better:优化回复逻辑,现在回复前会先思考,移除推理模型再回复中的使用,优化心流运行逻辑,优化思考时间计算逻辑,添加错误检测
This commit is contained in:
@@ -697,6 +697,11 @@ class ParahippocampalGyrus:
|
||||
start_time = time.time()
|
||||
logger.info("[遗忘] 开始检查数据库...")
|
||||
|
||||
# 验证百分比参数
|
||||
if not 0 <= percentage <= 1:
|
||||
logger.warning(f"[遗忘] 无效的遗忘百分比: {percentage}, 使用默认值 0.005")
|
||||
percentage = 0.005
|
||||
|
||||
all_nodes = list(self.memory_graph.G.nodes())
|
||||
all_edges = list(self.memory_graph.G.edges())
|
||||
|
||||
@@ -704,11 +709,21 @@ class ParahippocampalGyrus:
|
||||
logger.info("[遗忘] 记忆图为空,无需进行遗忘操作")
|
||||
return
|
||||
|
||||
check_nodes_count = max(1, int(len(all_nodes) * percentage))
|
||||
check_edges_count = max(1, int(len(all_edges) * percentage))
|
||||
# 确保至少检查1个节点和边,且不超过总数
|
||||
check_nodes_count = max(1, min(len(all_nodes), int(len(all_nodes) * percentage)))
|
||||
check_edges_count = max(1, min(len(all_edges), int(len(all_edges) * percentage)))
|
||||
|
||||
nodes_to_check = random.sample(all_nodes, check_nodes_count)
|
||||
edges_to_check = random.sample(all_edges, check_edges_count)
|
||||
# 只有在有足够的节点和边时才进行采样
|
||||
if len(all_nodes) >= check_nodes_count and len(all_edges) >= check_edges_count:
|
||||
try:
|
||||
nodes_to_check = random.sample(all_nodes, check_nodes_count)
|
||||
edges_to_check = random.sample(all_edges, check_edges_count)
|
||||
except ValueError as e:
|
||||
logger.error(f"[遗忘] 采样错误: {str(e)}")
|
||||
return
|
||||
else:
|
||||
logger.info("[遗忘] 没有足够的节点或边进行遗忘操作")
|
||||
return
|
||||
|
||||
# 使用列表存储变化信息
|
||||
edge_changes = {
|
||||
|
||||
@@ -58,8 +58,18 @@ class MemoryBuildScheduler:
|
||||
weight2 (float): 第二个分布的权重
|
||||
total_samples (int): 要生成的总时间点数量
|
||||
"""
|
||||
# 验证参数
|
||||
if total_samples <= 0:
|
||||
raise ValueError("total_samples 必须大于0")
|
||||
if weight1 < 0 or weight2 < 0:
|
||||
raise ValueError("权重必须为非负数")
|
||||
if std_hours1 < 0 or std_hours2 < 0:
|
||||
raise ValueError("标准差必须为非负数")
|
||||
|
||||
# 归一化权重
|
||||
total_weight = weight1 + weight2
|
||||
if total_weight == 0:
|
||||
raise ValueError("权重总和不能为0")
|
||||
self.weight1 = weight1 / total_weight
|
||||
self.weight2 = weight2 / total_weight
|
||||
|
||||
@@ -73,12 +83,11 @@ class MemoryBuildScheduler:
|
||||
def generate_time_samples(self):
|
||||
"""生成混合分布的时间采样点"""
|
||||
# 根据权重计算每个分布的样本数
|
||||
samples1 = int(self.total_samples * self.weight1)
|
||||
samples2 = self.total_samples - samples1
|
||||
samples1 = max(1, int(self.total_samples * self.weight1))
|
||||
samples2 = max(1, self.total_samples - samples1) # 确保 samples2 至少为1
|
||||
|
||||
# 生成两个正态分布的小时偏移
|
||||
hours_offset1 = np.random.normal(loc=self.n_hours1, scale=self.std_hours1, size=samples1)
|
||||
|
||||
hours_offset2 = np.random.normal(loc=self.n_hours2, scale=self.std_hours2, size=samples2)
|
||||
|
||||
# 合并两个分布的偏移
|
||||
|
||||
Reference in New Issue
Block a user