feat:重构的关系构建,关系处理器,更加精准

This commit is contained in:
SengokuCola
2025-06-08 00:00:54 +08:00
parent c6ffad2a84
commit 4d20ee0c72
10 changed files with 767 additions and 199 deletions

View File

@@ -29,13 +29,13 @@ def init_prompt() -> None:
4. 思考有没有特殊的梗,一并总结成语言风格
5. 例子仅供参考,请严格根据群聊内容总结!!!
注意:总结成如下格式的规律,总结的内容要详细,但具有概括性:
"xxx"时,可以"xxx", xxx不超过10个字
"xxxxxx"时,可以"xxxxxx", xxxxxx不超过20个字
例如:
"表示十分惊叹,有些意外"时,使用"我嘞个xxxx"
"对某件事表示十分惊叹,有些意外"时,使用"我嘞个xxxx"
"表示讽刺的赞同,不想讲道理"时,使用"对对对"
"想说明某个观点,但懒得明说,或者不便明说",使用"懂的都懂"
"表示意外的夸赞,略带戏谑意味"时,使用"这么强!"
"想说明某个具体的事实观点,但懒得明说,或者不便明说,或表达一种默契",使用"懂的都懂"
"当涉及游戏相关时,表示意外的夸赞,略带戏谑意味"时,使用"这么强!"
注意不要总结你自己SELF的发言
现在请你概括

View File

@@ -13,27 +13,39 @@ from typing import List, Optional
from typing import Dict
from src.chat.focus_chat.info.info_base import InfoBase
from src.chat.focus_chat.info.relation_info import RelationInfo
from json_repair import repair_json
from src.person_info.person_info import person_info_manager
import json
logger = get_logger("processor")
def init_prompt():
relationship_prompt = """
{name_block}
你和别人的关系信息是,请从这些信息中提取出你和别人的关系的原文:
{relation_prompt}
请只从上面这些信息中提取出内容。
<聊天记录>
{chat_observe_info}
</聊天记录>
现在请你根据现有的信息,总结你和群里的人的关系
1. 根据聊天记录的需要,精简你和其他人的关系并输出
2. 根据聊天记录,如果需要提及你和某个人的关系,请输出你和这个人之间的关系
3. 如果没有特别需要提及的关系,就不用输出这个人的关系
<人物信息>
{relation_prompt}
</人物信息>
输出内容平淡一些,说中文
请注意不要输出多余内容(包括前后缀,括号()表情包at或 @等 )。只输出关系内容,记得明确说明这是你的关系。
请区分聊天记录的内容和你之前对人的了解,聊天记录是现在发生的事情,人物信息是之前对某个人的持久的了解
{name_block}
现在请你总结提取某人的信息,提取成一串文本
1. 根据聊天记录的需求,如果需要你和某个人的信息,请输出你和这个人之间精简的信息
2. 如果没有特别需要提及的信息,就不用输出这个人的信息
3. 如果有人问你对他的看法或者关系,请输出你和这个人之间的信息
请从这些信息中提取出你对某人的了解信息,信息提取成一串文本:
请严格按照以下输出格式不要输出多余内容person_name可以有多个
{{
"person_name": "信息",
"person_name2": "信息",
"person_name3": "信息",
}}
"""
Prompt(relationship_prompt, "relationship_prompt")
@@ -122,8 +134,10 @@ class RelationshipProcessor(BaseProcessor):
relation_prompt_init = "你对对方的印象是:\n"
relation_prompt = ""
person_name_list = []
for person in person_list:
relation_prompt += f"{await relationship_manager.build_relationship_info(person, is_id=True)}\n"
relation_prompt += f"{await relationship_manager.build_relationship_info(person, is_id=True)}\n\n"
person_name_list.append(await person_info_manager.get_value(person, "person_name"))
if relation_prompt:
relation_prompt = relation_prompt_init + relation_prompt
@@ -141,22 +155,41 @@ class RelationshipProcessor(BaseProcessor):
content = ""
try:
logger.info(f"{self.log_prefix} 关系识别prompt: \n{prompt}\n")
content, _ = await self.llm_model.generate_response_async(prompt=prompt)
if not content:
logger.warning(f"{self.log_prefix} LLM返回空结果关系识别失败。")
print(f"content: {content}")
content = repair_json(content)
content = json.loads(content)
person_info_str = ""
for person_name, person_info in content.items():
# print(f"person_name: {person_name}, person_info: {person_info}")
# print(f"person_list: {person_name_list}")
if person_name not in person_name_list:
continue
person_str = f"你对 {person_name} 的了解:{person_info}\n"
person_info_str += person_str
except Exception as e:
# 处理总体异常
logger.error(f"{self.log_prefix} 执行LLM请求或处理响应时出错: {e}")
logger.error(traceback.format_exc())
content = "关系识别过程中出现错误"
person_info_str = "关系识别过程中出现错误"
if person_info_str == "None":
person_info_str = ""
if content == "None":
content = ""
# 记录初步思考结果
logger.info(f"{self.log_prefix} 关系识别prompt: \n{prompt}\n")
logger.info(f"{self.log_prefix} 关系识别: {content}")
return content
logger.info(f"{self.log_prefix} 关系识别: {person_info_str}")
return person_info_str
init_prompt()

View File

@@ -31,8 +31,6 @@ def init_prompt():
{self_info_block}
请记住你的性格,身份和特点。
{relation_info_block}
{extra_info_block}
{memory_str}
@@ -42,6 +40,8 @@ def init_prompt():
{chat_content_block}
{relation_info_block}
{cycle_info_block}
{moderation_prompt}
@@ -181,7 +181,7 @@ class ActionPlanner(BasePlanner):
prompt = f"{prompt}"
llm_content, (reasoning_content, _) = await self.planner_llm.generate_response_async(prompt=prompt)
logger.info(f"{self.log_prefix}规划器原始提示词: {prompt}")
logger.debug(f"{self.log_prefix}规划器原始提示词: {prompt}")
logger.info(f"{self.log_prefix}规划器原始响应: {llm_content}")
logger.info(f"{self.log_prefix}规划器推理: {reasoning_content}")
@@ -226,6 +226,9 @@ class ActionPlanner(BasePlanner):
action_data["extra_info_block"] = extra_info_block
if relation_info:
action_data["relation_info_block"] = relation_info
# 对于reply动作不需要额外处理因为相关字段已经在上面的循环中添加到action_data
if extracted_action not in current_available_actions:

View File

@@ -41,6 +41,8 @@ def init_prompt():
你现在正在群里聊天,以下是群里正在进行的聊天内容:
{chat_info}
{relation_info_block}
以上是聊天内容,你需要了解聊天记录中的内容
{chat_target}
@@ -262,6 +264,7 @@ class DefaultReplyer:
target_message = action_data.get("target", "")
identity = action_data.get("identity", "")
extra_info_block = action_data.get("extra_info_block", "")
relation_info_block = action_data.get("relation_info_block", "")
# 3. 构建 Prompt
with Timer("构建Prompt", {}): # 内部计时器,可选保留
@@ -270,6 +273,7 @@ class DefaultReplyer:
# in_mind_reply=in_mind_reply,
identity=identity,
extra_info_block=extra_info_block,
relation_info_block=relation_info_block,
reason=reason,
sender_name=sender_name_for_prompt, # Pass determined name
target_message=target_message,
@@ -286,8 +290,7 @@ class DefaultReplyer:
try:
with Timer("LLM生成", {}): # 内部计时器,可选保留
# TODO: API-Adapter修改标记
# logger.info(f"{self.log_prefix}[Replier-{thinking_id}]\nPrompt:\n{prompt}\n")
logger.info(f"{self.log_prefix}Prompt:\n{prompt}\n")
content, (reasoning_content, model_name) = await self.express_model.generate_response_async(prompt)
# logger.info(f"prompt: {prompt}")
@@ -331,6 +334,7 @@ class DefaultReplyer:
sender_name,
# in_mind_reply,
extra_info_block,
relation_info_block,
identity,
target_message,
config_expression_style,
@@ -428,6 +432,7 @@ class DefaultReplyer:
chat_target=chat_target_1,
chat_info=chat_talking_prompt,
extra_info_block=extra_info_block,
relation_info_block=relation_info_block,
time_block=time_block,
# bot_name=global_config.bot.nickname,
# prompt_personality="",
@@ -448,6 +453,7 @@ class DefaultReplyer:
chat_target=chat_target_1,
chat_info=chat_talking_prompt,
extra_info_block=extra_info_block,
relation_info_block=relation_info_block,
time_block=time_block,
# bot_name=global_config.bot.nickname,
# prompt_personality="",

View File

@@ -0,0 +1,70 @@
import os
import sys
# 添加项目根目录到Python路径
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.dirname(os.path.dirname(current_dir))
sys.path.append(project_root)
from loguru import logger
import json
from src.common.database.database_model import PersonInfo
def fix_points_format():
"""修复数据库中的points和forgotten_points格式"""
fixed_count = 0
error_count = 0
try:
# 获取所有用户
all_persons = PersonInfo.select()
for person in all_persons:
try:
# 修复points
if person.points:
try:
# 尝试解析JSON
points_data = json.loads(person.points)
except json.JSONDecodeError:
logger.error(f"无法解析points数据: {person.points}")
points_data = []
# 确保数据是列表格式
if not isinstance(points_data, list):
points_data = []
# 直接更新数据库
person.points = json.dumps(points_data, ensure_ascii=False)
person.save()
fixed_count += 1
# 修复forgotten_points
if person.forgotten_points:
try:
# 尝试解析JSON
forgotten_data = json.loads(person.forgotten_points)
except json.JSONDecodeError:
logger.error(f"无法解析forgotten_points数据: {person.forgotten_points}")
forgotten_data = []
# 确保数据是列表格式
if not isinstance(forgotten_data, list):
forgotten_data = []
# 直接更新数据库
person.forgotten_points = json.dumps(forgotten_data, ensure_ascii=False)
person.save()
fixed_count += 1
except Exception as e:
logger.error(f"处理用户 {person.person_id} 时出错: {str(e)}")
error_count += 1
continue
logger.info(f"修复完成!成功修复 {fixed_count} 条记录,失败 {error_count} 条记录")
except Exception as e:
logger.error(f"数据库操作出错: {str(e)}")
if __name__ == "__main__":
fix_points_format()

View File

@@ -8,7 +8,6 @@ import datetime
import asyncio
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
from src.individuality.individuality import individuality
import json # 新增导入
from json_repair import repair_json
@@ -29,7 +28,7 @@ PersonInfoManager 类方法功能摘要:
logger = get_logger("person_info")
JSON_SERIALIZED_FIELDS = ["hobby", "hates", "meme", "relationship_others", "interaction"]
JSON_SERIALIZED_FIELDS = ["points", "forgotten_points"]
person_info_default = {
"person_id": None,
@@ -169,9 +168,9 @@ class PersonInfoManager:
processed_value = value
if field_name in JSON_SERIALIZED_FIELDS:
if isinstance(value, (list, dict)):
processed_value = json.dumps(value, ensure_ascii=False)
processed_value = json.dumps(value, ensure_ascii=False, indent=None)
elif value is None: # Store None as "[]" for JSON list fields
processed_value = json.dumps([], ensure_ascii=False)
processed_value = json.dumps([], ensure_ascii=False, indent=None)
# If value is already a string, assume it's pre-serialized or a non-JSON string.
def _db_update_sync(p_id: str, f_name: str, val_to_set):
@@ -280,7 +279,7 @@ class PersonInfoManager:
while current_try < max_retries:
# prompt_personality = individuality.get_prompt(x_person=2, level=1)
bot_name = individuality.personality.bot_nickname
bot_name = global_config.bot.nickname
qv_name_prompt = f"你是{bot_name}一个伪装成人类的AI你不能让别人发现这一点"
qv_name_prompt += f"现在你想给一个用户取一个昵称用户的qq昵称是{user_nickname}"

View File

@@ -134,7 +134,7 @@ class RelationshipManager:
except (SyntaxError, ValueError):
points = []
random_points = random.sample(points, min(3, len(points))) if points else []
random_points = random.sample(points, min(5, len(points))) if points else []
nickname_str = await person_info_manager.get_value(person_id, "nickname")
platform = await person_info_manager.get_value(person_id, "platform")
@@ -312,13 +312,14 @@ class RelationshipManager:
current_points = await person_info_manager.get_value(person_id, "points") or []
if isinstance(current_points, str):
try:
current_points = ast.literal_eval(current_points)
except (SyntaxError, ValueError):
current_points = json.loads(current_points)
except json.JSONDecodeError:
logger.error(f"解析points JSON失败: {current_points}")
current_points = []
elif not isinstance(current_points, list):
current_points = []
current_points.extend(points_list)
await person_info_manager.update_one_field(person_id, "points", str(current_points).replace("(", "[").replace(")", "]"))
await person_info_manager.update_one_field(person_id, "points", json.dumps(current_points, ensure_ascii=False, indent=None))
# 将新记录添加到现有记录中
if isinstance(current_points, list):
@@ -365,8 +366,9 @@ class RelationshipManager:
forgotten_points = await person_info_manager.get_value(person_id, "forgotten_points") or []
if isinstance(forgotten_points, str):
try:
forgotten_points = ast.literal_eval(forgotten_points)
except (SyntaxError, ValueError):
forgotten_points = json.loads(forgotten_points)
except json.JSONDecodeError:
logger.error(f"解析forgotten_points JSON失败: {forgotten_points}")
forgotten_points = []
elif not isinstance(forgotten_points, list):
forgotten_points = []
@@ -487,10 +489,12 @@ class RelationshipManager:
return
# 更新数据库
await person_info_manager.update_one_field(person_id, "forgotten_points", str(forgotten_points).replace("(", "[").replace(")", "]"))
await person_info_manager.update_one_field(person_id, "forgotten_points", json.dumps(forgotten_points, ensure_ascii=False, indent=None))
# 更新数据库
await person_info_manager.update_one_field(person_id, "points", str(current_points).replace("(", "[").replace(")", "]"))
await person_info_manager.update_one_field(person_id, "points", json.dumps(current_points, ensure_ascii=False, indent=None))
know_times = await person_info_manager.get_value(person_id, "know_times") or 0
await person_info_manager.update_one_field(person_id, "know_times", know_times + 1)
await person_info_manager.update_one_field(person_id, "last_know", timestamp)

View File

@@ -0,0 +1,609 @@
import os
import sys
import asyncio
import random
import time
import traceback
from typing import List, Dict, Any, Tuple, Optional
from datetime import datetime
# 添加项目根目录到Python路径
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.dirname(current_dir)
sys.path.append(project_root)
from src.common.message_repository import find_messages
from src.common.database.database_model import ActionRecords, ChatStreams
from src.config.config import global_config
from src.person_info.person_info import person_info_manager
from src.chat.utils.utils import translate_timestamp_to_human_readable
from src.chat.heart_flow.observation.observation import Observation
from src.llm_models.utils_model import LLMRequest
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.person_info.relationship_manager import relationship_manager
from src.common.logger_manager import get_logger
from src.chat.focus_chat.info.info_base import InfoBase
from src.chat.focus_chat.info.relation_info import RelationInfo
logger = get_logger("processor")
async def get_person_id_list(messages: List[Dict[str, Any]]) -> List[str]:
"""
从消息列表中提取不重复的 person_id 列表 (忽略机器人自身)。
Args:
messages: 消息字典列表。
Returns:
一个包含唯一 person_id 的列表。
"""
person_ids_set = set() # 使用集合来自动去重
for msg in messages:
platform = msg.get("user_platform")
user_id = msg.get("user_id")
# 检查必要信息是否存在 且 不是机器人自己
if not all([platform, user_id]) or user_id == global_config.bot.qq_account:
continue
person_id = person_info_manager.get_person_id(platform, user_id)
# 只有当获取到有效 person_id 时才添加
if person_id:
person_ids_set.add(person_id)
return list(person_ids_set) # 将集合转换为列表返回
class ChattingObservation(Observation):
def __init__(self, chat_id):
super().__init__(chat_id)
self.chat_id = chat_id
self.platform = "qq"
# 从数据库获取聊天类型和目标信息
chat_info = ChatStreams.select().where(ChatStreams.stream_id == chat_id).first()
self.is_group_chat = True
self.chat_target_info = {
"person_name": chat_info.group_name if chat_info else None,
"user_nickname": chat_info.group_name if chat_info else None
}
# 初始化其他属性
self.talking_message = []
self.talking_message_str = ""
self.talking_message_str_truncate = ""
self.name = global_config.bot.nickname
self.nick_name = global_config.bot.alias_names
self.max_now_obs_len = global_config.focus_chat.observation_context_size
self.overlap_len = global_config.focus_chat.compressed_length
self.mid_memories = []
self.max_mid_memory_len = global_config.focus_chat.compress_length_limit
self.mid_memory_info = ""
self.person_list = []
self.oldest_messages = []
self.oldest_messages_str = ""
self.compressor_prompt = ""
self.last_observe_time = 0
def get_observe_info(self, ids=None):
"""获取观察信息"""
return self.talking_message_str
def init_prompt():
relationship_prompt = """
<聊天记录>
{chat_observe_info}
</聊天记录>
<人物信息>
{relation_prompt}
</人物信息>
请区分聊天记录的内容和你之前对人的了解,聊天记录是现在发生的事情,人物信息是之前对某个人的持久的了解。
{name_block}
现在请你总结提取某人的信息,提取成一串文本
1. 根据聊天记录的需求,如果需要你和某个人的信息,请输出你和这个人之间精简的信息
2. 如果没有特别需要提及的信息,就不用输出这个人的信息
3. 如果有人问你对他的看法或者关系,请输出你和这个人之间的信息
请从这些信息中提取出你对某人的了解信息,信息提取成一串文本:
请严格按照以下输出格式不要输出多余内容person_name可以有多个
{{
"person_name": "信息",
"person_name2": "信息",
"person_name3": "信息",
}}
"""
Prompt(relationship_prompt, "relationship_prompt")
class RelationshipProcessor:
log_prefix = "关系"
def __init__(self, subheartflow_id: str):
self.subheartflow_id = subheartflow_id
self.llm_model = LLMRequest(
model=global_config.model.relation,
max_tokens=800,
request_type="relation",
)
# 直接从数据库获取名称
chat_info = ChatStreams.select().where(ChatStreams.stream_id == subheartflow_id).first()
name = chat_info.group_name if chat_info else "未知"
self.log_prefix = f"[{name}] "
async def process_info(
self, observations: Optional[List[Observation]] = None, running_memorys: Optional[List[Dict]] = None, *infos
) -> List[InfoBase]:
"""处理信息对象
Args:
*infos: 可变数量的InfoBase类型的信息对象
Returns:
List[InfoBase]: 处理后的结构化信息列表
"""
relation_info_str = await self.relation_identify(observations)
if relation_info_str:
relation_info = RelationInfo()
relation_info.set_relation_info(relation_info_str)
else:
relation_info = None
return None
return [relation_info]
async def relation_identify(
self, observations: Optional[List[Observation]] = None,
):
"""
在回复前进行思考,生成内心想法并收集工具调用结果
参数:
observations: 观察信息
返回:
如果return_prompt为False:
tuple: (current_mind, past_mind) 当前想法和过去的想法列表
如果return_prompt为True:
tuple: (current_mind, past_mind, prompt) 当前想法、过去的想法列表和使用的prompt
"""
if observations is None:
observations = []
for observation in observations:
if isinstance(observation, ChattingObservation):
# 获取聊天元信息
is_group_chat = observation.is_group_chat
chat_target_info = observation.chat_target_info
chat_target_name = "对方" # 私聊默认名称
if not is_group_chat and chat_target_info:
# 优先使用person_name其次user_nickname最后回退到默认值
chat_target_name = (
chat_target_info.get("person_name") or chat_target_info.get("user_nickname") or chat_target_name
)
# 获取聊天内容
chat_observe_info = observation.get_observe_info()
person_list = observation.person_list
nickname_str = ""
for nicknames in global_config.bot.alias_names:
nickname_str += f"{nicknames},"
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
if is_group_chat:
relation_prompt_init = "你对群聊里的人的印象是:\n"
else:
relation_prompt_init = "你对对方的印象是:\n"
relation_prompt = ""
for person in person_list:
relation_prompt += f"{await relationship_manager.build_relationship_info(person, is_id=True)}\n"
if relation_prompt:
relation_prompt = relation_prompt_init + relation_prompt
else:
relation_prompt = relation_prompt_init + "没有特别在意的人\n"
prompt = (await global_prompt_manager.get_prompt_async("relationship_prompt")).format(
name_block=name_block,
relation_prompt=relation_prompt,
time_now=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),
chat_observe_info=chat_observe_info,
)
# The above code is a Python script that is attempting to print the variable `prompt`.
# However, the code is not complete as the content of the `prompt` variable is missing.
# print(prompt)
content = ""
try:
content, _ = await self.llm_model.generate_response_async(prompt=prompt)
if not content:
logger.warning(f"{self.log_prefix} LLM返回空结果关系识别失败。")
except Exception as e:
# 处理总体异常
logger.error(f"{self.log_prefix} 执行LLM请求或处理响应时出错: {e}")
logger.error(traceback.format_exc())
content = "关系识别过程中出现错误"
if content == "None":
content = ""
# 记录初步思考结果
logger.info(f"{self.log_prefix} 关系识别prompt: \n{prompt}\n")
logger.info(f"{self.log_prefix} 关系识别: {content}")
return content
init_prompt()
# ==== 只复制最小依赖的relationship_manager ====
class SimpleRelationshipManager:
async def build_relationship_info(self, person, is_id: bool = False) -> str:
if is_id:
person_id = person
else:
person_id = person_info_manager.get_person_id(person[0], person[1])
person_name = await person_info_manager.get_value(person_id, "person_name")
if not person_name or person_name == "none":
return ""
impression = await person_info_manager.get_value(person_id, "impression")
interaction = await person_info_manager.get_value(person_id, "interaction")
points = await person_info_manager.get_value(person_id, "points") or []
if isinstance(points, str):
try:
import ast
points = ast.literal_eval(points)
except (SyntaxError, ValueError):
points = []
import random
random_points = random.sample(points, min(3, len(points))) if points else []
nickname_str = await person_info_manager.get_value(person_id, "nickname")
platform = await person_info_manager.get_value(person_id, "platform")
relation_prompt = f"'{person_name}' ta在{platform}上的昵称是{nickname_str}"
if impression:
relation_prompt += f"你对ta的印象是{impression}"
if interaction:
relation_prompt += f"你与ta的关系是{interaction}"
if random_points:
for point in random_points:
point_str = f"时间:{point[2]}。内容:{point[0]}"
relation_prompt += f"你记得{person_name}最近的点是:{point_str}"
return relation_prompt
# 用于替换原有的relationship_manager
relationship_manager = SimpleRelationshipManager()
def get_raw_msg_by_timestamp_random(
timestamp_start: float, timestamp_end: float, limit: int = 0, limit_mode: str = "latest"
) -> List[Dict[str, Any]]:
"""先在范围时间戳内随机选择一条消息取得消息的chat_id然后根据chat_id获取该聊天在指定时间戳范围内的消息"""
# 获取所有消息只取chat_id字段
filter_query = {"time": {"$gt": timestamp_start, "$lt": timestamp_end}}
all_msgs = find_messages(message_filter=filter_query)
if not all_msgs:
return []
# 随机选一条
msg = random.choice(all_msgs)
chat_id = msg["chat_id"]
timestamp_start = msg["time"]
# 用 chat_id 获取该聊天在指定时间戳范围内的消息
filter_query = {"chat_id": chat_id, "time": {"$gt": timestamp_start, "$lt": timestamp_end}}
sort_order = [("time", 1)] if limit == 0 else None
return find_messages(message_filter=filter_query, sort=sort_order, limit=limit, limit_mode="earliest")
def _build_readable_messages_internal(
messages: List[Dict[str, Any]],
replace_bot_name: bool = True,
merge_messages: bool = False,
timestamp_mode: str = "relative",
truncate: bool = False,
) -> Tuple[str, List[Tuple[float, str, str]]]:
"""内部辅助函数,构建可读消息字符串和原始消息详情列表"""
if not messages:
return "", []
message_details_raw: List[Tuple[float, str, str]] = []
# 1 & 2: 获取发送者信息并提取消息组件
for msg in messages:
# 检查是否是动作记录
if msg.get("is_action_record", False):
is_action = True
timestamp = msg.get("time")
content = msg.get("display_message", "")
message_details_raw.append((timestamp, global_config.bot.nickname, content, is_action))
continue
# 检查并修复缺少的user_info字段
if "user_info" not in msg:
msg["user_info"] = {
"platform": msg.get("user_platform", ""),
"user_id": msg.get("user_id", ""),
"user_nickname": msg.get("user_nickname", ""),
"user_cardname": msg.get("user_cardname", ""),
}
user_info = msg.get("user_info", {})
platform = user_info.get("platform")
user_id = user_info.get("user_id")
user_nickname = user_info.get("user_nickname")
user_cardname = user_info.get("user_cardname")
timestamp = msg.get("time")
if msg.get("display_message"):
content = msg.get("display_message")
else:
content = msg.get("processed_plain_text", "")
if "" in content:
content = content.replace("", "")
if "" in content:
content = content.replace("", "")
if not all([platform, user_id, timestamp is not None]):
continue
person_id = person_info_manager.get_person_id(platform, user_id)
if replace_bot_name and user_id == global_config.bot.qq_account:
person_name = f"{global_config.bot.nickname}(你)"
else:
person_name = person_info_manager.get_value_sync(person_id, "person_name")
if not person_name:
if user_cardname:
person_name = f"昵称:{user_cardname}"
elif user_nickname:
person_name = f"{user_nickname}"
else:
person_name = "某人"
if content != "":
message_details_raw.append((timestamp, person_name, content, False))
if not message_details_raw:
return "", []
message_details_raw.sort(key=lambda x: x[0])
# 为每条消息添加一个标记,指示它是否是动作记录
message_details_with_flags = []
for timestamp, name, content, is_action in message_details_raw:
message_details_with_flags.append((timestamp, name, content, is_action))
# 应用截断逻辑
message_details: List[Tuple[float, str, str, bool]] = []
n_messages = len(message_details_with_flags)
if truncate and n_messages > 0:
for i, (timestamp, name, content, is_action) in enumerate(message_details_with_flags):
if is_action:
message_details.append((timestamp, name, content, is_action))
continue
percentile = i / n_messages
original_len = len(content)
limit = -1
if percentile < 0.2:
limit = 50
replace_content = "......(记不清了)"
elif percentile < 0.5:
limit = 100
replace_content = "......(有点记不清了)"
elif percentile < 0.7:
limit = 200
replace_content = "......(内容太长了)"
elif percentile < 1.0:
limit = 300
replace_content = "......(太长了)"
truncated_content = content
if 0 < limit < original_len:
truncated_content = f"{content[:limit]}{replace_content}"
message_details.append((timestamp, name, truncated_content, is_action))
else:
message_details = message_details_with_flags
# 合并连续消息
merged_messages = []
if merge_messages and message_details:
current_merge = {
"name": message_details[0][1],
"start_time": message_details[0][0],
"end_time": message_details[0][0],
"content": [message_details[0][2]],
"is_action": message_details[0][3]
}
for i in range(1, len(message_details)):
timestamp, name, content, is_action = message_details[i]
if is_action or current_merge["is_action"]:
merged_messages.append(current_merge)
current_merge = {
"name": name,
"start_time": timestamp,
"end_time": timestamp,
"content": [content],
"is_action": is_action
}
continue
if name == current_merge["name"] and (timestamp - current_merge["end_time"] <= 60):
current_merge["content"].append(content)
current_merge["end_time"] = timestamp
else:
merged_messages.append(current_merge)
current_merge = {
"name": name,
"start_time": timestamp,
"end_time": timestamp,
"content": [content],
"is_action": is_action
}
merged_messages.append(current_merge)
elif message_details:
for timestamp, name, content, is_action in message_details:
merged_messages.append(
{
"name": name,
"start_time": timestamp,
"end_time": timestamp,
"content": [content],
"is_action": is_action
}
)
# 格式化为字符串
output_lines = []
for merged in merged_messages:
readable_time = translate_timestamp_to_human_readable(merged["start_time"], mode=timestamp_mode)
if merged["is_action"]:
output_lines.append(f"{readable_time}, {merged['content'][0]}")
else:
header = f"{readable_time}, {merged['name']} :"
output_lines.append(header)
for line in merged["content"]:
stripped_line = line.strip()
if stripped_line:
if stripped_line.endswith(""):
stripped_line = stripped_line[:-1]
if not stripped_line.endswith("(内容太长)"):
output_lines.append(f"{stripped_line}")
else:
output_lines.append(stripped_line)
output_lines.append("\n")
formatted_string = "".join(output_lines).strip()
return formatted_string, [(t, n, c) for t, n, c, is_action in message_details if not is_action]
def build_readable_messages(
messages: List[Dict[str, Any]],
replace_bot_name: bool = True,
merge_messages: bool = False,
timestamp_mode: str = "relative",
read_mark: float = 0.0,
truncate: bool = False,
show_actions: bool = False,
) -> str:
"""将消息列表转换为可读的文本格式"""
copy_messages = [msg.copy() for msg in messages]
if show_actions and copy_messages:
min_time = min(msg.get("time", 0) for msg in copy_messages)
max_time = max(msg.get("time", 0) for msg in copy_messages)
chat_id = copy_messages[0].get("chat_id") if copy_messages else None
actions = ActionRecords.select().where(
(ActionRecords.time >= min_time) &
(ActionRecords.time <= max_time) &
(ActionRecords.chat_id == chat_id)
).order_by(ActionRecords.time)
for action in actions:
if action.action_build_into_prompt:
action_msg = {
"time": action.time,
"user_id": global_config.bot.qq_account,
"user_nickname": global_config.bot.nickname,
"user_cardname": "",
"processed_plain_text": f"{action.action_prompt_display}",
"display_message": f"{action.action_prompt_display}",
"chat_info_platform": action.chat_info_platform,
"is_action_record": True,
"action_name": action.action_name,
}
copy_messages.append(action_msg)
copy_messages.sort(key=lambda x: x.get("time", 0))
if read_mark <= 0:
formatted_string, _ = _build_readable_messages_internal(
copy_messages, replace_bot_name, merge_messages, timestamp_mode, truncate
)
return formatted_string
else:
messages_before_mark = [msg for msg in copy_messages if msg.get("time", 0) <= read_mark]
messages_after_mark = [msg for msg in copy_messages if msg.get("time", 0) > read_mark]
formatted_before, _ = _build_readable_messages_internal(
messages_before_mark, replace_bot_name, merge_messages, timestamp_mode, truncate
)
formatted_after, _ = _build_readable_messages_internal(
messages_after_mark,
replace_bot_name,
merge_messages,
timestamp_mode,
)
read_mark_line = "\n--- 以上消息是你已经看过---\n--- 请关注以下未读的新消息---\n"
if formatted_before and formatted_after:
return f"{formatted_before}{read_mark_line}{formatted_after}"
elif formatted_before:
return f"{formatted_before}{read_mark_line}"
elif formatted_after:
return f"{read_mark_line}{formatted_after}"
else:
return read_mark_line.strip()
async def test_relationship_processor():
"""测试关系处理器的功能"""
# 测试10次
for i in range(10):
print(f"\n=== 测试 {i+1} ===")
# 获取随机消息
current_time = time.time()
start_time = current_time - 864000 # 10天前
messages = get_raw_msg_by_timestamp_random(start_time, current_time, limit=25)
if not messages:
print("没有找到消息,跳过此次测试")
continue
chat_id = messages[0]["chat_id"]
# 构建可读消息
chat_observe_info = build_readable_messages(
messages,
replace_bot_name=True,
timestamp_mode="normal_no_YMD",
truncate=True,
show_actions=True,
)
# print(chat_observe_info)
# 创建观察对象
processor = RelationshipProcessor(chat_id)
observation = ChattingObservation(chat_id)
observation.talking_message_str = chat_observe_info
observation.talking_message = messages # 设置消息列表
observation.person_list = await get_person_id_list(messages) # 使用get_person_id_list获取person_list
# 处理关系
result = await processor.process_info([observation])
if result:
print("\n关系识别结果:")
print(result[0].get_processed_info())
else:
print("关系识别失败")
# 等待一下,避免请求过快
await asyncio.sleep(1)
if __name__ == "__main__":
asyncio.run(test_relationship_processor())

View File

@@ -1,156 +0,0 @@
import time
import unittest
import jieba
from difflib import SequenceMatcher
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
def tfidf_similarity(s1, s2):
"""
使用 TF-IDF 和余弦相似度计算两个句子的相似性。
"""
# 1. 使用 jieba 进行分词
s1_words = " ".join(jieba.cut(s1))
s2_words = " ".join(jieba.cut(s2))
# 2. 将两句话放入一个列表中
corpus = [s1_words, s2_words]
# 3. 创建 TF-IDF 向量化器并进行计算
try:
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(corpus)
except ValueError:
# 如果句子完全由停用词组成,或者为空,可能会报错
return 0.0
# 4. 计算余弦相似度
similarity_matrix = cosine_similarity(tfidf_matrix)
# 返回 s1 和 s2 的相似度
return similarity_matrix[0, 1]
def sequence_similarity(s1, s2):
"""
使用 SequenceMatcher 计算两个句子的相似性。
"""
return SequenceMatcher(None, s1, s2).ratio()
class TestSentenceSimilarity(unittest.TestCase):
def test_similarity_comparison(self):
"""比较不同相似度计算方法的结果"""
test_cases = [
{
"sentence1": "今天天气怎么样",
"sentence2": "今天气候如何",
"expected_similar": True
},
{
"sentence1": "今天天气怎么样",
"sentence2": "我今天要去吃麦当劳",
"expected_similar": False
},
{
"sentence1": "我今天要去吃麦当劳",
"sentence2": "肯德基和麦当劳哪家好吃",
"expected_similar": True
},
{
"sentence1": "Vindemiatrix提到昨天三个无赖杀穿交界地",
"sentence2": "Vindemiatrix昨天用三个无赖角色杀穿了游戏中的交界地",
"expected_similar": True
},
{
"sentence1": "tc_魔法士解释了之前templateinfo的with用法和现在的单独逻辑发送的区别",
"sentence2": "tc_魔法士解释了templateinfo的用法包括它是一个字典key是prompt的名字value是prompt的内容格式是只支持大括号的fstring",
"expected_similar": False
},
{
"sentence1": "YXH_XianYu分享了一张舰娘街机游戏的图片并提到'玩舰娘街机的董不懂'",
"sentence2": "YXH_XianYu对街机游戏表现出兴趣并分享了玩舰娘街机的经历",
"expected_similar": True
},
{
"sentence1": "YXH_XianYu在考虑入坑明日方舟犹豫是否要从零开荒或使用初始号",
"sentence2": "YXH_XianYu考虑入坑明日方舟倾向于从零开荒或初始号开荒",
"expected_similar": True
},
{
"sentence1": "YXH_XianYu提到秋叶原好多人在玩maimai",
"sentence2": "YXH_XianYu对学园偶像的付费石头机制表示惊讶",
"expected_similar": False
}
]
print("\n相似度计算方法比较:")
for i, case in enumerate(test_cases, 1):
print(f"\n测试用例 {i}:")
print(f"句子1: {case['sentence1']}")
print(f"句子2: {case['sentence2']}")
# TF-IDF 相似度
start_time = time.time()
tfidf_sim = tfidf_similarity(case['sentence1'], case['sentence2'])
tfidf_time = time.time() - start_time
# SequenceMatcher 相似度
start_time = time.time()
seq_sim = sequence_similarity(case['sentence1'], case['sentence2'])
seq_time = time.time() - start_time
print(f"TF-IDF相似度: {tfidf_sim:.4f} (耗时: {tfidf_time:.4f}秒)")
print(f"SequenceMatcher相似度: {seq_sim:.4f} (耗时: {seq_time:.4f}秒)")
def test_batch_processing(self):
"""测试批量处理性能"""
sentences = [
"人工智能正在改变世界",
"AI技术发展迅速",
"机器学习是人工智能的一个分支",
"深度学习在图像识别领域取得了突破",
"自然语言处理技术越来越成熟"
]
print("\n批量处理测试:")
# TF-IDF 批量处理
start_time = time.time()
tfidf_matrix = []
for i in range(len(sentences)):
row = []
for j in range(len(sentences)):
similarity = tfidf_similarity(sentences[i], sentences[j])
row.append(similarity)
tfidf_matrix.append(row)
tfidf_time = time.time() - start_time
# SequenceMatcher 批量处理
start_time = time.time()
seq_matrix = []
for i in range(len(sentences)):
row = []
for j in range(len(sentences)):
similarity = sequence_similarity(sentences[i], sentences[j])
row.append(similarity)
seq_matrix.append(row)
seq_time = time.time() - start_time
print(f"TF-IDF批量处理 {len(sentences)} 个句子耗时: {tfidf_time:.4f}")
print(f"SequenceMatcher批量处理 {len(sentences)} 个句子耗时: {seq_time:.4f}")
# 打印TF-IDF相似度矩阵
print("\nTF-IDF相似度矩阵:")
for row in tfidf_matrix:
for similarity in row:
print(f"{similarity:.4f}", end="\t")
print()
# 打印SequenceMatcher相似度矩阵
print("\nSequenceMatcher相似度矩阵:")
for row in seq_matrix:
for similarity in row:
print(f"{similarity:.4f}", end="\t")
print()
if __name__ == '__main__':
unittest.main(verbosity=2)