- self.G.add_edge(edge['source'], edge['target'])
-
-def calculate_information_content(text):
-
- """计算文本的信息量(熵)"""
- # 统计字符频率
- char_count = Counter(text)
- total_chars = len(text)
-
- # 计算熵
- entropy = 0
- for count in char_count.values():
- probability = count / total_chars
- entropy -= probability * math.log2(probability)
-
- return entropy
-
-
-start_time = time.time()
-
-Database.initialize(
- global_config.MONGODB_HOST,
- global_config.MONGODB_PORT,
- global_config.DATABASE_NAME
-)
-memory_graph = Memory_graph()
-
-llm_model = LLMModel()
-llm_model_small = LLMModel(model_name="deepseek-ai/DeepSeek-V2.5")
-
-memory_graph.load_graph_from_db()
-
-end_time = time.time()
-print(f"加载海马体耗时: {end_time - start_time:.2f} 秒")
+ self.G.add_edge(edge['source'], edge['target'], num=edge.get('num', 1))
-def main():
- # 初始化数据库
- Database.initialize(
- "127.0.0.1",
- 27017,
- "MegBot"
- )
-
- memory_graph = Memory_graph()
- # 创建LLM模型实例
- llm_model = LLMModel()
- llm_model_small = LLMModel(model_name="deepseek-ai/DeepSeek-V2.5")
-
- # 使用当前时间戳进行测试
- current_timestamp = datetime.datetime.now().timestamp()
- chat_text = []
-
- chat_size =40
-
- for _ in range(100): # 循环10次
- random_time = current_timestamp - random.randint(1, 3600*39) # 随机时间
- print(f"随机时间戳对应的时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(random_time))}")
- chat_ = memory_graph.get_random_chat_from_db(chat_size, random_time)
- chat_text.append(chat_) # 拼接所有text
- time.sleep(5)
-
- for input_text in chat_text:
- print(input_text)
- first_memory = set()
- first_memory = memory_compress(input_text, llm_model_small, llm_model_small, rate=2.5)
+# 海马体
+class Hippocampus:
+ def __init__(self,memory_graph:Memory_graph):
+ self.memory_graph = memory_graph
+ self.llm_model = LLMModel()
+ self.llm_model_small = LLMModel(model_name="deepseek-ai/DeepSeek-V2.5")
- #将记忆加入到图谱中
- for topic, memory in first_memory:
- topics = segment_text(topic)
- print(f"\033[1;34m话题\033[0m: {topic},节点: {topics}, 记忆: {memory}")
- for split_topic in topics:
- memory_graph.add_dot(split_topic,memory)
- for split_topic in topics:
- for other_split_topic in topics:
- if split_topic != other_split_topic:
- memory_graph.connect_dot(split_topic, other_split_topic)
+ def get_memory_sample(self,chat_size=20,time_frequency:dict={'near':2,'mid':4,'far':3}):
+ current_timestamp = datetime.datetime.now().timestamp()
+ chat_text = []
+ #短期:1h 中期:4h 长期:24h
+ for _ in range(time_frequency.get('near')): # 循环10次
+ random_time = current_timestamp - random.randint(1, 3600) # 随机时间
+ # print(f"获得 最近 随机时间戳对应的时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(random_time))}")
+ chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
+ chat_text.append(chat_)
+ for _ in range(time_frequency.get('mid')): # 循环10次
+ random_time = current_timestamp - random.randint(3600, 3600*4) # 随机时间
+ # print(f"获得 最近 随机时间戳对应的时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(random_time))}")
+ chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
+ chat_text.append(chat_)
+ for _ in range(time_frequency.get('far')): # 循环10次
+ random_time = current_timestamp - random.randint(3600*4, 3600*24) # 随机时间
+ # print(f"获得 最近 随机时间戳对应的时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(random_time))}")
+ chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
+ chat_text.append(chat_)
+ return chat_text
- # memory_graph.store_memory()
-
- # 展示两种不同的可视化方式
- print("\n按连接数量着色的图谱:")
- visualize_graph(memory_graph, color_by_memory=False)
-
- print("\n按记忆数量着色的图谱:")
- visualize_graph(memory_graph, color_by_memory=True)
-
- memory_graph.save_graph_to_db()
- # memory_graph.load_graph_from_db()
-
- while True:
- query = input("请输入新的查询概念(输入'退出'以结束):")
- if query.lower() == '退出':
- break
- items_list = memory_graph.get_related_item(query)
- if items_list:
- # print(items_list)
- for memory_item in items_list:
- print(memory_item)
- else:
- print("未找到相关记忆。")
+ def build_memory(self,chat_size=12):
+ #最近消息获取频率
+ time_frequency = {'near':1,'mid':2,'far':2}
+ memory_sample = self.get_memory_sample(chat_size,time_frequency)
+ # print(f"\033[1;32m[记忆构建]\033[0m 获取记忆样本: {memory_sample}")
+
+
+ for i, input_text in enumerate(memory_sample, 1):
+ #加载进度可视化
+ progress = (i / len(memory_sample)) * 100
+ bar_length = 30
+ filled_length = int(bar_length * i // len(memory_sample))
+ bar = '█' * filled_length + '-' * (bar_length - filled_length)
+ print(f"\n进度: [{bar}] {progress:.1f}% ({i}/{len(memory_sample)})")
- while True:
- query = input("请输入问题:")
-
- if query.lower() == '退出':
- break
-
- topic_prompt = find_topic(query, 3)
- topic_response = llm_model.generate_response(topic_prompt)
+ # 生成压缩后记忆
+ first_memory = set()
+ first_memory = self.memory_compress(input_text, 2.5)
+ # 延时防止访问超频
+ # time.sleep(5)
+ #将记忆加入到图谱中
+ for topic, memory in first_memory:
+ topics = segment_text(topic)
+ print(f"\033[1;34m话题\033[0m: {topic},节点: {topics}, 记忆: {memory}")
+ for split_topic in topics:
+ self.memory_graph.add_dot(split_topic,memory)
+ for split_topic in topics:
+ for other_split_topic in topics:
+ if split_topic != other_split_topic:
+ self.memory_graph.connect_dot(split_topic, other_split_topic)
+
+ self.memory_graph.save_graph_to_db()
+
+ def memory_compress(self, input_text, rate=1):
+ information_content = calculate_information_content(input_text)
+ print(f"文本的信息量(熵): {information_content:.4f} bits")
+ topic_num = max(1, min(5, int(information_content * rate / 4)))
+ # print(topic_num)
+ topic_prompt = find_topic(input_text, topic_num)
+ topic_response = self.llm_model.generate_response(topic_prompt)
# 检查 topic_response 是否为元组
if isinstance(topic_response, tuple):
topics = topic_response[0].split(",") # 假设第一个元素是我们需要的字符串
else:
topics = topic_response.split(",")
- print(topics)
-
- for keyword in topics:
- items_list = memory_graph.get_related_item(keyword)
- if items_list:
- print(items_list)
-
-def memory_compress(input_text, llm_model, llm_model_small, rate=1):
- information_content = calculate_information_content(input_text)
- print(f"文本的信息量(熵): {information_content:.4f} bits")
- topic_num = max(1, min(5, int(information_content * rate / 4)))
- print(topic_num)
- topic_prompt = find_topic(input_text, topic_num)
- topic_response = llm_model.generate_response(topic_prompt)
- # 检查 topic_response 是否为元组
- if isinstance(topic_response, tuple):
- topics = topic_response[0].split(",") # 假设第一个元素是我们需要的字符串
- else:
- topics = topic_response.split(",")
- print(topics)
- compressed_memory = set()
- for topic in topics:
- topic_what_prompt = topic_what(input_text,topic)
- topic_what_response = llm_model_small.generate_response(topic_what_prompt)
- compressed_memory.add((topic.strip(), topic_what_response[0])) # 将话题和记忆作为元组存储
- return compressed_memory
+ # print(topics)
+ compressed_memory = set()
+ for topic in topics:
+ topic_what_prompt = topic_what(input_text,topic)
+ topic_what_response = self.llm_model_small.generate_response(topic_what_prompt)
+ compressed_memory.add((topic.strip(), topic_what_response[0])) # 将话题和记忆作为元组存储
+ return compressed_memory
def segment_text(text):
@@ -305,69 +258,21 @@ def topic_what(text, topic):
prompt = f'这是一段文字:{text}。我想知道这记忆里有什么关于{topic}的话题,帮我总结成一句自然的话,可以包含时间和人物。只输出这句话就好'
return prompt
-def visualize_graph(memory_graph: Memory_graph, color_by_memory: bool = False):
- # 设置中文字体
- plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
- plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
-
- G = memory_graph.G
-
- # 保存图到本地
- nx.write_gml(G, "memory_graph.gml") # 保存为 GML 格式
-
- # 根据连接条数或记忆数量设置节点颜色
- node_colors = []
- nodes = list(G.nodes()) # 获取图中实际的节点列表
-
- if color_by_memory:
- # 计算每个节点的记忆数量
- memory_counts = []
- for node in nodes:
- memory_items = G.nodes[node].get('memory_items', [])
- if isinstance(memory_items, list):
- count = len(memory_items)
- else:
- count = 1 if memory_items else 0
- memory_counts.append(count)
- max_memories = max(memory_counts) if memory_counts else 1
-
- for count in memory_counts:
- # 使用不同的颜色方案:红色表示记忆多,蓝色表示记忆少
- if max_memories > 0:
- intensity = min(1.0, count / max_memories)
- color = (intensity, 0, 1.0 - intensity) # 从蓝色渐变到红色
- else:
- color = (0, 0, 1) # 如果没有记忆,则为蓝色
- node_colors.append(color)
- else:
- # 使用原来的连接数量着色方案
- max_degree = max(G.degree(), key=lambda x: x[1])[1] if G.degree() else 1
- for node in nodes:
- degree = G.degree(node)
- if max_degree > 0:
- red = min(1.0, degree / max_degree)
- blue = 1.0 - red
- color = (red, 0, blue)
- else:
- color = (0, 0, 1)
- node_colors.append(color)
-
- # 绘制图形
- plt.figure(figsize=(12, 8))
- pos = nx.spring_layout(G, k=1, iterations=50)
- nx.draw(G, pos,
- with_labels=True,
- node_color=node_colors,
- node_size=2000,
- font_size=10,
- font_family='SimHei',
- font_weight='bold')
-
- title = '记忆图谱可视化 - ' + ('按记忆数量着色' if color_by_memory else '按连接数量着色')
- plt.title(title, fontsize=16, fontfamily='SimHei')
- plt.show()
-
-if __name__ == "__main__":
- main()
+start_time = time.time()
+
+Database.initialize(
+ global_config.MONGODB_HOST,
+ global_config.MONGODB_PORT,
+ global_config.DATABASE_NAME
+)
+#创建记忆图
+memory_graph = Memory_graph()
+#加载数据库中存储的记忆图
+memory_graph.load_graph_from_db()
+#创建海马体
+hippocampus = Hippocampus(memory_graph)
+
+end_time = time.time()
+print(f"\033[32m[加载海马体耗时: {end_time - start_time:.2f} 秒]\033[0m")
\ No newline at end of file
diff --git a/src/plugins/memory_system/memory copy.py b/src/plugins/memory_system/memory_make.py
similarity index 82%
rename from src/plugins/memory_system/memory copy.py
rename to src/plugins/memory_system/memory_make.py
index 07dea2a8b..244838e21 100644
--- a/src/plugins/memory_system/memory copy.py
+++ b/src/plugins/memory_system/memory_make.py
@@ -1,7 +1,6 @@
# -*- coding: utf-8 -*-
import sys
import jieba
-from llm_module import LLMModel
import networkx as nx
import matplotlib.pyplot as plt
import math
@@ -9,10 +8,12 @@ from collections import Counter
import datetime
import random
import time
+import os
+from dotenv import load_dotenv
# from chat.config import global_config
-import sys
sys.path.append("C:/GitHub/MaiMBot") # 添加项目根目录到 Python 路径
from src.common.database import Database # 使用正确的导入语法
+from src.plugins.memory_system.llm_module import LLMModel
class Memory_graph:
def __init__(self):
@@ -117,22 +118,60 @@ class Memory_graph:
return [] # 如果没有找到记录,返回空列表
def save_graph_to_db(self):
- # 清空现有的图数据
- self.db.db.graph_data.delete_many({})
# 保存节点
for node in self.G.nodes(data=True):
- node_data = {
- 'concept': node[0],
- 'memory_items': node[1].get('memory_items', []) # 默认为空列表
- }
- self.db.db.graph_data.nodes.insert_one(node_data)
+ concept = node[0]
+ memory_items = node[1].get('memory_items', [])
+
+ # 查找是否存在同名节点
+ existing_node = self.db.db.graph_data.nodes.find_one({'concept': concept})
+ if existing_node:
+ # 如果存在,合并memory_items并去重
+ existing_items = existing_node.get('memory_items', [])
+ if not isinstance(existing_items, list):
+ existing_items = [existing_items] if existing_items else []
+
+ # 合并并去重
+ all_items = list(set(existing_items + memory_items))
+
+ # 更新节点
+ self.db.db.graph_data.nodes.update_one(
+ {'concept': concept},
+ {'$set': {'memory_items': all_items}}
+ )
+ else:
+ # 如果不存在,创建新节点
+ node_data = {
+ 'concept': concept,
+ 'memory_items': memory_items
+ }
+ self.db.db.graph_data.nodes.insert_one(node_data)
+
# 保存边
for edge in self.G.edges():
- edge_data = {
- 'source': edge[0],
- 'target': edge[1]
- }
- self.db.db.graph_data.edges.insert_one(edge_data)
+ source, target = edge
+
+ # 查找是否存在同样的边
+ existing_edge = self.db.db.graph_data.edges.find_one({
+ 'source': source,
+ 'target': target
+ })
+
+ if existing_edge:
+ # 如果存在,增加num属性
+ num = existing_edge.get('num', 1) + 1
+ self.db.db.graph_data.edges.update_one(
+ {'source': source, 'target': target},
+ {'$set': {'num': num}}
+ )
+ else:
+ # 如果不存在,创建新边
+ edge_data = {
+ 'source': source,
+ 'target': target,
+ 'num': 1
+ }
+ self.db.db.graph_data.edges.insert_one(edge_data)
def load_graph_from_db(self):
# 清空当前图
@@ -147,7 +186,7 @@ class Memory_graph:
# 加载边
edges = self.db.db.graph_data.edges.find()
for edge in edges:
- self.G.add_edge(edge['source'], edge['target'])
+ self.G.add_edge(edge['source'], edge['target'], num=edge.get('num', 1))
def calculate_information_content(text):
@@ -180,6 +219,19 @@ def calculate_information_content(text):
def main():
+ # 获取当前文件的绝对路径
+ current_dir = os.path.dirname(os.path.abspath(__file__))
+ root_dir = os.path.abspath(os.path.join(current_dir, '..', '..', '..'))
+ env_path = os.path.join(root_dir, 'config', '.env')
+
+ # 加载环境变量
+ print(f"尝试从 {env_path} 加载环境变量配置")
+ if os.path.exists(env_path):
+ load_dotenv(env_path)
+ print("成功加载环境变量配置")
+ else:
+ print(f"环境变量配置文件不存在: {env_path}")
+
# 初始化数据库
Database.initialize(
"127.0.0.1",
@@ -196,10 +248,10 @@ def main():
current_timestamp = datetime.datetime.now().timestamp()
chat_text = []
- chat_size =20
+ chat_size =25
- for _ in range(10): # 循环10次
- random_time = current_timestamp - random.randint(1, 3600*3) # 随机时间
+ for _ in range(30): # 循环10次
+ random_time = current_timestamp - random.randint(1, 3600*10) # 随机时间
print(f"随机时间戳对应的时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(random_time))}")
chat_ = memory_graph.get_random_chat_from_db(chat_size, random_time)
chat_text.append(chat_) # 拼接所有text
@@ -218,7 +270,7 @@ def main():
# print(input_text)
first_memory = set()
first_memory = memory_compress(input_text, llm_model_small, llm_model_small, rate=2.5)
- time.sleep(5)
+ # time.sleep(5)
#将记忆加入到图谱中
for topic, memory in first_memory: