diff --git a/README.md b/README.md
index 81c984897..c915a9f79 100644
--- a/README.md
+++ b/README.md
@@ -3,7 +3,7 @@
-
+


@@ -51,9 +51,13 @@
- [🐳 Docker部署指南](docs/docker_deploy.md)
-- [📦 手动部署指南(Windows)](docs/manual_deploy_windows.md)
-- [📦 手动部署指南(Linux)](docs/manual_deploy_linux.md)
+- [📦 手动部署指南 Windows](docs/manual_deploy_windows.md)
+
+
+- [📦 手动部署指南 Linux](docs/manual_deploy_linux.md)
+
+- 📦 Windows 一键傻瓜式部署,请运行项目根目录中的 ```run.bat```,部署完成后请参照后续配置指南进行配置
### 配置说明
- [🎀 新手配置指南](docs/installation_cute.md) - 通俗易懂的配置教程,适合初次使用的猫娘
diff --git a/bot.py b/bot.py
index 51979a5ea..d43d5e607 100644
--- a/bot.py
+++ b/bot.py
@@ -1,88 +1,149 @@
import os
-
+import shutil
import nonebot
+import time
from dotenv import load_dotenv
from loguru import logger
from nonebot.adapters.onebot.v11 import Adapter
+import platform
-'''彩蛋'''
-from colorama import Fore, init
+# 获取没有加载env时的环境变量
+env_mask = {key: os.getenv(key) for key in os.environ}
-init()
-text = "多年以后,面对AI行刑队,张三将会回想起他2023年在会议上讨论人工智能的那个下午"
-rainbow_colors = [Fore.RED, Fore.YELLOW, Fore.GREEN, Fore.CYAN, Fore.BLUE, Fore.MAGENTA]
-rainbow_text = ""
-for i, char in enumerate(text):
- rainbow_text += rainbow_colors[i % len(rainbow_colors)] + char
-print(rainbow_text)
-'''彩蛋'''
+def easter_egg():
+ # 彩蛋
+ from colorama import init, Fore
-# 初次启动检测
-if not os.path.exists("config/bot_config.toml"):
- logger.warning("检测到bot_config.toml不存在,正在从模板复制")
- import shutil
- # 检查config目录是否存在
- if not os.path.exists("config"):
- os.makedirs("config")
- logger.info("创建config目录")
+ init()
+ text = "多年以后,面对AI行刑队,张三将会回想起他2023年在会议上讨论人工智能的那个下午"
+ rainbow_colors = [Fore.RED, Fore.YELLOW, Fore.GREEN, Fore.CYAN, Fore.BLUE, Fore.MAGENTA]
+ rainbow_text = ""
+ for i, char in enumerate(text):
+ rainbow_text += rainbow_colors[i % len(rainbow_colors)] + char
+ print(rainbow_text)
- shutil.copy("template/bot_config_template.toml", "config/bot_config.toml")
- logger.info("复制完成,请修改config/bot_config.toml和.env.prod中的配置后重新启动")
+def init_config():
+ # 初次启动检测
+ if not os.path.exists("config/bot_config.toml"):
+ logger.warning("检测到bot_config.toml不存在,正在从模板复制")
+
+ # 检查config目录是否存在
+ if not os.path.exists("config"):
+ os.makedirs("config")
+ logger.info("创建config目录")
-# 初始化.env 默认ENVIRONMENT=prod
-if not os.path.exists(".env"):
- with open(".env", "w") as f:
- f.write("ENVIRONMENT=prod")
+ shutil.copy("template/bot_config_template.toml", "config/bot_config.toml")
+ logger.info("复制完成,请修改config/bot_config.toml和.env.prod中的配置后重新启动")
- # 检测.env.prod文件是否存在
- if not os.path.exists(".env.prod"):
- logger.error("检测到.env.prod文件不存在")
- shutil.copy("template.env", "./.env.prod")
+def init_env():
+ # 初始化.env 默认ENVIRONMENT=prod
+ if not os.path.exists(".env"):
+ with open(".env", "w") as f:
+ f.write("ENVIRONMENT=prod")
-# 首先加载基础环境变量.env
-if os.path.exists(".env"):
- load_dotenv(".env")
- logger.success("成功加载基础环境变量配置")
+ # 检测.env.prod文件是否存在
+ if not os.path.exists(".env.prod"):
+ logger.error("检测到.env.prod文件不存在")
+ shutil.copy("template.env", "./.env.prod")
-# 根据 ENVIRONMENT 加载对应的环境配置
-if os.getenv("ENVIRONMENT") == "prod":
- logger.success("加载生产环境变量配置")
- load_dotenv(".env.prod", override=True) # override=True 允许覆盖已存在的环境变量
-elif os.getenv("ENVIRONMENT") == "dev":
- logger.success("加载开发环境变量配置")
- load_dotenv(".env.dev", override=True) # override=True 允许覆盖已存在的环境变量
-elif os.path.exists(f".env.{os.getenv('ENVIRONMENT')}"):
- logger.success(f"加载{os.getenv('ENVIRONMENT')}环境变量配置")
- load_dotenv(f".env.{os.getenv('ENVIRONMENT')}", override=True) # override=True 允许覆盖已存在的环境变量
-else:
- logger.error(f"ENVIRONMENT配置错误,请检查.env文件中的ENVIRONMENT变量对应的.env.{os.getenv('ENVIRONMENT')}是否存在")
- exit(1)
+ # 首先加载基础环境变量.env
+ if os.path.exists(".env"):
+ load_dotenv(".env")
+ logger.success("成功加载基础环境变量配置")
-# 检测Key是否存在
-if not os.getenv("SILICONFLOW_KEY"):
- logger.error("缺失必要的API KEY")
- logger.error(f"请至少在.env.{os.getenv('ENVIRONMENT')}文件中填写SILICONFLOW_KEY后重新启动")
- exit(1)
+def load_env():
+ # 使用闭包实现对加载器的横向扩展,避免大量重复判断
+ def prod():
+ logger.success("加载生产环境变量配置")
+ load_dotenv(".env.prod", override=True) # override=True 允许覆盖已存在的环境变量
-# 获取所有环境变量
-env_config = {key: os.getenv(key) for key in os.environ}
+ def dev():
+ logger.success("加载开发环境变量配置")
+ load_dotenv(".env.dev", override=True) # override=True 允许覆盖已存在的环境变量
-# 设置基础配置
-base_config = {
- "websocket_port": int(env_config.get("PORT", 8080)),
- "host": env_config.get("HOST", "127.0.0.1"),
- "log_level": "INFO",
-}
+ fn_map = {
+ "prod": prod,
+ "dev": dev
+ }
-# 合并配置
-nonebot.init(**base_config, **env_config)
+ env = os.getenv("ENVIRONMENT")
+ logger.info(f"[load_env] 当前的 ENVIRONMENT 变量值:{env}")
-# 注册适配器
-driver = nonebot.get_driver()
-driver.register_adapter(Adapter)
+ if env in fn_map:
+ fn_map[env]() # 根据映射执行闭包函数
-# 加载插件
-nonebot.load_plugins("src/plugins")
+ elif os.path.exists(f".env.{env}"):
+ logger.success(f"加载{env}环境变量配置")
+ load_dotenv(f".env.{env}", override=True) # override=True 允许覆盖已存在的环境变量
+
+ else:
+ logger.error(f"ENVIRONMENT 配置错误,请检查 .env 文件中的 ENVIRONMENT 变量及对应 .env.{env} 是否存在")
+ RuntimeError(f"ENVIRONMENT 配置错误,请检查 .env 文件中的 ENVIRONMENT 变量及对应 .env.{env} 是否存在")
+
+
+
+def scan_provider(env_config: dict):
+ provider = {}
+
+ # 利用未初始化 env 时获取的 env_mask 来对新的环境变量集去重
+ # 避免 GPG_KEY 这样的变量干扰检查
+ env_config = dict(filter(lambda item: item[0] not in env_mask, env_config.items()))
+
+ # 遍历 env_config 的所有键
+ for key in env_config:
+ # 检查键是否符合 {provider}_BASE_URL 或 {provider}_KEY 的格式
+ if key.endswith("_BASE_URL") or key.endswith("_KEY"):
+ # 提取 provider 名称
+ provider_name = key.split("_", 1)[0] # 从左分割一次,取第一部分
+
+ # 初始化 provider 的字典(如果尚未初始化)
+ if provider_name not in provider:
+ provider[provider_name] = {"url": None, "key": None}
+
+ # 根据键的类型填充 url 或 key
+ if key.endswith("_BASE_URL"):
+ provider[provider_name]["url"] = env_config[key]
+ elif key.endswith("_KEY"):
+ provider[provider_name]["key"] = env_config[key]
+
+ # 检查每个 provider 是否同时存在 url 和 key
+ for provider_name, config in provider.items():
+ if config["url"] is None or config["key"] is None:
+ logger.error(
+ f"provider 内容:{config}\n"
+ f"env_config 内容:{env_config}"
+ )
+ raise ValueError(f"请检查 '{provider_name}' 提供商配置是否丢失 BASE_URL 或 KEY 环境变量")
if __name__ == "__main__":
+ # 利用 TZ 环境变量设定程序工作的时区
+ # 仅保证行为一致,不依赖 localtime(),实际对生产环境几乎没有作用
+ if platform.system().lower() != 'windows':
+ time.tzset()
+
+ easter_egg()
+ init_config()
+ init_env()
+ load_env()
+
+ env_config = {key: os.getenv(key) for key in os.environ}
+ scan_provider(env_config)
+
+ # 设置基础配置
+ base_config = {
+ "websocket_port": int(env_config.get("PORT", 8080)),
+ "host": env_config.get("HOST", "127.0.0.1"),
+ "log_level": "INFO",
+ }
+
+ # 合并配置
+ nonebot.init(**base_config, **env_config)
+
+ # 注册适配器
+ driver = nonebot.get_driver()
+ driver.register_adapter(Adapter)
+
+ # 加载插件
+ nonebot.load_plugins("src/plugins")
+
nonebot.run()
diff --git a/docker-compose.yml b/docker-compose.yml
index dd2650b23..512558558 100644
--- a/docker-compose.yml
+++ b/docker-compose.yml
@@ -2,47 +2,49 @@ services:
napcat:
container_name: napcat
environment:
- - tz=Asia/Shanghai
+ - TZ=Asia/Shanghai
- NAPCAT_UID=${NAPCAT_UID}
- - NAPCAT_GID=${NAPCAT_GID}
+ - NAPCAT_GID=${NAPCAT_GID} # 让 NapCat 获取当前用户 GID,UID,防止权限问题
ports:
- 3000:3000
- 3001:3001
- 6099:6099
- restart: always
+ restart: unless-stopped
volumes:
- - napcatQQ:/app/.config/QQ
- - napcatCONFIG:/app/napcat/config
- - maimbotDATA:/MaiMBot/data # 麦麦的图片等要给napcat不然发送图片会有问题
+ - napcatQQ:/app/.config/QQ # 持久化 QQ 本体
+ - napcatCONFIG:/app/napcat/config # 持久化 NapCat 配置文件
+ - maimbotDATA:/MaiMBot/data # NapCat 和 NoneBot 共享此卷,否则发送图片会有问题
image: mlikiowa/napcat-docker:latest
mongodb:
container_name: mongodb
environment:
- tz=Asia/Shanghai
+ # - MONGO_INITDB_ROOT_USERNAME=your_username
+ # - MONGO_INITDB_ROOT_PASSWORD=your_password
expose:
- "27017"
- restart: always
+ restart: unless-stopped
volumes:
- - mongodb:/data/db
- - mongodbCONFIG:/data/configdb
+ - mongodb:/data/db # 持久化 MongoDB 数据库
+ - mongodbCONFIG:/data/configdb # 持久化 MongoDB 配置文件
image: mongo:latest
maimbot:
container_name: maimbot
environment:
- - tz=Asia/Shanghai
+ - TZ=Asia/Shanghai
expose:
- "8080"
- restart: always
+ restart: unless-stopped
depends_on:
- mongodb
- napcat
volumes:
- - napcatCONFIG:/MaiMBot/napcat # 自动根据配置中的qq号创建ws反向客户端配置
- - ./bot_config.toml:/MaiMBot/config/bot_config.toml
- - maimbotDATA:/MaiMBot/data
- - ./.env.prod:/MaiMBot/.env.prod
+ - napcatCONFIG:/MaiMBot/napcat # 自动根据配置中的 QQ 号创建 ws 反向客户端配置
+ - ./bot_config.toml:/MaiMBot/config/bot_config.toml # Toml 配置文件映射
+ - maimbotDATA:/MaiMBot/data # NapCat 和 NoneBot 共享此卷,否则发送图片会有问题
+ - ./.env.prod:/MaiMBot/.env.prod # Toml 配置文件映射
image: sengokucola/maimbot:latest
volumes:
diff --git a/docs/docker_deploy.md b/docs/docker_deploy.md
index c9b069309..3958d2fc4 100644
--- a/docs/docker_deploy.md
+++ b/docs/docker_deploy.md
@@ -2,21 +2,64 @@
## 部署步骤(推荐,但不一定是最新)
-1. 获取配置文件:
+
+### 1. 获取Docker配置文件:
+
```bash
-wget https://raw.githubusercontent.com/SengokuCola/MaiMBot/main/docker-compose.yml
+wget https://raw.githubusercontent.com/SengokuCola/MaiMBot/main/docker-compose.yml -O docker-compose.yml
```
-2. 启动服务:
+- 若需要启用MongoDB数据库的用户名和密码,可进入docker-compose.yml,取消MongoDB处的注释并修改变量`=`后方的值为你的用户名和密码\
+修改后请注意在之后配置`.env.prod`文件时指定MongoDB数据库的用户名密码
+
+
+### 2. 启动服务:
+
+- **!!! 请在第一次启动前确保当前工作目录下`.env.prod`与`bot_config.toml`文件存在 !!!**\
+由于Docker文件映射行为的特殊性,若宿主机的映射路径不存在,可能导致意外的目录创建,而不会创建文件,由于此处需要文件映射到文件,需提前确保文件存在且路径正确,可使用如下命令:
+```bash
+touch .env.prod
+touch bot_config.toml
+```
+
+- 启动Docker容器:
```bash
NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker compose up -d
```
-3. 修改配置后重启:
+- 旧版Docker中可能找不到docker compose,请使用docker-compose工具替代
+
+
+### 3. 修改配置并重启Docker:
+
+- 请前往 [🎀 新手配置指南](docs/installation_cute.md) 或 [⚙️ 标准配置指南](docs/installation_standard.md) 完成`.env.prod`与`bot_config.toml`配置文件的编写\
+**需要注意`.env.prod`中HOST处IP的填写,Docker中部署和系统中直接安装的配置会有所不同**
+
+- 重启Docker容器:
+```bash
+docker restart maimbot # 若修改过容器名称则替换maimbot为你自定的名臣
+```
+
+- 下方命令可以但不推荐,只是同时重启NapCat、MongoDB、MaiMBot三个服务
```bash
NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker compose restart
```
+- 旧版Docker中可能找不到docker compose,请使用docker-compose工具替代
+
+
+### 4. 登入NapCat管理页添加反向WebSocket
+
+- 在浏览器地址栏输入`http://<宿主机IP>:6099/`进入NapCat的管理Web页,添加一个Websocket客户端
+> 网络配置 -> 新建 -> Websocket客户端
+
+- Websocket客户端的名称自定,URL栏填入`ws://maimbot:8080/onebot/v11/ws`,启用并保存即可\
+(若修改过容器名称则替换maimbot为你自定的名称)
+
+
+### 5. 愉快地和麦麦对话吧!
+
+
## ⚠️ 注意事项
- 目前部署方案仍在测试中,可能存在未知问题
diff --git a/docs/installation_cute.md b/docs/installation_cute.md
index 278cbfe20..e7541f7d3 100644
--- a/docs/installation_cute.md
+++ b/docs/installation_cute.md
@@ -88,11 +88,11 @@ CHAT_ANY_WHERE_KEY=your_key
CHAT_ANY_WHERE_BASE_URL=https://api.chatanywhere.tech/v1
# 如果你不知道这是什么,那么下面这些不用改,保持原样就好啦
-HOST=127.0.0.1
+HOST=127.0.0.1 # 如果使用Docker部署,需要改成0.0.0.0喵,不然听不见群友讲话了喵
PORT=8080
# 这些是数据库设置,一般也不用改呢
-MONGODB_HOST=127.0.0.1
+MONGODB_HOST=127.0.0.1 # 如果使用Docker部署,需要改成数据库容器的名字喵,默认是mongodb喵
MONGODB_PORT=27017
DATABASE_NAME=MegBot
MONGODB_USERNAME = "" # 如果数据库需要用户名,就在这里填写喵
diff --git a/docs/installation_standard.md b/docs/installation_standard.md
index 6e4920220..5f52676d1 100644
--- a/docs/installation_standard.md
+++ b/docs/installation_standard.md
@@ -52,11 +52,11 @@ CHAT_ANY_WHERE_KEY=your_key
CHAT_ANY_WHERE_BASE_URL=https://api.chatanywhere.tech/v1
# 服务配置
-HOST=127.0.0.1
+HOST=127.0.0.1 # 如果使用Docker部署,需要改成0.0.0.0,否则QQ消息无法传入
PORT=8080
# 数据库配置
-MONGODB_HOST=127.0.0.1
+MONGODB_HOST=127.0.0.1 # 如果使用Docker部署,需要改成数据库容器的名字,默认是mongodb
MONGODB_PORT=27017
DATABASE_NAME=MegBot
MONGODB_USERNAME = "" # 数据库用户名
diff --git a/docs/manual_deploy_linux.md b/docs/manual_deploy_linux.md
index 09b2cfd0d..d310ffc59 100644
--- a/docs/manual_deploy_linux.md
+++ b/docs/manual_deploy_linux.md
@@ -77,7 +77,7 @@ pip install -r requirements.txt
- 参考[NapCat官方文档](https://www.napcat.wiki/guide/boot/Shell#napcat-installer-linux%E4%B8%80%E9%94%AE%E4%BD%BF%E7%94%A8%E8%84%9A%E6%9C%AC-%E6%94%AF%E6%8C%81ubuntu-20-debian-10-centos9)安装
- 使用QQ小号登录,添加反向WS地址:
-`ws://localhost:8080/onebot/v11/ws`
+`ws://127.0.0.1:8080/onebot/v11/ws`
---
diff --git a/docs/manual_deploy_windows.md b/docs/manual_deploy_windows.md
index bd9c26f86..86238bcd4 100644
--- a/docs/manual_deploy_windows.md
+++ b/docs/manual_deploy_windows.md
@@ -79,7 +79,7 @@ pip install -r requirements.txt
### 3️⃣ **配置NapCat,让麦麦bot与qq取得联系**
- 安装并登录NapCat(用你的qq小号)
-- 添加反向WS:`ws://localhost:8080/onebot/v11/ws`
+- 添加反向WS:`ws://127.0.0.1:8080/onebot/v11/ws`
### 4️⃣ **配置文件设置,让麦麦Bot正常工作**
- 修改环境配置文件:`.env.prod`
diff --git a/run.bat b/run.bat
index 1d1385671..c0fd81324 100644
--- a/run.bat
+++ b/run.bat
@@ -1,6 +1,6 @@
@ECHO OFF
chcp 65001
-REM python -m venv venv
+python -m venv venv
call venv\Scripts\activate.bat
-REM pip install -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple --upgrade -r requirements.txt
+pip install -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple --upgrade -r requirements.txt
python run.py
\ No newline at end of file
diff --git a/run.py b/run.py
index 0a195544f..549d15e9c 100644
--- a/run.py
+++ b/run.py
@@ -1,7 +1,7 @@
import os
import subprocess
import zipfile
-
+import sys
import requests
from tqdm import tqdm
@@ -105,6 +105,11 @@ def install_napcat():
if __name__ == "__main__":
os.system("cls")
+ if sys.version_info < (3, 9):
+ print("当前 Python 版本过低,最低版本为 3.9,请更新 Python 版本")
+ print("按任意键退出")
+ input()
+ exit(1)
choice = input(
"请输入要进行的操作:\n"
"1.首次安装\n"
diff --git a/src/gui/reasoning_gui.py b/src/gui/reasoning_gui.py
index 340791ee3..572e4ece9 100644
--- a/src/gui/reasoning_gui.py
+++ b/src/gui/reasoning_gui.py
@@ -83,7 +83,7 @@ class ReasoningGUI:
except RuntimeError:
print("数据库未初始化,正在尝试初始化...")
try:
- Database.initialize("localhost", 27017, "maimai_bot")
+ Database.initialize("127.0.0.1", 27017, "maimai_bot")
self.db = Database.get_instance().db
print("数据库初始化成功")
except Exception as e:
diff --git a/src/plugins/chat/config.py b/src/plugins/chat/config.py
index fd65c116d..c027753c0 100644
--- a/src/plugins/chat/config.py
+++ b/src/plugins/chat/config.py
@@ -4,11 +4,15 @@ from typing import Dict, Optional
import tomli
from loguru import logger
-
+from packaging import version
+from packaging.version import Version, InvalidVersion
+from packaging.specifiers import SpecifierSet,InvalidSpecifier
@dataclass
class BotConfig:
"""机器人配置类"""
+ INNER_VERSION: Version = None
+
BOT_QQ: Optional[int] = 1
BOT_NICKNAME: Optional[str] = None
@@ -64,6 +68,14 @@ class BotConfig:
mood_decay_rate: float = 0.95 # 情绪衰减率
mood_intensity_factor: float = 0.7 # 情绪强度因子
+ keywords_reaction_rules = [] # 关键词回复规则
+
+ chinese_typo_enable=True # 是否启用中文错别字生成器
+ chinese_typo_error_rate=0.03 # 单字替换概率
+ chinese_typo_min_freq=7 # 最小字频阈值
+ chinese_typo_tone_error_rate=0.2 # 声调错误概率
+ chinese_typo_word_replace_rate=0.02 # 整词替换概率
+
# 默认人设
PROMPT_PERSONALITY=[
"曾经是一个学习地质的女大学生,现在学习心理学和脑科学,你会刷贴吧",
@@ -85,12 +97,284 @@ class BotConfig:
if not os.path.exists(config_dir):
os.makedirs(config_dir)
return config_dir
+
+ @classmethod
+ def convert_to_specifierset(cls, value: str) -> SpecifierSet:
+ """将 字符串 版本表达式转换成 SpecifierSet
+ Args:
+ value[str]: 版本表达式(字符串)
+ Returns:
+ SpecifierSet
+ """
+ try:
+ converted = SpecifierSet(value)
+ except InvalidSpecifier as e:
+ logger.error(
+ f"{value} 分类使用了错误的版本约束表达式\n",
+ "请阅读 https://semver.org/lang/zh-CN/ 修改代码"
+ )
+ exit(1)
+
+ return converted
+
+ @classmethod
+ def get_config_version(cls, toml: dict) -> Version:
+ """提取配置文件的 SpecifierSet 版本数据
+ Args:
+ toml[dict]: 输入的配置文件字典
+ Returns:
+ Version
+ """
+
+ if 'inner' in toml:
+ try:
+ config_version : str = toml["inner"]["version"]
+ except KeyError as e:
+ logger.error(f"配置文件中 inner 段 不存在 {e}, 这是错误的配置文件")
+ raise KeyError(f"配置文件中 inner 段 不存在 {e}, 这是错误的配置文件")
+ else:
+ toml["inner"] = { "version": "0.0.0" }
+ config_version = toml["inner"]["version"]
+
+ try:
+ ver = version.parse(config_version)
+ except InvalidVersion as e:
+ logger.error(
+ "配置文件中 inner段 的 version 键是错误的版本描述\n"
+ "请阅读 https://semver.org/lang/zh-CN/ 修改配置,并参考本项目指定的模板进行修改\n"
+ "本项目在不同的版本下有不同的模板,请注意识别"
+ )
+ raise InvalidVersion("配置文件中 inner段 的 version 键是错误的版本描述\n")
+
+ return ver
@classmethod
def load_config(cls, config_path: str = None) -> "BotConfig":
"""从TOML配置文件加载配置"""
config = cls()
+
+ def personality(parent: dict):
+ personality_config=parent['personality']
+ personality=personality_config.get('prompt_personality')
+ if len(personality) >= 2:
+ logger.info(f"载入自定义人格:{personality}")
+ config.PROMPT_PERSONALITY=personality_config.get('prompt_personality',config.PROMPT_PERSONALITY)
+ logger.info(f"载入自定义日程prompt:{personality_config.get('prompt_schedule',config.PROMPT_SCHEDULE_GEN)}")
+ config.PROMPT_SCHEDULE_GEN=personality_config.get('prompt_schedule',config.PROMPT_SCHEDULE_GEN)
+
+ if config.INNER_VERSION in SpecifierSet(">=0.0.2"):
+ config.PERSONALITY_1=personality_config.get('personality_1_probability',config.PERSONALITY_1)
+ config.PERSONALITY_2=personality_config.get('personality_2_probability',config.PERSONALITY_2)
+ config.PERSONALITY_3=personality_config.get('personality_3_probability',config.PERSONALITY_3)
+
+ def emoji(parent: dict):
+ emoji_config = parent["emoji"]
+ config.EMOJI_CHECK_INTERVAL = emoji_config.get("check_interval", config.EMOJI_CHECK_INTERVAL)
+ config.EMOJI_REGISTER_INTERVAL = emoji_config.get("register_interval", config.EMOJI_REGISTER_INTERVAL)
+ config.EMOJI_CHECK_PROMPT = emoji_config.get('check_prompt',config.EMOJI_CHECK_PROMPT)
+ config.EMOJI_SAVE = emoji_config.get('auto_save',config.EMOJI_SAVE)
+ config.EMOJI_CHECK = emoji_config.get('enable_check',config.EMOJI_CHECK)
+
+ def cq_code(parent: dict):
+ cq_code_config = parent["cq_code"]
+ config.ENABLE_PIC_TRANSLATE = cq_code_config.get("enable_pic_translate", config.ENABLE_PIC_TRANSLATE)
+
+ def bot(parent: dict):
+ # 机器人基础配置
+ bot_config = parent["bot"]
+ bot_qq = bot_config.get("qq")
+ config.BOT_QQ = int(bot_qq)
+ config.BOT_NICKNAME = bot_config.get("nickname", config.BOT_NICKNAME)
+
+ def response(parent: dict):
+ response_config = parent["response"]
+ config.MODEL_R1_PROBABILITY = response_config.get("model_r1_probability", config.MODEL_R1_PROBABILITY)
+ config.MODEL_V3_PROBABILITY = response_config.get("model_v3_probability", config.MODEL_V3_PROBABILITY)
+ config.MODEL_R1_DISTILL_PROBABILITY = response_config.get("model_r1_distill_probability", config.MODEL_R1_DISTILL_PROBABILITY)
+ config.max_response_length = response_config.get("max_response_length", config.max_response_length)
+
+ def model(parent: dict):
+ # 加载模型配置
+ model_config:dict = parent["model"]
+
+ config_list = [
+ "llm_reasoning",
+ "llm_reasoning_minor",
+ "llm_normal",
+ "llm_normal_minor",
+ "llm_topic_judge",
+ "llm_summary_by_topic",
+ "llm_emotion_judge",
+ "vlm",
+ "embedding",
+ "moderation"
+ ]
+
+ for item in config_list:
+ if item in model_config:
+ cfg_item:dict = model_config[item]
+
+ # base_url 的例子: SILICONFLOW_BASE_URL
+ # key 的例子: SILICONFLOW_KEY
+ cfg_target = {
+ "name" : "",
+ "base_url" : "",
+ "key" : "",
+ "pri_in" : 0,
+ "pri_out" : 0
+ }
+
+ if config.INNER_VERSION in SpecifierSet("<=0.0.0"):
+ cfg_target = cfg_item
+
+ elif config.INNER_VERSION in SpecifierSet(">=0.0.1"):
+ stable_item = ["name","pri_in","pri_out"]
+ pricing_item = ["pri_in","pri_out"]
+ # 从配置中原始拷贝稳定字段
+ for i in stable_item:
+ # 如果 字段 属于计费项 且获取不到,那默认值是 0
+ if i in pricing_item and i not in cfg_item:
+ cfg_target[i] = 0
+ else:
+ # 没有特殊情况则原样复制
+ try:
+ cfg_target[i] = cfg_item[i]
+ except KeyError as e:
+ logger.error(f"{item} 中的必要字段 {e} 不存在,请检查")
+ raise KeyError(f"{item} 中的必要字段 {e} 不存在,请检查")
+
+
+ provider = cfg_item.get("provider")
+ if provider == None:
+ logger.error(f"provider 字段在模型配置 {item} 中不存在,请检查")
+ raise KeyError(f"provider 字段在模型配置 {item} 中不存在,请检查")
+
+ cfg_target["base_url"] = f"{provider}_BASE_URL"
+ cfg_target["key"] = f"{provider}_KEY"
+
+
+ # 如果 列表中的项目在 model_config 中,利用反射来设置对应项目
+ setattr(config,item,cfg_target)
+ else:
+ logger.error(f"模型 {item} 在config中不存在,请检查")
+ raise KeyError(f"模型 {item} 在config中不存在,请检查")
+
+ def message(parent: dict):
+ msg_config = parent["message"]
+ config.MIN_TEXT_LENGTH = msg_config.get("min_text_length", config.MIN_TEXT_LENGTH)
+ config.MAX_CONTEXT_SIZE = msg_config.get("max_context_size", config.MAX_CONTEXT_SIZE)
+ config.emoji_chance = msg_config.get("emoji_chance", config.emoji_chance)
+ config.ban_words=msg_config.get("ban_words",config.ban_words)
+
+ if config.INNER_VERSION in SpecifierSet(">=0.0.2"):
+ config.thinking_timeout = msg_config.get("thinking_timeout", config.thinking_timeout)
+ config.response_willing_amplifier = msg_config.get("response_willing_amplifier", config.response_willing_amplifier)
+ config.response_interested_rate_amplifier = msg_config.get("response_interested_rate_amplifier", config.response_interested_rate_amplifier)
+ config.down_frequency_rate = msg_config.get("down_frequency_rate", config.down_frequency_rate)
+
+ def memory(parent: dict):
+ memory_config = parent["memory"]
+ config.build_memory_interval = memory_config.get("build_memory_interval", config.build_memory_interval)
+ config.forget_memory_interval = memory_config.get("forget_memory_interval", config.forget_memory_interval)
+
+ def mood(parent: dict):
+ mood_config = parent["mood"]
+ config.mood_update_interval = mood_config.get("mood_update_interval", config.mood_update_interval)
+ config.mood_decay_rate = mood_config.get("mood_decay_rate", config.mood_decay_rate)
+ config.mood_intensity_factor = mood_config.get("mood_intensity_factor", config.mood_intensity_factor)
+
+ def keywords_reaction(parent: dict):
+ keywords_reaction_config = parent["keywords_reaction"]
+ if keywords_reaction_config.get("enable", False):
+ config.keywords_reaction_rules = keywords_reaction_config.get("rules", config.keywords_reaction_rules)
+
+ def chinese_typo(parent: dict):
+ chinese_typo_config = parent["chinese_typo"]
+ config.chinese_typo_enable = chinese_typo_config.get("enable", config.chinese_typo_enable)
+ config.chinese_typo_error_rate = chinese_typo_config.get("error_rate", config.chinese_typo_error_rate)
+ config.chinese_typo_min_freq = chinese_typo_config.get("min_freq", config.chinese_typo_min_freq)
+ config.chinese_typo_tone_error_rate = chinese_typo_config.get("tone_error_rate", config.chinese_typo_tone_error_rate)
+ config.chinese_typo_word_replace_rate = chinese_typo_config.get("word_replace_rate", config.chinese_typo_word_replace_rate)
+
+ def groups(parent: dict):
+ groups_config = parent["groups"]
+ config.talk_allowed_groups = set(groups_config.get("talk_allowed", []))
+ config.talk_frequency_down_groups = set(groups_config.get("talk_frequency_down", []))
+ config.ban_user_id = set(groups_config.get("ban_user_id", []))
+
+ def others(parent: dict):
+ others_config = parent["others"]
+ config.enable_advance_output = others_config.get("enable_advance_output", config.enable_advance_output)
+ config.enable_kuuki_read = others_config.get("enable_kuuki_read", config.enable_kuuki_read)
+
+ # 版本表达式:>=1.0.0,<2.0.0
+ # 允许字段:func: method, support: str, notice: str, necessary: bool
+ # 如果使用 notice 字段,在该组配置加载时,会展示该字段对用户的警示
+ # 例如:"notice": "personality 将在 1.3.2 后被移除",那么在有效版本中的用户就会虽然可以
+ # 正常执行程序,但是会看到这条自定义提示
+ include_configs = {
+ "personality": {
+ "func": personality,
+ "support": ">=0.0.0"
+ },
+ "emoji": {
+ "func": emoji,
+ "support": ">=0.0.0"
+ },
+ "cq_code": {
+ "func": cq_code,
+ "support": ">=0.0.0"
+ },
+ "bot": {
+ "func": bot,
+ "support": ">=0.0.0"
+ },
+ "response": {
+ "func": response,
+ "support": ">=0.0.0"
+ },
+ "model": {
+ "func": model,
+ "support": ">=0.0.0"
+ },
+ "message": {
+ "func": message,
+ "support": ">=0.0.0"
+ },
+ "memory": {
+ "func": memory,
+ "support": ">=0.0.0"
+ },
+ "mood": {
+ "func": mood,
+ "support": ">=0.0.0"
+ },
+ "keywords_reaction": {
+ "func": keywords_reaction,
+ "support": ">=0.0.2",
+ "necessary": False
+ },
+ "chinese_typo": {
+ "func": chinese_typo,
+ "support": ">=0.0.3",
+ "necessary": False
+ },
+ "groups": {
+ "func": groups,
+ "support": ">=0.0.0"
+ },
+ "others": {
+ "func": others,
+ "support": ">=0.0.0"
+ }
+ }
+
+ # 原地修改,将 字符串版本表达式 转换成 版本对象
+ for key in include_configs:
+ item_support = include_configs[key]["support"]
+ include_configs[key]["support"] = cls.convert_to_specifierset(item_support)
+
if os.path.exists(config_path):
with open(config_path, "rb") as f:
try:
@@ -98,129 +382,60 @@ class BotConfig:
except(tomli.TOMLDecodeError) as e:
logger.critical(f"配置文件bot_config.toml填写有误,请检查第{e.lineno}行第{e.colno}处:{e.msg}")
exit(1)
-
- if 'personality' in toml_dict:
- personality_config=toml_dict['personality']
- personality=personality_config.get('prompt_personality')
- if len(personality) >= 2:
- logger.info(f"载入自定义人格:{personality}")
- config.PROMPT_PERSONALITY=personality_config.get('prompt_personality',config.PROMPT_PERSONALITY)
- logger.info(f"载入自定义日程prompt:{personality_config.get('prompt_schedule',config.PROMPT_SCHEDULE_GEN)}")
- config.PROMPT_SCHEDULE_GEN=personality_config.get('prompt_schedule',config.PROMPT_SCHEDULE_GEN)
- config.PERSONALITY_1=personality_config.get('personality_1_probability',config.PERSONALITY_1)
- config.PERSONALITY_2=personality_config.get('personality_2_probability',config.PERSONALITY_2)
- config.PERSONALITY_3=personality_config.get('personality_3_probability',config.PERSONALITY_3)
+
+ # 获取配置文件版本
+ config.INNER_VERSION = cls.get_config_version(toml_dict)
- if "emoji" in toml_dict:
- emoji_config = toml_dict["emoji"]
- config.EMOJI_CHECK_INTERVAL = emoji_config.get("check_interval", config.EMOJI_CHECK_INTERVAL)
- config.EMOJI_REGISTER_INTERVAL = emoji_config.get("register_interval", config.EMOJI_REGISTER_INTERVAL)
- config.EMOJI_CHECK_PROMPT = emoji_config.get('check_prompt',config.EMOJI_CHECK_PROMPT)
- config.EMOJI_SAVE = emoji_config.get('auto_save',config.EMOJI_SAVE)
- config.EMOJI_CHECK = emoji_config.get('enable_check',config.EMOJI_CHECK)
-
- if "cq_code" in toml_dict:
- cq_code_config = toml_dict["cq_code"]
- config.ENABLE_PIC_TRANSLATE = cq_code_config.get("enable_pic_translate", config.ENABLE_PIC_TRANSLATE)
-
- # 机器人基础配置
- if "bot" in toml_dict:
- bot_config = toml_dict["bot"]
- bot_qq = bot_config.get("qq")
- config.BOT_QQ = int(bot_qq)
- config.BOT_NICKNAME = bot_config.get("nickname", config.BOT_NICKNAME)
-
- if "response" in toml_dict:
- response_config = toml_dict["response"]
- config.MODEL_R1_PROBABILITY = response_config.get("model_r1_probability", config.MODEL_R1_PROBABILITY)
- config.MODEL_V3_PROBABILITY = response_config.get("model_v3_probability", config.MODEL_V3_PROBABILITY)
- config.MODEL_R1_DISTILL_PROBABILITY = response_config.get("model_r1_distill_probability", config.MODEL_R1_DISTILL_PROBABILITY)
- config.max_response_length = response_config.get("max_response_length", config.max_response_length)
-
- # 加载模型配置
- if "model" in toml_dict:
- model_config = toml_dict["model"]
-
- if "llm_reasoning" in model_config:
- config.llm_reasoning = model_config["llm_reasoning"]
-
- if "llm_reasoning_minor" in model_config:
- config.llm_reasoning_minor = model_config["llm_reasoning_minor"]
-
- if "llm_normal" in model_config:
- config.llm_normal = model_config["llm_normal"]
-
- if "llm_normal_minor" in model_config:
- config.llm_normal_minor = model_config["llm_normal_minor"]
-
- if "llm_topic_judge" in model_config:
- config.llm_topic_judge = model_config["llm_topic_judge"]
-
- if "llm_summary_by_topic" in model_config:
- config.llm_summary_by_topic = model_config["llm_summary_by_topic"]
-
- if "llm_emotion_judge" in model_config:
- config.llm_emotion_judge = model_config["llm_emotion_judge"]
-
- if "vlm" in model_config:
- config.vlm = model_config["vlm"]
-
- if "embedding" in model_config:
- config.embedding = model_config["embedding"]
-
- if "moderation" in model_config:
- config.moderation = model_config["moderation"]
-
- # 消息配置
- if "message" in toml_dict:
- msg_config = toml_dict["message"]
- config.MIN_TEXT_LENGTH = msg_config.get("min_text_length", config.MIN_TEXT_LENGTH)
- config.MAX_CONTEXT_SIZE = msg_config.get("max_context_size", config.MAX_CONTEXT_SIZE)
- config.emoji_chance = msg_config.get("emoji_chance", config.emoji_chance)
- config.ban_words=msg_config.get("ban_words",config.ban_words)
- config.thinking_timeout = msg_config.get("thinking_timeout", config.thinking_timeout)
- config.response_willing_amplifier = msg_config.get("response_willing_amplifier", config.response_willing_amplifier)
- config.response_interested_rate_amplifier = msg_config.get("response_interested_rate_amplifier", config.response_interested_rate_amplifier)
- config.down_frequency_rate = msg_config.get("down_frequency_rate", config.down_frequency_rate)
+ # 如果在配置中找到了需要的项,调用对应项的闭包函数处理
+ for key in include_configs:
+ if key in toml_dict:
+ group_specifierset: SpecifierSet = include_configs[key]["support"]
- if "memory" in toml_dict:
- memory_config = toml_dict["memory"]
- config.build_memory_interval = memory_config.get("build_memory_interval", config.build_memory_interval)
- config.forget_memory_interval = memory_config.get("forget_memory_interval", config.forget_memory_interval)
-
- if "mood" in toml_dict:
- mood_config = toml_dict["mood"]
- config.mood_update_interval = mood_config.get("mood_update_interval", config.mood_update_interval)
- config.mood_decay_rate = mood_config.get("mood_decay_rate", config.mood_decay_rate)
- config.mood_intensity_factor = mood_config.get("mood_intensity_factor", config.mood_intensity_factor)
-
- # 群组配置
- if "groups" in toml_dict:
- groups_config = toml_dict["groups"]
- config.talk_allowed_groups = set(groups_config.get("talk_allowed", []))
- config.talk_frequency_down_groups = set(groups_config.get("talk_frequency_down", []))
- config.ban_user_id = set(groups_config.get("ban_user_id", []))
-
- if "others" in toml_dict:
- others_config = toml_dict["others"]
- config.enable_advance_output = others_config.get("enable_advance_output", config.enable_advance_output)
- config.enable_kuuki_read = others_config.get("enable_kuuki_read", config.enable_kuuki_read)
-
- logger.success(f"成功加载配置文件: {config_path}")
+ # 检查配置文件版本是否在支持范围内
+ if config.INNER_VERSION in group_specifierset:
+ # 如果版本在支持范围内,检查是否存在通知
+ if 'notice' in include_configs[key]:
+ logger.warning(include_configs[key]["notice"])
+
+ include_configs[key]["func"](toml_dict)
+
+ else:
+ # 如果版本不在支持范围内,崩溃并提示用户
+ logger.error(
+ f"配置文件中的 '{key}' 字段的版本 ({config.INNER_VERSION}) 不在支持范围内。\n"
+ f"当前程序仅支持以下版本范围: {group_specifierset}"
+ )
+ raise InvalidVersion(f"当前程序仅支持以下版本范围: {group_specifierset}")
+
+ # 如果 necessary 项目存在,而且显式声明是 False,进入特殊处理
+ elif "necessary" in include_configs[key] and include_configs[key].get("necessary") == False:
+ # 通过 pass 处理的项虽然直接忽略也是可以的,但是为了不增加理解困难,依然需要在这里显式处理
+ if key == "keywords_reaction":
+ pass
+
+ else:
+ # 如果用户根本没有需要的配置项,提示缺少配置
+ logger.error(f"配置文件中缺少必需的字段: '{key}'")
+ raise KeyError(f"配置文件中缺少必需的字段: '{key}'")
+
+ logger.success(f"成功加载配置文件: {config_path}")
return config
# 获取配置文件路径
-
bot_config_floder_path = BotConfig.get_config_dir()
print(f"正在品鉴配置文件目录: {bot_config_floder_path}")
+
bot_config_path = os.path.join(bot_config_floder_path, "bot_config.toml")
+
if os.path.exists(bot_config_path):
# 如果开发环境配置文件不存在,则使用默认配置文件
print(f"异常的新鲜,异常的美味: {bot_config_path}")
logger.info("使用bot配置文件")
else:
- logger.info("没有找到美味")
+ # 配置文件不存在
+ logger.error("配置文件不存在,请检查路径: {bot_config_path}")
+ raise FileNotFoundError(f"配置文件不存在: {bot_config_path}")
global_config = BotConfig.load_config(config_path=bot_config_path)
diff --git a/src/plugins/chat/prompt_builder.py b/src/plugins/chat/prompt_builder.py
index e337cef45..fdb887af5 100644
--- a/src/plugins/chat/prompt_builder.py
+++ b/src/plugins/chat/prompt_builder.py
@@ -114,13 +114,22 @@ class PromptBuilder:
activate_prompt = ''
activate_prompt = f"以上是群里正在进行的聊天,{memory_prompt} 现在昵称为 '{sender_name}' 的用户说的:{message_txt}。引起了你的注意,你和他{relation_prompt},{mood_prompt},你想要{relation_prompt_2}。"
- #检测机器人相关词汇
- bot_keywords = ['人机', 'bot', '机器', '入机', 'robot', '机器人']
- is_bot = any(keyword in message_txt.lower() for keyword in bot_keywords)
- if is_bot:
- is_bot_prompt = '有人说你是人机或者机器人,否定这一事实,攻击或反问他。注意,只有认为你是机器人才回复,否则不要否认'
- else:
- is_bot_prompt = ''
+ #检测机器人相关词汇,改为关键词检测与反应功能了,提取到全局配置中
+ # bot_keywords = ['人机', 'bot', '机器', '入机', 'robot', '机器人']
+ # is_bot = any(keyword in message_txt.lower() for keyword in bot_keywords)
+ # if is_bot:
+ # is_bot_prompt = '有人说你是人机或者机器人,否定这一事实,攻击或反问他。注意,只有认为你是机器人才回复,否则不要否认'
+ # else:
+ # is_bot_prompt = ''
+
+ # 关键词检测与反应
+ keywords_reaction_prompt = ''
+ for rule in global_config.keywords_reaction_rules:
+ if rule.get("enable", False):
+ if any(keyword in message_txt.lower() for keyword in rule.get("keywords", [])):
+ print(f"检测到以下关键词之一:{rule.get('keywords', [])},触发反应:{rule.get('reaction', '')}")
+ keywords_reaction_prompt += rule.get("reaction", "") + ','
+
#人格选择
personality=global_config.PROMPT_PERSONALITY
@@ -131,15 +140,15 @@ class PromptBuilder:
personality_choice = random.random()
if personality_choice < probability_1: # 第一种人格
prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[0]}, 你正在浏览qq群,{promt_info_prompt},
- 现在请你给出日常且口语化的回复,平淡一些,尽量简短一些。{is_bot_prompt}
+ 现在请你给出日常且口语化的回复,平淡一些,尽量简短一些。{keywords_reaction_prompt}
请注意把握群里的聊天内容,不要刻意突出自身学科背景,不要回复的太有条理,可以有个性。'''
elif personality_choice < probability_1 + probability_2: # 第二种人格
prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[1]}, 你正在浏览qq群,{promt_info_prompt},
- 现在请你给出日常且口语化的回复,请表现你自己的见解,不要一昧迎合,尽量简短一些。{is_bot_prompt}
+ 现在请你给出日常且口语化的回复,请表现你自己的见解,不要一昧迎合,尽量简短一些。{keywords_reaction_prompt}
请你表达自己的见解和观点。可以有个性。'''
else: # 第三种人格
prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[2]}, 你正在浏览qq群,{promt_info_prompt},
- 现在请你给出日常且口语化的回复,请表现你自己的见解,不要一昧迎合,尽量简短一些。{is_bot_prompt}
+ 现在请你给出日常且口语化的回复,请表现你自己的见解,不要一昧迎合,尽量简短一些。{keywords_reaction_prompt}
请你表达自己的见解和观点。可以有个性。'''
#中文高手(新加的好玩功能)
diff --git a/src/plugins/chat/utils.py b/src/plugins/chat/utils.py
index b2583e86f..d166bcd27 100644
--- a/src/plugins/chat/utils.py
+++ b/src/plugins/chat/utils.py
@@ -12,6 +12,7 @@ from ..models.utils_model import LLM_request
from ..utils.typo_generator import ChineseTypoGenerator
from .config import global_config
from .message import Message
+from ..moods.moods import MoodManager
driver = get_driver()
config = driver.config
@@ -326,40 +327,68 @@ def random_remove_punctuation(text: str) -> str:
def process_llm_response(text: str) -> List[str]:
# processed_response = process_text_with_typos(content)
- if len(text) > 300:
+ if len(text) > 200:
print(f"回复过长 ({len(text)} 字符),返回默认回复")
return ['懒得说']
# 处理长消息
typo_generator = ChineseTypoGenerator(
- error_rate=0.03,
- min_freq=7,
- tone_error_rate=0.2,
- word_replace_rate=0.02
+ error_rate=global_config.chinese_typo_error_rate,
+ min_freq=global_config.chinese_typo_min_freq,
+ tone_error_rate=global_config.chinese_typo_tone_error_rate,
+ word_replace_rate=global_config.chinese_typo_word_replace_rate
)
- typoed_text = typo_generator.create_typo_sentence(text)[0]
- sentences = split_into_sentences_w_remove_punctuation(typoed_text)
+ split_sentences = split_into_sentences_w_remove_punctuation(text)
+ sentences = []
+ for sentence in split_sentences:
+ if global_config.chinese_typo_enable:
+ typoed_text, typo_corrections = typo_generator.create_typo_sentence(sentence)
+ sentences.append(typoed_text)
+ if typo_corrections:
+ sentences.append(typo_corrections)
+ else:
+ sentences.append(sentence)
# 检查分割后的消息数量是否过多(超过3条)
- if len(sentences) > 4:
+
+ if len(sentences) > 5:
print(f"分割后消息数量过多 ({len(sentences)} 条),返回默认回复")
return [f'{global_config.BOT_NICKNAME}不知道哦']
return sentences
-def calculate_typing_time(input_string: str, chinese_time: float = 0.2, english_time: float = 0.1) -> float:
+def calculate_typing_time(input_string: str, chinese_time: float = 0.4, english_time: float = 0.2) -> float:
"""
计算输入字符串所需的时间,中文和英文字符有不同的输入时间
input_string (str): 输入的字符串
- chinese_time (float): 中文字符的输入时间,默认为0.3秒
- english_time (float): 英文字符的输入时间,默认为0.15秒
+ chinese_time (float): 中文字符的输入时间,默认为0.2秒
+ english_time (float): 英文字符的输入时间,默认为0.1秒
+
+ 特殊情况:
+ - 如果只有一个中文字符,将使用3倍的中文输入时间
+ - 在所有输入结束后,额外加上回车时间0.3秒
"""
+ mood_manager = MoodManager.get_instance()
+ # 将0-1的唤醒度映射到-1到1
+ mood_arousal = mood_manager.current_mood.arousal
+ # 映射到0.5到2倍的速度系数
+ typing_speed_multiplier = 1.5 ** mood_arousal # 唤醒度为1时速度翻倍,为-1时速度减半
+ chinese_time *= 1/typing_speed_multiplier
+ english_time *= 1/typing_speed_multiplier
+ # 计算中文字符数
+ chinese_chars = sum(1 for char in input_string if '\u4e00' <= char <= '\u9fff')
+
+ # 如果只有一个中文字符,使用3倍时间
+ if chinese_chars == 1 and len(input_string.strip()) == 1:
+ return chinese_time * 3 + 0.3 # 加上回车时间
+
+ # 正常计算所有字符的输入时间
total_time = 0.0
for char in input_string:
if '\u4e00' <= char <= '\u9fff': # 判断是否为中文字符
total_time += chinese_time
else: # 其他字符(如英文)
total_time += english_time
- return total_time
+ return total_time + 0.3 # 加上回车时间
def cosine_similarity(v1, v2):
diff --git a/src/plugins/knowledege/knowledge_library.py b/src/plugins/knowledege/knowledge_library.py
index d2408e24f..481076961 100644
--- a/src/plugins/knowledege/knowledge_library.py
+++ b/src/plugins/knowledege/knowledge_library.py
@@ -19,7 +19,7 @@ from src.common.database import Database
# 从环境变量获取配置
Database.initialize(
- host=os.getenv("MONGODB_HOST", "localhost"),
+ host=os.getenv("MONGODB_HOST", "127.0.0.1"),
port=int(os.getenv("MONGODB_PORT", "27017")),
db_name=os.getenv("DATABASE_NAME", "maimai"),
username=os.getenv("MONGODB_USERNAME"),
diff --git a/src/plugins/models/utils_model.py b/src/plugins/models/utils_model.py
index c70c26ff9..e890b4c80 100644
--- a/src/plugins/models/utils_model.py
+++ b/src/plugins/models/utils_model.py
@@ -23,6 +23,7 @@ class LLM_request:
self.api_key = getattr(config, model["key"])
self.base_url = getattr(config, model["base_url"])
except AttributeError as e:
+ logger.error(f"原始 model dict 信息:{model}")
logger.error(f"配置错误:找不到对应的配置项 - {str(e)}")
raise ValueError(f"配置错误:找不到对应的配置项 - {str(e)}") from e
self.model_name = model["name"]
@@ -181,6 +182,13 @@ class LLM_request:
continue
elif response.status in policy["abort_codes"]:
logger.error(f"错误码: {response.status} - {error_code_mapping.get(response.status)}")
+ if response.status == 403 :
+ if global_config.llm_normal == "Pro/deepseek-ai/DeepSeek-V3":
+ logger.error("可能是没有给硅基流动充钱,普通模型自动退化至非Pro模型,反应速度可能会变慢")
+ global_config.llm_normal = "deepseek-ai/DeepSeek-V3"
+ if global_config.llm_reasoning == "Pro/deepseek-ai/DeepSeek-R1":
+ logger.error("可能是没有给硅基流动充钱,推理模型自动退化至非Pro模型,反应速度可能会变慢")
+ global_config.llm_reasoning = "deepseek-ai/DeepSeek-R1"
raise RuntimeError(f"请求被拒绝: {error_code_mapping.get(response.status)}")
response.raise_for_status()
diff --git a/src/plugins/moods/moods.py b/src/plugins/moods/moods.py
index 32b900b0b..c35779f84 100644
--- a/src/plugins/moods/moods.py
+++ b/src/plugins/moods/moods.py
@@ -51,11 +51,11 @@ class MoodManager:
# 情绪词映射表 (valence, arousal)
self.emotion_map = {
'happy': (0.8, 0.6), # 高愉悦度,中等唤醒度
- 'angry': (-0.7, 0.8), # 负愉悦度,高唤醒度
+ 'angry': (-0.7, 0.7), # 负愉悦度,高唤醒度
'sad': (-0.6, 0.3), # 负愉悦度,低唤醒度
- 'surprised': (0.4, 0.9), # 中等愉悦度,高唤醒度
+ 'surprised': (0.4, 0.8), # 中等愉悦度,高唤醒度
'disgusted': (-0.8, 0.5), # 高负愉悦度,中等唤醒度
- 'fearful': (-0.7, 0.7), # 负愉悦度,高唤醒度
+ 'fearful': (-0.7, 0.6), # 负愉悦度,高唤醒度
'neutral': (0.0, 0.5), # 中性愉悦度,中等唤醒度
}
@@ -64,15 +64,20 @@ class MoodManager:
# 第一象限:高唤醒,正愉悦
(0.5, 0.7): "兴奋",
(0.3, 0.8): "快乐",
+ (0.2, 0.65): "满足",
# 第二象限:高唤醒,负愉悦
(-0.5, 0.7): "愤怒",
(-0.3, 0.8): "焦虑",
+ (-0.2, 0.65): "烦躁",
# 第三象限:低唤醒,负愉悦
(-0.5, 0.3): "悲伤",
- (-0.3, 0.2): "疲倦",
+ (-0.3, 0.35): "疲倦",
+ (-0.4, 0.15): "疲倦",
# 第四象限:低唤醒,正愉悦
- (0.5, 0.3): "放松",
- (0.3, 0.2): "平静"
+ (0.2, 0.45): "平静",
+ (0.3, 0.4): "安宁",
+ (0.5, 0.3): "放松"
+
}
@classmethod
@@ -119,9 +124,13 @@ class MoodManager:
current_time = time.time()
time_diff = current_time - self.last_update
- # 应用衰减公式
- self.current_mood.valence *= math.pow(1 - self.decay_rate_valence, time_diff)
- self.current_mood.arousal *= math.pow(1 - self.decay_rate_arousal, time_diff)
+ # Valence 向中性(0)回归
+ valence_target = 0.0
+ self.current_mood.valence = valence_target + (self.current_mood.valence - valence_target) * math.exp(-self.decay_rate_valence * time_diff)
+
+ # Arousal 向中性(0.5)回归
+ arousal_target = 0.5
+ self.current_mood.arousal = arousal_target + (self.current_mood.arousal - arousal_target) * math.exp(-self.decay_rate_arousal * time_diff)
# 确保值在合理范围内
self.current_mood.valence = max(-1.0, min(1.0, self.current_mood.valence))
diff --git a/src/plugins/utils/typo_generator.py b/src/plugins/utils/typo_generator.py
index c743ec6ec..aa72c387f 100644
--- a/src/plugins/utils/typo_generator.py
+++ b/src/plugins/utils/typo_generator.py
@@ -284,10 +284,13 @@ class ChineseTypoGenerator:
返回:
typo_sentence: 包含错别字的句子
- typo_info: 错别字信息列表
+ correction_suggestion: 随机选择的一个纠正建议,返回正确的字/词
"""
result = []
typo_info = []
+ word_typos = [] # 记录词语错误对(错词,正确词)
+ char_typos = [] # 记录单字错误对(错字,正确字)
+ current_pos = 0
# 分词
words = self._segment_sentence(sentence)
@@ -296,6 +299,7 @@ class ChineseTypoGenerator:
# 如果是标点符号或空格,直接添加
if all(not self._is_chinese_char(c) for c in word):
result.append(word)
+ current_pos += len(word)
continue
# 获取词语的拼音
@@ -316,6 +320,8 @@ class ChineseTypoGenerator:
' '.join(word_pinyin),
' '.join(self._get_word_pinyin(typo_word)),
orig_freq, typo_freq))
+ word_typos.append((typo_word, word)) # 记录(错词,正确词)对
+ current_pos += len(typo_word)
continue
# 如果不进行整词替换,则进行单字替换
@@ -333,11 +339,15 @@ class ChineseTypoGenerator:
result.append(typo_char)
typo_py = pinyin(typo_char, style=Style.TONE3)[0][0]
typo_info.append((char, typo_char, py, typo_py, orig_freq, typo_freq))
+ char_typos.append((typo_char, char)) # 记录(错字,正确字)对
+ current_pos += 1
continue
result.append(char)
+ current_pos += 1
else:
# 处理多字词的单字替换
word_result = []
+ word_start_pos = current_pos
for i, (char, py) in enumerate(zip(word, word_pinyin)):
# 词中的字替换概率降低
word_error_rate = self.error_rate * (0.7 ** (len(word) - 1))
@@ -353,11 +363,24 @@ class ChineseTypoGenerator:
word_result.append(typo_char)
typo_py = pinyin(typo_char, style=Style.TONE3)[0][0]
typo_info.append((char, typo_char, py, typo_py, orig_freq, typo_freq))
+ char_typos.append((typo_char, char)) # 记录(错字,正确字)对
continue
word_result.append(char)
result.append(''.join(word_result))
+ current_pos += len(word)
- return ''.join(result), typo_info
+ # 优先从词语错误中选择,如果没有则从单字错误中选择
+ correction_suggestion = None
+ # 50%概率返回纠正建议
+ if random.random() < 0.5:
+ if word_typos:
+ wrong_word, correct_word = random.choice(word_typos)
+ correction_suggestion = correct_word
+ elif char_typos:
+ wrong_char, correct_char = random.choice(char_typos)
+ correction_suggestion = correct_char
+
+ return ''.join(result), correction_suggestion
def format_typo_info(self, typo_info):
"""
@@ -419,16 +442,16 @@ def main():
# 创建包含错别字的句子
start_time = time.time()
- typo_sentence, typo_info = typo_generator.create_typo_sentence(sentence)
+ typo_sentence, correction_suggestion = typo_generator.create_typo_sentence(sentence)
# 打印结果
print("\n原句:", sentence)
print("错字版:", typo_sentence)
- # 打印错别字信息
- if typo_info:
- print("\n错别字信息:")
- print(typo_generator.format_typo_info(typo_info))
+ # 打印纠正建议
+ if correction_suggestion:
+ print("\n随机纠正建议:")
+ print(f"应该改为:{correction_suggestion}")
# 计算并打印总耗时
end_time = time.time()
diff --git a/template/bot_config_template.toml b/template/bot_config_template.toml
index 6584bc4d7..d7c66d3f4 100644
--- a/template/bot_config_template.toml
+++ b/template/bot_config_template.toml
@@ -1,3 +1,6 @@
+[inner]
+version = "0.0.3"
+
[bot]
qq = 123
nickname = "麦麦"
@@ -51,6 +54,26 @@ mood_update_interval = 1.0 # 情绪更新间隔 单位秒
mood_decay_rate = 0.95 # 情绪衰减率
mood_intensity_factor = 1.0 # 情绪强度因子
+[keywords_reaction] # 针对某个关键词作出反应
+enable = true # 关键词反应功能的总开关
+
+[[keywords_reaction.rules]] # 如果想要新增多个关键词,直接复制本条,修改keywords和reaction即可
+enable = true # 是否启用此条(为了人类在未来AI战争能更好地识别AI(bushi),默认开启)
+keywords = ["人机", "bot", "机器", "入机", "robot", "机器人"] # 会触发反应的关键词
+reaction = "有人说你是人机或者机器人,否定这一事实,攻击或反问他。注意,只有认为你是机器人才回复,否则不要否认" # 触发之后添加的提示词
+
+[[keywords_reaction.rules]] # 就像这样复制
+enable = false # 仅作示例,不会触发
+keywords = ["测试关键词回复","test",""]
+reaction = "回答“测试成功”"
+
+[chinese_typo]
+enable = true # 是否启用中文错别字生成器
+error_rate=0.03 # 单字替换概率
+min_freq=7 # 最小字频阈值
+tone_error_rate=0.2 # 声调错误概率
+word_replace_rate=0.02 # 整词替换概率
+
[others]
enable_advance_output = true # 是否启用高级输出
enable_kuuki_read = true # 是否启用读空气功能
@@ -80,49 +103,42 @@ ban_user_id = [] #禁止回复消息的QQ号
[model.llm_reasoning] #回复模型1 主要回复模型
name = "Pro/deepseek-ai/DeepSeek-R1"
-base_url = "SILICONFLOW_BASE_URL"
-key = "SILICONFLOW_KEY"
+provider = "SILICONFLOW"
pri_in = 0 #模型的输入价格(非必填,可以记录消耗)
pri_out = 0 #模型的输出价格(非必填,可以记录消耗)
+
[model.llm_reasoning_minor] #回复模型3 次要回复模型
name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
-base_url = "SILICONFLOW_BASE_URL"
-key = "SILICONFLOW_KEY"
+provider = "SILICONFLOW"
#非推理模型
[model.llm_normal] #V3 回复模型2 次要回复模型
name = "Pro/deepseek-ai/DeepSeek-V3"
-base_url = "SILICONFLOW_BASE_URL"
-key = "SILICONFLOW_KEY"
+provider = "SILICONFLOW"
[model.llm_normal_minor] #V2.5
name = "deepseek-ai/DeepSeek-V2.5"
-base_url = "SILICONFLOW_BASE_URL"
-key = "SILICONFLOW_KEY"
+provider = "SILICONFLOW"
[model.llm_emotion_judge] #主题判断 0.7/m
name = "Qwen/Qwen2.5-14B-Instruct"
-base_url = "SILICONFLOW_BASE_URL"
-key = "SILICONFLOW_KEY"
+provider = "SILICONFLOW"
[model.llm_topic_judge] #主题判断:建议使用qwen2.5 7b
name = "Pro/Qwen/Qwen2.5-7B-Instruct"
-base_url = "SILICONFLOW_BASE_URL"
-key = "SILICONFLOW_KEY"
+provider = "SILICONFLOW"
[model.llm_summary_by_topic] #建议使用qwen2.5 32b 及以上
name = "Qwen/Qwen2.5-32B-Instruct"
-base_url = "SILICONFLOW_BASE_URL"
-key = "SILICONFLOW_KEY"
+provider = "SILICONFLOW"
pri_in = 0
pri_out = 0
[model.moderation] #内容审核 未启用
name = ""
-base_url = "SILICONFLOW_BASE_URL"
-key = "SILICONFLOW_KEY"
+provider = "SILICONFLOW"
pri_in = 0
pri_out = 0
@@ -130,8 +146,7 @@ pri_out = 0
[model.vlm] #图像识别 0.35/m
name = "Pro/Qwen/Qwen2-VL-7B-Instruct"
-base_url = "SILICONFLOW_BASE_URL"
-key = "SILICONFLOW_KEY"
+provider = "SILICONFLOW"
@@ -139,5 +154,4 @@ key = "SILICONFLOW_KEY"
[model.embedding] #嵌入
name = "BAAI/bge-m3"
-base_url = "SILICONFLOW_BASE_URL"
-key = "SILICONFLOW_KEY"
+provider = "SILICONFLOW"