better:优化回复逻辑,现在回复前会先思考,移除推理模型再回复中的使用,优化心流运行逻辑,优化思考时间计算逻辑,添加错误检测

This commit is contained in:
SengokuCola
2025-03-31 22:34:52 +08:00
parent 42b1b772ef
commit 4c42c90879
14 changed files with 254 additions and 193 deletions

View File

@@ -106,7 +106,7 @@ class Heartflow:
self.current_mind = reponse
logger.info(f"麦麦的总体脑内状态:{self.current_mind}")
# logger.info("麦麦想了想,当前活动:")
await bot_schedule.move_doing(self.current_mind)
# await bot_schedule.move_doing(self.current_mind)
for _, subheartflow in self._subheartflows.items():
subheartflow.main_heartflow_info = reponse

View File

@@ -52,9 +52,9 @@ class ChattingObservation(Observation):
new_messages_str = ""
for msg in new_messages:
if "detailed_plain_text" in msg:
new_messages_str += f"{msg['detailed_plain_text']}\n"
new_messages_str += f"{msg['detailed_plain_text']}"
print(f"new_messages_str{new_messages_str}")
# print(f"new_messages_str{new_messages_str}")
# 将新消息添加到talking_message同时保持列表长度不超过20条
self.talking_message.extend(new_messages)
@@ -112,7 +112,7 @@ class ChattingObservation(Observation):
# 基于已经有的talking_summary和新的talking_message生成一个summary
# print(f"更新聊天总结:{self.talking_summary}")
prompt = ""
prompt = f"你正在参与一个qq群聊的讨论这个群之前在聊的内容是{self.observe_info}\n"
prompt = f"你正在参与一个qq群聊的讨论你记得这个群之前在聊的内容是:{self.observe_info}\n"
prompt += f"现在群里的群友们产生了新的讨论,有了新的发言,具体内容如下:{new_messages_str}\n"
prompt += """以上是群里在进行的聊天,请你对这个聊天内容进行总结,总结内容要包含聊天的大致内容,
以及聊天中的一些重要信息,记得不要分点,不要太长,精简的概括成一段文本\n"""

View File

@@ -87,13 +87,10 @@ class SubHeartflow:
self.is_active = True
self.last_active_time = current_time # 更新最后激活时间
observation = self.observations[0]
await observation.observe()
self.current_state.update_current_state_info()
await self.do_a_thinking()
await self.judge_willing()
# await self.do_a_thinking()
# await self.judge_willing()
await asyncio.sleep(global_config.sub_heart_flow_update_interval)
# 检查是否超过10分钟没有激活
@@ -107,7 +104,7 @@ class SubHeartflow:
observation = self.observations[0]
chat_observe_info = observation.observe_info
print(f"chat_observe_info{chat_observe_info}")
# print(f"chat_observe_info{chat_observe_info}")
# 调取记忆
related_memory = await HippocampusManager.get_instance().get_memory_from_text(
@@ -145,7 +142,56 @@ class SubHeartflow:
logger.debug(f"prompt:\n{prompt}\n")
logger.info(f"麦麦的脑内状态:{self.current_mind}")
async def do_after_reply(self, reply_content, chat_talking_prompt):
async def do_observe(self):
observation = self.observations[0]
await observation.observe()
async def do_thinking_before_reply(self, message_txt):
current_thinking_info = self.current_mind
mood_info = self.current_state.mood
mood_info = "你很生气,很愤怒"
observation = self.observations[0]
chat_observe_info = observation.observe_info
# print(f"chat_observe_info{chat_observe_info}")
# 调取记忆
related_memory = await HippocampusManager.get_instance().get_memory_from_text(
text=chat_observe_info, max_memory_num=2, max_memory_length=2, max_depth=3, fast_retrieval=False
)
if related_memory:
related_memory_info = ""
for memory in related_memory:
related_memory_info += memory[1]
else:
related_memory_info = ""
# print(f"相关记忆:{related_memory_info}")
schedule_info = bot_schedule.get_current_num_task(num=1, time_info=False)
prompt = ""
# prompt += f"麦麦的总体想法是:{self.main_heartflow_info}\n\n"
prompt += f"{self.personality_info}\n"
prompt += f"你刚刚在做的事情是:{schedule_info}\n"
if related_memory_info:
prompt += f"你想起来你之前见过的回忆:{related_memory_info}\n以上是你的回忆,不一定是目前聊天里的人说的,也不一定是现在发生的事情,请记住。\n"
prompt += f"刚刚你的想法是{current_thinking_info}\n"
prompt += "-----------------------------------\n"
prompt += f"现在你正在上网和qq群里的网友们聊天群里正在聊的话题是{chat_observe_info}\n"
prompt += f"你现在{mood_info}\n"
prompt += f"你注意到有人刚刚说:{message_txt}\n"
prompt += "现在你接下去继续思考,产生新的想法,不要分点输出,输出连贯的内心独白,不要太长,"
prompt += "记得结合上述的消息,要记得维持住你的人设,注意自己的名字,关注有人刚刚说的内容,不要思考太多:"
reponse, reasoning_content = await self.llm_model.generate_response_async(prompt)
self.update_current_mind(reponse)
self.current_mind = reponse
logger.debug(f"prompt:\n{prompt}\n")
logger.info(f"麦麦的思考前脑内状态:{self.current_mind}")
async def do_thinking_after_reply(self, reply_content, chat_talking_prompt):
print("麦麦回复之后脑袋转起来了")
current_thinking_info = self.current_mind
mood_info = self.current_state.mood
@@ -155,10 +201,10 @@ class SubHeartflow:
message_new_info = chat_talking_prompt
reply_info = reply_content
schedule_info = bot_schedule.get_current_num_task(num=1, time_info=False)
# schedule_info = bot_schedule.get_current_num_task(num=1, time_info=False)
prompt = ""
prompt += f"你现在正在做的事情是:{schedule_info}\n"
# prompt += f"你现在正在做的事情是:{schedule_info}\n"
prompt += f"{self.personality_info}\n"
prompt += f"现在你正在上网和qq群里的网友们聊天群里正在聊的话题是{chat_observe_info}\n"
prompt += f"刚刚你的想法是{current_thinking_info}"

View File

@@ -47,6 +47,39 @@ class ChatBot:
if not self._started:
self._started = True
async def _create_thinking_message(self, message, chat, userinfo, messageinfo):
"""创建思考消息
Args:
message: 接收到的消息
chat: 聊天流对象
userinfo: 用户信息对象
messageinfo: 消息信息对象
Returns:
str: thinking_id
"""
bot_user_info = UserInfo(
user_id=global_config.BOT_QQ,
user_nickname=global_config.BOT_NICKNAME,
platform=messageinfo.platform,
)
thinking_time_point = round(time.time(), 2)
thinking_id = "mt" + str(thinking_time_point)
thinking_message = MessageThinking(
message_id=thinking_id,
chat_stream=chat,
bot_user_info=bot_user_info,
reply=message,
thinking_start_time=thinking_time_point,
)
message_manager.add_message(thinking_message)
willing_manager.change_reply_willing_sent(chat)
return thinking_id
async def message_process(self, message_data: str) -> None:
"""处理转化后的统一格式消息
1. 过滤消息
@@ -56,6 +89,8 @@ class ChatBot:
5. 更新关系
6. 更新情绪
"""
timing_results = {} # 用于收集所有计时结果
response_set = None # 初始化response_set变量
message = MessageRecv(message_data)
groupinfo = message.message_info.group_info
@@ -75,10 +110,7 @@ class ChatBot:
# 创建 心流与chat的观察
heartflow.create_subheartflow(chat.stream_id)
timer1 = time.time()
await message.process()
timer2 = time.time()
logger.debug(f"2消息处理时间: {timer2 - timer1}")
# 过滤词/正则表达式过滤
if self._check_ban_words(message.processed_plain_text, chat, userinfo) or self._check_ban_regex(
@@ -94,7 +126,7 @@ class ChatBot:
message.processed_plain_text, fast_retrieval=True
)
timer2 = time.time()
logger.debug(f"3记忆激活时间: {timer2 - timer1}")
timing_results["记忆激活"] = timer2 - timer1
is_mentioned = is_mentioned_bot_in_message(message)
@@ -118,7 +150,7 @@ class ChatBot:
sender_id=str(message.message_info.user_info.user_id),
)
timer2 = time.time()
logger.debug(f"4计算意愿激活时间: {timer2 - timer1}")
timing_results["意愿激活"] = timer2 - timer1
# 神秘的消息流数据结构处理
if chat.group_info:
@@ -138,12 +170,30 @@ class ChatBot:
if "maimcore_reply_probability_gain" in message.message_info.additional_config.keys():
reply_probability += message.message_info.additional_config["maimcore_reply_probability_gain"]
do_reply = False
# 开始组织语言
if random() < reply_probability:
do_reply = True
timer1 = time.time()
response_set, thinking_id = await self._generate_response_from_message(message, chat, userinfo, messageinfo)
thinking_id = await self._create_thinking_message(message, chat, userinfo, messageinfo)
timer2 = time.time()
logger.info(f"5生成回复时间: {timer2 - timer1}")
timing_results["创建思考消息"] = timer2 - timer1
timer1 = time.time()
await heartflow.get_subheartflow(chat.stream_id).do_observe()
timer2 = time.time()
timing_results["观察"] = timer2 - timer1
timer1 = time.time()
await heartflow.get_subheartflow(chat.stream_id).do_thinking_before_reply(message.processed_plain_text)
timer2 = time.time()
timing_results["思考前脑内状态"] = timer2 - timer1
timer1 = time.time()
response_set = await self.gpt.generate_response(message)
timer2 = time.time()
timing_results["生成回复"] = timer2 - timer1
if not response_set:
logger.info("为什么生成回复失败?")
@@ -153,56 +203,25 @@ class ChatBot:
timer1 = time.time()
await self._send_response_messages(message, chat, response_set, thinking_id)
timer2 = time.time()
logger.info(f"7发送消息时间: {timer2 - timer1}")
timing_results["发送消息"] = timer2 - timer1
# 处理表情包
timer1 = time.time()
await self._handle_emoji(message, chat, response_set)
timer2 = time.time()
logger.debug(f"8处理表情包时间: {timer2 - timer1}")
timing_results["处理表情包"] = timer2 - timer1
timer1 = time.time()
await self._update_using_response(message, response_set)
timer2 = time.time()
logger.info(f"6更新htfl时间: {timer2 - timer1}")
timing_results["更新心流"] = timer2 - timer1
# 更新情绪和关系
# await self._update_emotion_and_relationship(message, chat, response_set)
async def _generate_response_from_message(self, message, chat, userinfo, messageinfo):
"""生成回复内容
Args:
message: 接收到的消息
chat: 聊天流对象
userinfo: 用户信息对象
messageinfo: 消息信息对象
Returns:
tuple: (response, raw_content) 回复内容和原始内容
"""
bot_user_info = UserInfo(
user_id=global_config.BOT_QQ,
user_nickname=global_config.BOT_NICKNAME,
platform=messageinfo.platform,
)
thinking_time_point = round(time.time(), 2)
thinking_id = "mt" + str(thinking_time_point)
thinking_message = MessageThinking(
message_id=thinking_id,
chat_stream=chat,
bot_user_info=bot_user_info,
reply=message,
thinking_start_time=thinking_time_point,
)
message_manager.add_message(thinking_message)
willing_manager.change_reply_willing_sent(chat)
response_set = await self.gpt.generate_response(message)
return response_set, thinking_id
# 在最后统一输出所有计时结果
if do_reply:
timing_str = " | ".join([f"{step}: {duration:.2f}" for step, duration in timing_results.items()])
trigger_msg = message.processed_plain_text
response_msg = " ".join(response_set) if response_set else "无回复"
logger.info(f"触发消息: {trigger_msg[:20]}... | 生成消息: {response_msg[:20]}... | 性能计时: {timing_str}")
async def _update_using_response(self, message, response_set):
# 更新心流状态
@@ -213,7 +232,7 @@ class ChatBot:
stream_id, limit=global_config.MAX_CONTEXT_SIZE, combine=True
)
await heartflow.get_subheartflow(stream_id).do_after_reply(response_set, chat_talking_prompt)
await heartflow.get_subheartflow(stream_id).do_thinking_after_reply(response_set, chat_talking_prompt)
async def _send_response_messages(self, message, chat, response_set, thinking_id):
container = message_manager.get_container(chat.stream_id)

View File

@@ -30,7 +30,7 @@ class ResponseGenerator:
request_type="response",
)
self.model_normal = LLM_request(
model=global_config.llm_normal, temperature=0.7, max_tokens=3000, request_type="response"
model=global_config.llm_normal, temperature=0.8, max_tokens=256, request_type="response"
)
self.model_sum = LLM_request(
@@ -42,20 +42,26 @@ class ResponseGenerator:
async def generate_response(self, message: MessageThinking) -> Optional[Union[str, List[str]]]:
"""根据当前模型类型选择对应的生成函数"""
# 从global_config中获取模型概率值并选择模型
if random.random() < global_config.MODEL_R1_PROBABILITY:
self.current_model_type = "深深地"
current_model = self.model_reasoning
else:
self.current_model_type = "浅浅的"
current_model = self.model_normal
# if random.random() < global_config.MODEL_R1_PROBABILITY:
# self.current_model_type = "深深地"
# current_model = self.model_reasoning
# else:
# self.current_model_type = "浅浅的"
# current_model = self.model_normal
# logger.info(
# f"{self.current_model_type}思考:{message.processed_plain_text[:30] + '...' if len(message.processed_plain_text) > 30 else message.processed_plain_text}"
# ) # noqa: E501
logger.info(
f"{self.current_model_type}思考:{message.processed_plain_text[:30] + '...' if len(message.processed_plain_text) > 30 else message.processed_plain_text}"
) # noqa: E501
f"思考:{message.processed_plain_text[:30] + '...' if len(message.processed_plain_text) > 30 else message.processed_plain_text}"
)
current_model = self.model_normal
model_response = await self._generate_response_with_model(message, current_model)
print(f"raw_content: {model_response}")
# print(f"raw_content: {model_response}")
if model_response:
logger.info(f"{global_config.BOT_NICKNAME}的回复是:{model_response}")
@@ -126,8 +132,6 @@ class ResponseGenerator:
"user": sender_name,
"message": message.processed_plain_text,
"model": self.current_model_name,
# 'reasoning_check': reasoning_content_check,
# 'response_check': content_check,
"reasoning": reasoning_content,
"response": content,
"prompt": prompt,

View File

@@ -188,11 +188,11 @@ class MessageManager:
# print(message_earliest.is_head)
# print(message_earliest.update_thinking_time())
# print(message_earliest.is_private_message())
# thinking_time = message_earliest.update_thinking_time()
# print(thinking_time)
thinking_time = message_earliest.update_thinking_time()
print(thinking_time)
if (
message_earliest.is_head
and message_earliest.update_thinking_time() > 50
and message_earliest.update_thinking_time() > 8
and not message_earliest.is_private_message() # 避免在私聊时插入reply
):
logger.debug(f"设置回复消息{message_earliest.processed_plain_text}")
@@ -215,11 +215,11 @@ class MessageManager:
try:
# print(msg.is_head)
# print(msg.update_thinking_time())
print(msg.update_thinking_time())
# print(msg.is_private_message())
if (
msg.is_head
and msg.update_thinking_time() > 50
and msg.update_thinking_time() > 8
and not msg.is_private_message() # 避免在私聊时插入reply
):
logger.debug(f"设置回复消息{msg.processed_plain_text}")

View File

@@ -24,27 +24,9 @@ class PromptBuilder:
async def _build_prompt(
self, chat_stream, message_txt: str, sender_name: str = "某人", stream_id: Optional[int] = None
) -> tuple[str, str]:
# 关系(载入当前聊天记录里部分人的关系)
# who_chat_in_group = [chat_stream]
# who_chat_in_group += get_recent_group_speaker(
# stream_id,
# (chat_stream.user_info.user_id, chat_stream.user_info.platform),
# limit=global_config.MAX_CONTEXT_SIZE,
# )
# outer_world_info = outer_world.outer_world_info
current_mind_info = heartflow.get_subheartflow(stream_id).current_mind
# relation_prompt = ""
# for person in who_chat_in_group:
# relation_prompt += relationship_manager.build_relationship_info(person)
# relation_prompt_all = (
# f"{relation_prompt}关系等级越大,关系越好,请分析聊天记录,"
# f"根据你和说话者{sender_name}的关系和态度进行回复,明确你的立场和情感。"
# )
# 开始构建prompt
# 心情
@@ -71,25 +53,6 @@ class PromptBuilder:
chat_talking_prompt = chat_talking_prompt
# print(f"\033[1;34m[调试]\033[0m 已从数据库获取群 {group_id} 的消息记录:{chat_talking_prompt}")
# 使用新的记忆获取方法
memory_prompt = ""
start_time = time.time()
# 调用 hippocampus 的 get_relevant_memories 方法
relevant_memories = await HippocampusManager.get_instance().get_memory_from_text(
text=message_txt, max_memory_num=3, max_memory_length=2, max_depth=2, fast_retrieval=False
)
memory_str = ""
for _topic, memories in relevant_memories:
memory_str += f"{memories}\n"
if relevant_memories:
# 格式化记忆内容
memory_prompt = f"你回忆起:\n{memory_str}\n"
end_time = time.time()
logger.info(f"回忆耗时: {(end_time - start_time):.3f}")
# 类型
if chat_in_group:
chat_target = "你正在qq群里聊天下面是群里在聊的内容"
@@ -146,19 +109,18 @@ class PromptBuilder:
涉及政治敏感以及违法违规的内容请规避。"""
logger.info("开始构建prompt")
prompt = f"""
{prompt_info}
{memory_prompt}
你刚刚脑子里在想:
{current_mind_info}
{chat_target}
{chat_talking_prompt}
现在"{sender_name}"说的:{message_txt}。引起了你的注意,{mood_prompt}\n
你刚刚脑子里在想:
{current_mind_info}
现在"{sender_name}"说的:{message_txt}。引起了你的注意,你想要在群里发言发言或者回复这条消息。\n
你的网名叫{global_config.BOT_NICKNAME},有人也叫你{"/".join(global_config.BOT_ALIAS_NAMES)}{prompt_personality}
你正在{chat_target_2},现在请你读读之前的聊天记录,然后给出日常且口语化的回复,平淡一些,
尽量简短一些。{keywords_reaction_prompt}请注意把握聊天内容,不要回复的太有条理,可以有个性。{prompt_ger}
请回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景,
请回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景,尽量不要说你说过的话
请注意不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只输出回复内容。
{moderation_prompt}不要输出多余内容(包括前后缀冒号和引号括号表情包at或 @等 )。"""

View File

@@ -32,7 +32,7 @@ class ImageManager:
self._ensure_description_collection()
self._ensure_image_dir()
self._initialized = True
self._llm = LLM_request(model=global_config.vlm, temperature=0.4, max_tokens=1000, request_type="image")
self._llm = LLM_request(model=global_config.vlm, temperature=0.4, max_tokens=300, request_type="image")
def _ensure_image_dir(self):
"""确保图像存储目录存在"""
@@ -171,7 +171,7 @@ class ImageManager:
# 调用AI获取描述
prompt = (
"请用中文描述这张图片的内容。如果有文字,请把文字都描述出来。并尝试猜测这个图片的含义。最多200个字。"
"请用中文描述这张图片的内容。如果有文字,请把文字都描述出来。并尝试猜测这个图片的含义。最多100个字。"
)
description, _ = await self._llm.generate_response_for_image(prompt, image_base64, image_format)

View File

@@ -231,7 +231,7 @@ class BotConfig:
# 模型配置
llm_reasoning: Dict[str, str] = field(default_factory=lambda: {})
llm_reasoning_minor: Dict[str, str] = field(default_factory=lambda: {})
# llm_reasoning_minor: Dict[str, str] = field(default_factory=lambda: {})
llm_normal: Dict[str, str] = field(default_factory=lambda: {})
llm_topic_judge: Dict[str, str] = field(default_factory=lambda: {})
llm_summary_by_topic: Dict[str, str] = field(default_factory=lambda: {})
@@ -370,9 +370,9 @@ class BotConfig:
response_config = parent["response"]
config.MODEL_R1_PROBABILITY = response_config.get("model_r1_probability", config.MODEL_R1_PROBABILITY)
config.MODEL_V3_PROBABILITY = response_config.get("model_v3_probability", config.MODEL_V3_PROBABILITY)
config.MODEL_R1_DISTILL_PROBABILITY = response_config.get(
"model_r1_distill_probability", config.MODEL_R1_DISTILL_PROBABILITY
)
# config.MODEL_R1_DISTILL_PROBABILITY = response_config.get(
# "model_r1_distill_probability", config.MODEL_R1_DISTILL_PROBABILITY
# )
config.max_response_length = response_config.get("max_response_length", config.max_response_length)
def willing(parent: dict):
@@ -397,7 +397,7 @@ class BotConfig:
config_list = [
"llm_reasoning",
"llm_reasoning_minor",
# "llm_reasoning_minor",
"llm_normal",
"llm_topic_judge",
"llm_summary_by_topic",

View File

@@ -697,6 +697,11 @@ class ParahippocampalGyrus:
start_time = time.time()
logger.info("[遗忘] 开始检查数据库...")
# 验证百分比参数
if not 0 <= percentage <= 1:
logger.warning(f"[遗忘] 无效的遗忘百分比: {percentage}, 使用默认值 0.005")
percentage = 0.005
all_nodes = list(self.memory_graph.G.nodes())
all_edges = list(self.memory_graph.G.edges())
@@ -704,11 +709,21 @@ class ParahippocampalGyrus:
logger.info("[遗忘] 记忆图为空,无需进行遗忘操作")
return
check_nodes_count = max(1, int(len(all_nodes) * percentage))
check_edges_count = max(1, int(len(all_edges) * percentage))
# 确保至少检查1个节点和边且不超过总数
check_nodes_count = max(1, min(len(all_nodes), int(len(all_nodes) * percentage)))
check_edges_count = max(1, min(len(all_edges), int(len(all_edges) * percentage)))
# 只有在有足够的节点和边时才进行采样
if len(all_nodes) >= check_nodes_count and len(all_edges) >= check_edges_count:
try:
nodes_to_check = random.sample(all_nodes, check_nodes_count)
edges_to_check = random.sample(all_edges, check_edges_count)
except ValueError as e:
logger.error(f"[遗忘] 采样错误: {str(e)}")
return
else:
logger.info("[遗忘] 没有足够的节点或边进行遗忘操作")
return
# 使用列表存储变化信息
edge_changes = {

View File

@@ -58,8 +58,18 @@ class MemoryBuildScheduler:
weight2 (float): 第二个分布的权重
total_samples (int): 要生成的总时间点数量
"""
# 验证参数
if total_samples <= 0:
raise ValueError("total_samples 必须大于0")
if weight1 < 0 or weight2 < 0:
raise ValueError("权重必须为非负数")
if std_hours1 < 0 or std_hours2 < 0:
raise ValueError("标准差必须为非负数")
# 归一化权重
total_weight = weight1 + weight2
if total_weight == 0:
raise ValueError("权重总和不能为0")
self.weight1 = weight1 / total_weight
self.weight2 = weight2 / total_weight
@@ -73,12 +83,11 @@ class MemoryBuildScheduler:
def generate_time_samples(self):
"""生成混合分布的时间采样点"""
# 根据权重计算每个分布的样本数
samples1 = int(self.total_samples * self.weight1)
samples2 = self.total_samples - samples1
samples1 = max(1, int(self.total_samples * self.weight1))
samples2 = max(1, self.total_samples - samples1) # 确保 samples2 至少为1
# 生成两个正态分布的小时偏移
hours_offset1 = np.random.normal(loc=self.n_hours1, scale=self.std_hours1, size=samples1)
hours_offset2 = np.random.normal(loc=self.n_hours2, scale=self.std_hours2, size=samples2)
# 合并两个分布的偏移

View File

@@ -285,6 +285,7 @@ class LLM_request:
usage = None # 初始化usage变量避免未定义错误
async for line_bytes in response.content:
try:
line = line_bytes.decode("utf-8").strip()
if not line:
continue
@@ -318,6 +319,12 @@ class LLM_request:
except Exception as e:
logger.exception(f"解析流式输出错误: {str(e)}")
except GeneratorExit:
logger.warning("流式输出被中断")
break
except Exception as e:
logger.error(f"处理流式输出时发生错误: {str(e)}")
break
content = accumulated_content
think_match = re.search(r"<think>(.*?)</think>", content, re.DOTALL)
if think_match:

View File

@@ -176,13 +176,13 @@ class ScheduleGenerator:
logger.warning(f"未找到{today_str}的日程记录")
async def move_doing(self, mind_thinking: str = ""):
try:
current_time = datetime.datetime.now()
if mind_thinking:
doing_prompt = self.construct_doing_prompt(current_time, mind_thinking)
else:
doing_prompt = self.construct_doing_prompt(current_time)
# print(doing_prompt)
doing_response, _ = await self.llm_scheduler_doing.generate_response_async(doing_prompt)
self.today_done_list.append((current_time, doing_response))
@@ -191,6 +191,12 @@ class ScheduleGenerator:
logger.info(f"当前活动: {doing_response}")
return doing_response
except GeneratorExit:
logger.warning("日程生成被中断")
return "日程生成被中断"
except Exception as e:
logger.error(f"生成日程时发生错误: {str(e)}")
return "生成日程时发生错误"
async def get_task_from_time_to_time(self, start_time: str, end_time: str):
"""获取指定时间范围内的任务列表

View File

@@ -1,5 +1,5 @@
[inner]
version = "1.0.2"
version = "1.0.3"
#以下是给开发人员阅读的,一般用户不需要阅读
@@ -53,7 +53,7 @@ schedule_temperature = 0.5 # 日程表温度建议0.5-1.0
nonebot-qq="http://127.0.0.1:18002/api/message"
[heartflow] # 注意可能会消耗大量token请谨慎开启
enable = false
enable = false #该选项未启用
sub_heart_flow_update_interval = 60 # 子心流更新频率,间隔 单位秒
sub_heart_flow_freeze_time = 120 # 子心流冻结时间,超过这个时间没有回复,子心流会冻结,间隔 单位秒
sub_heart_flow_stop_time = 600 # 子心流停止时间,超过这个时间没有回复,子心流会停止,间隔 单位秒
@@ -63,9 +63,9 @@ heart_flow_update_interval = 300 # 心流更新频率,间隔 单位秒
[message]
max_context_size = 15 # 麦麦获得的上文数量建议15,太短太长都会导致脑袋尖尖
max_context_size = 12 # 麦麦获得的上文数量建议12,太短太长都会导致脑袋尖尖
emoji_chance = 0.2 # 麦麦使用表情包的概率
thinking_timeout = 120 # 麦麦最长思考时间,超过这个时间的思考会放弃
thinking_timeout = 60 # 麦麦最长思考时间,超过这个时间的思考会放弃
max_response_length = 256 # 麦麦回答的最大token数
ban_words = [
# "403","张三"
@@ -87,10 +87,9 @@ response_interested_rate_amplifier = 1 # 麦麦回复兴趣度放大系数,听
down_frequency_rate = 3 # 降低回复频率的群组回复意愿降低系数 除法
emoji_response_penalty = 0.1 # 表情包回复惩罚系数设为0为不回复单个表情包减少单独回复表情包的概率
[response]
model_r1_probability = 0.8 # 麦麦回答时选择主要回复模型1 模型的概率
model_v3_probability = 0.1 # 麦麦回答时选择次要回复模型2 模型的概率
model_r1_distill_probability = 0.1 # 麦麦回答时选择次要回复模型3 模型的概率
[response] #这些选项已无效
model_r1_probability = 0 # 麦麦回答时选择主要回复模型1 模型的概率
model_v3_probability = 1.0 # 麦麦回答时选择次要回复模型2 模型的概率
[emoji]
check_interval = 15 # 检查破损表情包的时间间隔(分钟)
@@ -159,22 +158,16 @@ enable_friend_chat = false # 是否启用好友聊天
# stream = <true|false> : 用于指定模型是否是使用流式输出
# 如果不指定,则该项是 False
[model.llm_reasoning] #回复模型1 主要回复模型
[model.llm_reasoning] #暂时未使用
name = "Pro/deepseek-ai/DeepSeek-R1"
# name = "Qwen/QwQ-32B"
provider = "SILICONFLOW"
pri_in = 4 #模型的输入价格(非必填,可以记录消耗)
pri_out = 16 #模型的输出价格(非必填,可以记录消耗)
[model.llm_reasoning_minor] #回复模型3 次要回复模型
name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
provider = "SILICONFLOW"
pri_in = 1.26 #模型的输入价格(非必填,可以记录消耗)
pri_out = 1.26 #模型的输出价格(非必填,可以记录消耗)
#非推理模型
[model.llm_normal] #V3 回复模型2 次要回复模型
[model.llm_normal] #V3 回复模型1 主要回复模型
name = "Pro/deepseek-ai/DeepSeek-V3"
provider = "SILICONFLOW"
pri_in = 2 #模型的输入价格(非必填,可以记录消耗)