feat:统一normal和focus的动作调整,emoji统一可选随机激活或llm激活

This commit is contained in:
SengokuCola
2025-07-06 18:36:14 +08:00
parent 6c117742a9
commit 498d72384f
20 changed files with 217 additions and 748 deletions

View File

@@ -0,0 +1,323 @@
from typing import Dict, List, Optional, Type, Any
from src.plugin_system.base.base_action import BaseAction
from src.chat.message_receive.chat_stream import ChatStream
from src.common.logger import get_logger
from src.plugin_system.core.component_registry import component_registry
from src.plugin_system.base.component_types import ComponentType
logger = get_logger("action_manager")
# 定义动作信息类型
ActionInfo = Dict[str, Any]
class ActionManager:
"""
动作管理器,用于管理各种类型的动作
现在统一使用新插件系统,简化了原有的新旧兼容逻辑。
"""
# 类常量
DEFAULT_RANDOM_PROBABILITY = 0.3
DEFAULT_MODE = "all"
DEFAULT_ACTIVATION_TYPE = "always"
def __init__(self):
"""初始化动作管理器"""
# 所有注册的动作集合
self._registered_actions: Dict[str, ActionInfo] = {}
# 当前正在使用的动作集合,默认加载默认动作
self._using_actions: Dict[str, ActionInfo] = {}
# 默认动作集,仅作为快照,用于恢复默认
self._default_actions: Dict[str, ActionInfo] = {}
# 加载插件动作
self._load_plugin_actions()
# 初始化时将默认动作加载到使用中的动作
self._using_actions = self._default_actions.copy()
def _load_plugin_actions(self) -> None:
"""
加载所有插件系统中的动作
"""
try:
# 从新插件系统获取Action组件
self._load_plugin_system_actions()
logger.debug("从插件系统加载Action组件成功")
except Exception as e:
logger.error(f"加载插件动作失败: {e}")
def _load_plugin_system_actions(self) -> None:
"""从插件系统的component_registry加载Action组件"""
try:
from src.plugin_system.core.component_registry import component_registry
from src.plugin_system.base.component_types import ComponentType
# 获取所有Action组件
action_components = component_registry.get_components_by_type(ComponentType.ACTION)
for action_name, action_info in action_components.items():
if action_name in self._registered_actions:
logger.debug(f"Action组件 {action_name} 已存在,跳过")
continue
# 将插件系统的ActionInfo转换为ActionManager格式
converted_action_info = {
"description": action_info.description,
"parameters": getattr(action_info, "action_parameters", {}),
"require": getattr(action_info, "action_require", []),
"associated_types": getattr(action_info, "associated_types", []),
"enable_plugin": action_info.enabled,
# 激活类型相关
"focus_activation_type": action_info.focus_activation_type.value,
"normal_activation_type": action_info.normal_activation_type.value,
"random_activation_probability": action_info.random_activation_probability,
"llm_judge_prompt": action_info.llm_judge_prompt,
"activation_keywords": action_info.activation_keywords,
"keyword_case_sensitive": action_info.keyword_case_sensitive,
# 模式和并行设置
"mode_enable": action_info.mode_enable.value,
"parallel_action": action_info.parallel_action,
# 插件信息
"_plugin_name": getattr(action_info, "plugin_name", ""),
}
self._registered_actions[action_name] = converted_action_info
# 如果启用,也添加到默认动作集
if action_info.enabled:
self._default_actions[action_name] = converted_action_info
logger.debug(
f"从插件系统加载Action组件: {action_name} (插件: {getattr(action_info, 'plugin_name', 'unknown')})"
)
logger.info(f"从插件系统加载了 {len(action_components)} 个Action组件")
except Exception as e:
logger.error(f"从插件系统加载Action组件失败: {e}")
import traceback
logger.error(traceback.format_exc())
def create_action(
self,
action_name: str,
action_data: dict,
reasoning: str,
cycle_timers: dict,
thinking_id: str,
chat_stream: ChatStream,
log_prefix: str,
shutting_down: bool = False,
) -> Optional[BaseAction]:
"""
创建动作处理器实例
Args:
action_name: 动作名称
action_data: 动作数据
reasoning: 执行理由
cycle_timers: 计时器字典
thinking_id: 思考ID
chat_stream: 聊天流
log_prefix: 日志前缀
shutting_down: 是否正在关闭
Returns:
Optional[BaseAction]: 创建的动作处理器实例如果动作名称未注册则返回None
"""
try:
# 获取组件类 - 明确指定查询Action类型
component_class = component_registry.get_component_class(action_name, ComponentType.ACTION)
if not component_class:
logger.warning(f"{log_prefix} 未找到Action组件: {action_name}")
return None
# 获取组件信息
component_info = component_registry.get_component_info(action_name, ComponentType.ACTION)
if not component_info:
logger.warning(f"{log_prefix} 未找到Action组件信息: {action_name}")
return None
# 获取插件配置
plugin_config = component_registry.get_plugin_config(component_info.plugin_name)
# 创建动作实例
instance = component_class(
action_data=action_data,
reasoning=reasoning,
cycle_timers=cycle_timers,
thinking_id=thinking_id,
chat_stream=chat_stream,
log_prefix=log_prefix,
shutting_down=shutting_down,
plugin_config=plugin_config,
)
logger.debug(f"创建Action实例成功: {action_name}")
return instance
except Exception as e:
logger.error(f"创建Action实例失败 {action_name}: {e}")
import traceback
logger.error(traceback.format_exc())
return None
def get_registered_actions(self) -> Dict[str, ActionInfo]:
"""获取所有已注册的动作集"""
return self._registered_actions.copy()
def get_default_actions(self) -> Dict[str, ActionInfo]:
"""获取默认动作集"""
return self._default_actions.copy()
def get_using_actions(self) -> Dict[str, ActionInfo]:
"""获取当前正在使用的动作集合"""
return self._using_actions.copy()
def get_using_actions_for_mode(self, mode: str) -> Dict[str, ActionInfo]:
"""
根据聊天模式获取可用的动作集合
Args:
mode: 聊天模式 ("focus", "normal", "all")
Returns:
Dict[str, ActionInfo]: 在指定模式下可用的动作集合
"""
filtered_actions = {}
for action_name, action_info in self._using_actions.items():
action_mode = action_info.get("mode_enable", "all")
# 检查动作是否在当前模式下启用
if action_mode == "all" or action_mode == mode:
filtered_actions[action_name] = action_info
logger.debug(f"动作 {action_name} 在模式 {mode} 下可用 (mode_enable: {action_mode})")
logger.debug(f"模式 {mode} 下可用动作: {list(filtered_actions.keys())}")
return filtered_actions
def add_action_to_using(self, action_name: str) -> bool:
"""
添加已注册的动作到当前使用的动作集
Args:
action_name: 动作名称
Returns:
bool: 添加是否成功
"""
if action_name not in self._registered_actions:
logger.warning(f"添加失败: 动作 {action_name} 未注册")
return False
if action_name in self._using_actions:
logger.info(f"动作 {action_name} 已经在使用中")
return True
self._using_actions[action_name] = self._registered_actions[action_name]
logger.info(f"添加动作 {action_name} 到使用集")
return True
def remove_action_from_using(self, action_name: str) -> bool:
"""
从当前使用的动作集中移除指定动作
Args:
action_name: 动作名称
Returns:
bool: 移除是否成功
"""
if action_name not in self._using_actions:
logger.warning(f"移除失败: 动作 {action_name} 不在当前使用的动作集中")
return False
del self._using_actions[action_name]
logger.debug(f"已从使用集中移除动作 {action_name}")
return True
def add_action(self, action_name: str, description: str, parameters: Dict = None, require: List = None) -> bool:
"""
添加新的动作到注册集
Args:
action_name: 动作名称
description: 动作描述
parameters: 动作参数定义,默认为空字典
require: 动作依赖项,默认为空列表
Returns:
bool: 添加是否成功
"""
if action_name in self._registered_actions:
return False
if parameters is None:
parameters = {}
if require is None:
require = []
action_info = {"description": description, "parameters": parameters, "require": require}
self._registered_actions[action_name] = action_info
return True
def remove_action(self, action_name: str) -> bool:
"""从注册集移除指定动作"""
if action_name not in self._registered_actions:
return False
del self._registered_actions[action_name]
# 如果在使用集中也存在,一并移除
if action_name in self._using_actions:
del self._using_actions[action_name]
return True
def temporarily_remove_actions(self, actions_to_remove: List[str]) -> None:
"""临时移除使用集中的指定动作"""
for name in actions_to_remove:
self._using_actions.pop(name, None)
def restore_actions(self) -> None:
"""恢复到默认动作集"""
logger.debug(
f"恢复动作集: 从 {list(self._using_actions.keys())} 恢复到默认动作集 {list(self._default_actions.keys())}"
)
self._using_actions = self._default_actions.copy()
def add_system_action_if_needed(self, action_name: str) -> bool:
"""
根据需要添加系统动作到使用集
Args:
action_name: 动作名称
Returns:
bool: 是否成功添加
"""
if action_name in self._registered_actions and action_name not in self._using_actions:
self._using_actions[action_name] = self._registered_actions[action_name]
logger.info(f"临时添加系统动作到使用集: {action_name}")
return True
return False
def get_action(self, action_name: str) -> Optional[Type[BaseAction]]:
"""
获取指定动作的处理器类
Args:
action_name: 动作名称
Returns:
Optional[Type[BaseAction]]: 动作处理器类如果不存在则返回None
"""
from src.plugin_system.core.component_registry import component_registry
return component_registry.get_component_class(action_name)

View File

@@ -0,0 +1,548 @@
from typing import List, Optional, Any, Dict
from src.chat.heart_flow.observation.observation import Observation
from src.common.logger import get_logger
from src.chat.heart_flow.observation.hfcloop_observation import HFCloopObservation
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
from src.chat.message_receive.chat_stream import get_chat_manager
from src.config.config import global_config
from src.llm_models.utils_model import LLMRequest
import random
import asyncio
import hashlib
import time
from src.chat.planner_actions.action_manager import ActionManager
from src.chat.utils.chat_message_builder import get_raw_msg_before_timestamp_with_chat, build_readable_messages
logger = get_logger("action_manager")
class ActionModifier:
"""动作处理器
用于处理Observation对象和根据激活类型处理actions。
集成了原有的modify_actions功能和新的激活类型处理功能。
支持并行判定和智能缓存优化。
"""
def __init__(self, action_manager: ActionManager, chat_id: str):
"""初始化动作处理器"""
self.chat_id = chat_id
self.chat_stream = get_chat_manager().get_stream(self.chat_id)
self.log_prefix = f"[{get_chat_manager().get_stream_name(self.chat_id) or self.chat_id}]"
self.action_manager = action_manager
# 用于LLM判定的小模型
self.llm_judge = LLMRequest(
model=global_config.model.utils_small,
request_type="action.judge",
)
# 缓存相关属性
self._llm_judge_cache = {} # 缓存LLM判定结果
self._cache_expiry_time = 30 # 缓存过期时间(秒)
self._last_context_hash = None # 上次上下文的哈希值
async def modify_actions(
self,
mode: str = "focus",
observations: Optional[List[Observation]] = None,
message_content: str = "",
):
"""
动作修改流程,整合传统观察处理和新的激活类型判定
这个方法处理完整的动作管理流程:
1. 基于观察的传统动作修改(循环历史分析、类型匹配等)
2. 基于激活类型的智能动作判定,最终确定可用动作集
处理后ActionManager 将包含最终的可用动作集,供规划器直接使用
"""
logger.debug(f"{self.log_prefix}开始完整动作修改流程")
removals_s1 = []
removals_s2 = []
self.action_manager.restore_actions()
all_actions = self.action_manager.get_using_actions_for_mode(mode)
message_list_before_now_half = get_raw_msg_before_timestamp_with_chat(
chat_id=self.chat_stream.stream_id,
timestamp=time.time(),
limit=int(global_config.chat.max_context_size * 0.5),
)
chat_content = build_readable_messages(
message_list_before_now_half,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="relative",
read_mark=0.0,
show_actions=True,
)
if message_content:
chat_content = chat_content + "\n" + f"现在,最新的消息是:{message_content}"
# === 第一阶段:传统观察处理 ===
if observations:
for obs in observations:
if isinstance(obs, HFCloopObservation):
# 获取适用于FOCUS模式的动作
removals_from_loop = await self.analyze_loop_actions(obs)
if removals_from_loop:
removals_s1.extend(removals_from_loop)
# 检查动作的关联类型
chat_context = self.chat_stream.context
type_mismatched_actions = self._check_action_associated_types(all_actions, chat_context)
if type_mismatched_actions:
removals_s1.extend(type_mismatched_actions)
# 应用第一阶段的移除
for action_name, reason in removals_s1:
self.action_manager.remove_action_from_using(action_name)
logger.debug(f"{self.log_prefix}阶段一移除动作: {action_name},原因: {reason}")
# === 第二阶段:激活类型判定 ===
if chat_content is not None:
logger.debug(f"{self.log_prefix}开始激活类型判定阶段")
# 获取当前使用的动作集(经过第一阶段处理)
current_using_actions = self.action_manager.get_using_actions_for_mode(mode)
# 获取因激活类型判定而需要移除的动作
removals_s2 = await self._get_deactivated_actions_by_type(
current_using_actions,
mode,
chat_content,
)
# 应用第二阶段的移除
for action_name, reason in removals_s2:
self.action_manager.remove_action_from_using(action_name)
logger.debug(f"{self.log_prefix}阶段二移除动作: {action_name},原因: {reason}")
# === 统一日志记录 ===
all_removals = removals_s1 + removals_s2
if all_removals:
removals_summary = " | ".join([f"{name}({reason})" for name, reason in all_removals])
logger.info(
f"{self.log_prefix}{mode}模式动作修改流程结束,最终可用动作: {list(self.action_manager.get_using_actions_for_mode(mode).keys())}||移除记录: {removals_summary}"
)
def _check_action_associated_types(self, all_actions, chat_context):
type_mismatched_actions = []
for action_name, data in all_actions.items():
if data.get("associated_types"):
if not chat_context.check_types(data["associated_types"]):
associated_types_str = ", ".join(data["associated_types"])
reason = f"适配器不支持(需要: {associated_types_str}"
type_mismatched_actions.append((action_name, reason))
logger.debug(
f"{self.log_prefix}决定移除动作: {action_name},原因: {reason}"
)
return type_mismatched_actions
async def _get_deactivated_actions_by_type(
self,
actions_with_info: Dict[str, Any],
mode: str = "focus",
chat_content: str = "",
) -> List[tuple[str, str]]:
"""
根据激活类型过滤,返回需要停用的动作列表及原因
Args:
actions_with_info: 带完整信息的动作字典
chat_content: 聊天内容
Returns:
List[Tuple[str, str]]: 需要停用的 (action_name, reason) 元组列表
"""
deactivated_actions = []
# 分类处理不同激活类型的actions
llm_judge_actions = {}
actions_to_check = list(actions_with_info.items())
random.shuffle(actions_to_check)
for action_name, action_info in actions_to_check:
activation_type = f"{mode}_activation_type"
activation_type = action_info.get(activation_type, "always")
if activation_type == "always":
continue # 总是激活,无需处理
elif activation_type == "random":
probability = action_info.get("random_activation_probability", ActionManager.DEFAULT_RANDOM_PROBABILITY)
if not (random.random() < probability):
reason = f"RANDOM类型未触发概率{probability}"
deactivated_actions.append((action_name, reason))
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: {reason}")
elif activation_type == "keyword":
if not self._check_keyword_activation(action_name, action_info, chat_content):
keywords = action_info.get("activation_keywords", [])
reason = f"关键词未匹配(关键词: {keywords}"
deactivated_actions.append((action_name, reason))
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: {reason}")
elif activation_type == "llm_judge":
llm_judge_actions[action_name] = action_info
else:
logger.warning(f"{self.log_prefix}未知的激活类型: {activation_type},跳过处理")
# 并行处理LLM_JUDGE类型
if llm_judge_actions:
llm_results = await self._process_llm_judge_actions_parallel(
llm_judge_actions,
chat_content,
)
for action_name, should_activate in llm_results.items():
if not should_activate:
reason = "LLM判定未激活"
deactivated_actions.append((action_name, reason))
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: {reason}")
return deactivated_actions
async def process_actions_for_planner(
self, observed_messages_str: str = "", chat_context: Optional[str] = None, extra_context: Optional[str] = None
) -> Dict[str, Any]:
"""
[已废弃] 此方法现在已被整合到 modify_actions() 中
为了保持向后兼容性而保留,但建议直接使用 ActionManager.get_using_actions()
规划器应该直接从 ActionManager 获取最终的可用动作集,而不是调用此方法
新的架构:
1. 主循环调用 modify_actions() 处理完整的动作管理流程
2. 规划器直接使用 ActionManager.get_using_actions() 获取最终动作集
"""
logger.warning(
f"{self.log_prefix}process_actions_for_planner() 已废弃,建议规划器直接使用 ActionManager.get_using_actions()"
)
# 为了向后兼容,仍然返回当前使用的动作集
current_using_actions = self.action_manager.get_using_actions()
all_registered_actions = self.action_manager.get_registered_actions()
# 构建完整的动作信息
result = {}
for action_name in current_using_actions.keys():
if action_name in all_registered_actions:
result[action_name] = all_registered_actions[action_name]
return result
def _generate_context_hash(self, chat_content: str) -> str:
"""生成上下文的哈希值用于缓存"""
context_content = f"{chat_content}"
return hashlib.md5(context_content.encode("utf-8")).hexdigest()
async def _process_llm_judge_actions_parallel(
self,
llm_judge_actions: Dict[str, Any],
chat_content: str = "",
) -> Dict[str, bool]:
"""
并行处理LLM判定actions支持智能缓存
Args:
llm_judge_actions: 需要LLM判定的actions
chat_content: 聊天内容
Returns:
Dict[str, bool]: action名称到激活结果的映射
"""
# 生成当前上下文的哈希值
current_context_hash = self._generate_context_hash(chat_content)
current_time = time.time()
results = {}
tasks_to_run = {}
# 检查缓存
for action_name, action_info in llm_judge_actions.items():
cache_key = f"{action_name}_{current_context_hash}"
# 检查是否有有效的缓存
if (
cache_key in self._llm_judge_cache
and current_time - self._llm_judge_cache[cache_key]["timestamp"] < self._cache_expiry_time
):
results[action_name] = self._llm_judge_cache[cache_key]["result"]
logger.debug(
f"{self.log_prefix}使用缓存结果 {action_name}: {'激活' if results[action_name] else '未激活'}"
)
else:
# 需要进行LLM判定
tasks_to_run[action_name] = action_info
# 如果有需要运行的任务,并行执行
if tasks_to_run:
logger.debug(f"{self.log_prefix}并行执行LLM判定任务数: {len(tasks_to_run)}")
# 创建并行任务
tasks = []
task_names = []
for action_name, action_info in tasks_to_run.items():
task = self._llm_judge_action(
action_name,
action_info,
chat_content,
)
tasks.append(task)
task_names.append(action_name)
# 并行执行所有任务
try:
task_results = await asyncio.gather(*tasks, return_exceptions=True)
# 处理结果并更新缓存
for _, (action_name, result) in enumerate(zip(task_names, task_results)):
if isinstance(result, Exception):
logger.error(f"{self.log_prefix}LLM判定action {action_name} 时出错: {result}")
results[action_name] = False
else:
results[action_name] = result
# 更新缓存
cache_key = f"{action_name}_{current_context_hash}"
self._llm_judge_cache[cache_key] = {"result": result, "timestamp": current_time}
logger.debug(f"{self.log_prefix}并行LLM判定完成耗时: {time.time() - current_time:.2f}s")
except Exception as e:
logger.error(f"{self.log_prefix}并行LLM判定失败: {e}")
# 如果并行执行失败为所有任务返回False
for action_name in tasks_to_run.keys():
results[action_name] = False
# 清理过期缓存
self._cleanup_expired_cache(current_time)
return results
def _cleanup_expired_cache(self, current_time: float):
"""清理过期的缓存条目"""
expired_keys = []
for cache_key, cache_data in self._llm_judge_cache.items():
if current_time - cache_data["timestamp"] > self._cache_expiry_time:
expired_keys.append(cache_key)
for key in expired_keys:
del self._llm_judge_cache[key]
if expired_keys:
logger.debug(f"{self.log_prefix}清理了 {len(expired_keys)} 个过期缓存条目")
async def _llm_judge_action(
self,
action_name: str,
action_info: Dict[str, Any],
chat_content: str = "",
) -> bool:
"""
使用LLM判定是否应该激活某个action
Args:
action_name: 动作名称
action_info: 动作信息
observed_messages_str: 观察到的聊天消息
chat_context: 聊天上下文
extra_context: 额外上下文
Returns:
bool: 是否应该激活此action
"""
try:
# 构建判定提示词
action_description = action_info.get("description", "")
action_require = action_info.get("require", [])
custom_prompt = action_info.get("llm_judge_prompt", "")
# 构建基础判定提示词
base_prompt = f"""
你需要判断在当前聊天情况下,是否应该激活名为"{action_name}"的动作。
动作描述:{action_description}
动作使用场景:
"""
for req in action_require:
base_prompt += f"- {req}\n"
if custom_prompt:
base_prompt += f"\n额外判定条件:\n{custom_prompt}\n"
if chat_content:
base_prompt += f"\n当前聊天记录:\n{chat_content}\n"
base_prompt += """
请根据以上信息判断是否应该激活这个动作。
只需要回答"""",不要有其他内容。
"""
# 调用LLM进行判定
response, _ = await self.llm_judge.generate_response_async(prompt=base_prompt)
# 解析响应
response = response.strip().lower()
# print(base_prompt)
# print(f"LLM判定动作 {action_name}:响应='{response}'")
should_activate = "" in response or "yes" in response or "true" in response
logger.debug(
f"{self.log_prefix}LLM判定动作 {action_name}:响应='{response}',结果={'激活' if should_activate else '不激活'}"
)
return should_activate
except Exception as e:
logger.error(f"{self.log_prefix}LLM判定动作 {action_name} 时出错: {e}")
# 出错时默认不激活
return False
def _check_keyword_activation(
self,
action_name: str,
action_info: Dict[str, Any],
chat_content: str = "",
) -> bool:
"""
检查是否匹配关键词触发条件
Args:
action_name: 动作名称
action_info: 动作信息
observed_messages_str: 观察到的聊天消息
chat_context: 聊天上下文
extra_context: 额外上下文
Returns:
bool: 是否应该激活此action
"""
activation_keywords = action_info.get("activation_keywords", [])
case_sensitive = action_info.get("keyword_case_sensitive", False)
if not activation_keywords:
logger.warning(f"{self.log_prefix}动作 {action_name} 设置为关键词触发但未配置关键词")
return False
# 构建检索文本
search_text = ""
if chat_content:
search_text += chat_content
# if chat_context:
# search_text += f" {chat_context}"
# if extra_context:
# search_text += f" {extra_context}"
# 如果不区分大小写,转换为小写
if not case_sensitive:
search_text = search_text.lower()
# 检查每个关键词
matched_keywords = []
for keyword in activation_keywords:
check_keyword = keyword if case_sensitive else keyword.lower()
if check_keyword in search_text:
matched_keywords.append(keyword)
if matched_keywords:
logger.debug(f"{self.log_prefix}动作 {action_name} 匹配到关键词: {matched_keywords}")
return True
else:
logger.debug(f"{self.log_prefix}动作 {action_name} 未匹配到任何关键词: {activation_keywords}")
return False
async def analyze_loop_actions(self, obs: HFCloopObservation) -> List[tuple[str, str]]:
"""分析最近的循环内容并决定动作的移除
Returns:
List[Tuple[str, str]]: 包含要删除的动作及原因的元组列表
[("action3", "some reason")]
"""
removals = []
# 获取最近10次循环
recent_cycles = obs.history_loop[-10:] if len(obs.history_loop) > 10 else obs.history_loop
if not recent_cycles:
return removals
reply_sequence = [] # 记录最近的动作序列
for cycle in recent_cycles:
action_result = cycle.loop_plan_info.get("action_result", {})
action_type = action_result.get("action_type", "unknown")
reply_sequence.append(action_type == "reply")
# 计算连续回复的相关阈值
max_reply_num = int(global_config.focus_chat.consecutive_replies * 3.2)
sec_thres_reply_num = int(global_config.focus_chat.consecutive_replies * 2)
one_thres_reply_num = int(global_config.focus_chat.consecutive_replies * 1.5)
# 获取最近max_reply_num次的reply状态
if len(reply_sequence) >= max_reply_num:
last_max_reply_num = reply_sequence[-max_reply_num:]
else:
last_max_reply_num = reply_sequence[:]
# 详细打印阈值和序列信息,便于调试
logger.info(
f"连续回复阈值: max={max_reply_num}, sec={sec_thres_reply_num}, one={one_thres_reply_num}"
f"最近reply序列: {last_max_reply_num}"
)
# print(f"consecutive_replies: {consecutive_replies}")
# 根据最近的reply情况决定是否移除reply动作
if len(last_max_reply_num) >= max_reply_num and all(last_max_reply_num):
# 如果最近max_reply_num次都是reply直接移除
reason = f"连续回复过多(最近{len(last_max_reply_num)}次全是reply超过阈值{max_reply_num}"
removals.append(("reply", reason))
# reply_count = len(last_max_reply_num) - no_reply_count
elif len(last_max_reply_num) >= sec_thres_reply_num and all(last_max_reply_num[-sec_thres_reply_num:]):
# 如果最近sec_thres_reply_num次都是reply40%概率移除
removal_probability = 0.4 / global_config.focus_chat.consecutive_replies
if random.random() < removal_probability:
reason = f"连续回复较多(最近{sec_thres_reply_num}次全是reply{removal_probability:.2f}概率移除,触发移除)"
removals.append(("reply", reason))
elif len(last_max_reply_num) >= one_thres_reply_num and all(last_max_reply_num[-one_thres_reply_num:]):
# 如果最近one_thres_reply_num次都是reply20%概率移除
removal_probability = 0.2 / global_config.focus_chat.consecutive_replies
if random.random() < removal_probability:
reason = f"连续回复检测(最近{one_thres_reply_num}次全是reply{removal_probability:.2f}概率移除,触发移除)"
removals.append(("reply", reason))
else:
logger.debug(f"{self.log_prefix}连续回复检测无需移除reply动作最近回复模式正常")
return removals
def get_available_actions_count(self) -> int:
"""获取当前可用动作数量排除默认的no_action"""
current_actions = self.action_manager.get_using_actions_for_mode("normal")
# 排除no_action如果存在
filtered_actions = {k: v for k, v in current_actions.items() if k != "no_action"}
return len(filtered_actions)
def should_skip_planning(self) -> bool:
"""判断是否应该跳过规划过程"""
available_count = self.get_available_actions_count()
if available_count == 0:
logger.debug(f"{self.log_prefix} 没有可用动作,跳过规划")
return True
return False

View File

@@ -0,0 +1,369 @@
import json # <--- 确保导入 json
import traceback
from typing import List, Dict, Any, Optional
from rich.traceback import install
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
from src.chat.focus_chat.info.info_base import InfoBase
from src.chat.focus_chat.info.obs_info import ObsInfo
from src.chat.focus_chat.info.action_info import ActionInfo
from src.common.logger import get_logger
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.planner_actions.action_manager import ActionManager
from json_repair import repair_json
from src.chat.heart_flow.utils_chat import get_chat_type_and_target_info
from datetime import datetime
logger = get_logger("planner")
install(extra_lines=3)
def init_prompt():
Prompt(
"""
{time_block}
{indentify_block}
你现在需要根据聊天内容选择的合适的action来参与聊天。
{chat_context_description},以下是具体的聊天内容:
{chat_content_block}
{moderation_prompt}
现在请你根据聊天内容选择合适的action:
{action_options_text}
请根据动作示例,以严格的 JSON 格式输出,且仅包含 JSON 内容:
""",
"simple_planner_prompt",
)
Prompt(
"""
{time_block}
{indentify_block}
你现在需要根据聊天内容选择的合适的action来参与聊天。
{chat_context_description},以下是具体的聊天内容:
{chat_content_block}
{moderation_prompt}
现在请你选择合适的action:
{action_options_text}
请根据动作示例,以严格的 JSON 格式输出,且仅包含 JSON 内容:
""",
"simple_planner_prompt_private",
)
Prompt(
"""
动作:{action_name}
动作描述:{action_description}
{action_require}
{{
"action": "{action_name}",{action_parameters}
}}
""",
"action_prompt",
)
class ActionPlanner:
def __init__(self, log_prefix: str, action_manager: ActionManager):
self.log_prefix = log_prefix
self.action_manager = action_manager
# LLM规划器配置
self.planner_llm = LLMRequest(
model=global_config.model.planner,
request_type="focus.planner", # 用于动作规划
)
self.utils_llm = LLMRequest(
model=global_config.model.utils_small,
request_type="focus.planner", # 用于动作规划
)
async def plan(
self, all_plan_info: List[InfoBase],loop_start_time: float
) -> Dict[str, Any]:
"""
规划器 (Planner): 使用LLM根据上下文决定做出什么动作。
参数:
all_plan_info: 所有计划信息
running_memorys: 回忆信息
loop_start_time: 循环开始时间
"""
action = "no_reply" # 默认动作
reasoning = "规划器初始化默认"
action_data = {}
try:
# 获取观察信息
extra_info: list[str] = []
extra_info = []
observed_messages = []
observed_messages_str = ""
chat_type = "group"
is_group_chat = True
chat_id = None # 添加chat_id变量
for info in all_plan_info:
if isinstance(info, ObsInfo):
observed_messages = info.get_talking_message()
observed_messages_str = info.get_talking_message_str_truncate_short()
chat_type = info.get_chat_type()
is_group_chat = chat_type == "group"
# 从ObsInfo中获取chat_id
chat_id = info.get_chat_id()
else:
extra_info.append(info.get_processed_info())
# 获取聊天类型和目标信息
chat_target_info = None
if chat_id:
try:
# 重新获取更准确的聊天信息
is_group_chat_updated, chat_target_info = get_chat_type_and_target_info(chat_id)
# 如果获取成功更新is_group_chat
if is_group_chat_updated is not None:
is_group_chat = is_group_chat_updated
logger.debug(
f"{self.log_prefix}获取到聊天信息 - 群聊: {is_group_chat}, 目标信息: {chat_target_info}"
)
except Exception as e:
logger.warning(f"{self.log_prefix}获取聊天目标信息失败: {e}")
chat_target_info = None
# 获取经过modify_actions处理后的最终可用动作集
# 注意动作的激活判定现在在主循环的modify_actions中完成
# 使用Focus模式过滤动作
current_available_actions_dict = self.action_manager.get_using_actions_for_mode("focus")
# 获取完整的动作信息
all_registered_actions = self.action_manager.get_registered_actions()
current_available_actions = {}
for action_name in current_available_actions_dict.keys():
if action_name in all_registered_actions:
current_available_actions[action_name] = all_registered_actions[action_name]
else:
logger.warning(f"{self.log_prefix}使用中的动作 {action_name} 未在已注册动作中找到")
# 如果没有可用动作或只有no_reply动作直接返回no_reply
if not current_available_actions or (
len(current_available_actions) == 1 and "no_reply" in current_available_actions
):
action = "no_reply"
reasoning = "没有可用的动作" if not current_available_actions else "只有no_reply动作可用跳过规划"
logger.info(f"{self.log_prefix}{reasoning}")
self.action_manager.restore_actions()
logger.debug(
f"{self.log_prefix}[focus]沉默后恢复到默认动作集, 当前可用: {list(self.action_manager.get_using_actions().keys())}"
)
return {
"action_result": {"action_type": action, "action_data": action_data, "reasoning": reasoning},
"observed_messages": observed_messages,
}
# --- 构建提示词 (调用修改后的 PromptBuilder 方法) ---
prompt = await self.build_planner_prompt(
is_group_chat=is_group_chat, # <-- Pass HFC state
chat_target_info=chat_target_info, # <-- 传递获取到的聊天目标信息
observed_messages_str=observed_messages_str, # <-- Pass local variable
current_available_actions=current_available_actions, # <-- Pass determined actions
)
# --- 调用 LLM (普通文本生成) ---
llm_content = None
try:
prompt = f"{prompt}"
llm_content, (reasoning_content, _) = await self.planner_llm.generate_response_async(prompt=prompt)
logger.info(f"{self.log_prefix}规划器原始提示词: {prompt}")
logger.info(f"{self.log_prefix}规划器原始响应: {llm_content}")
if reasoning_content:
logger.info(f"{self.log_prefix}规划器推理: {reasoning_content}")
except Exception as req_e:
logger.error(f"{self.log_prefix}LLM 请求执行失败: {req_e}")
reasoning = f"LLM 请求失败,你的模型出现问题: {req_e}"
action = "no_reply"
if llm_content:
try:
fixed_json_string = repair_json(llm_content)
if isinstance(fixed_json_string, str):
try:
parsed_json = json.loads(fixed_json_string)
except json.JSONDecodeError as decode_error:
logger.error(f"JSON解析错误: {str(decode_error)}")
parsed_json = {}
else:
# 如果repair_json直接返回了字典对象直接使用
parsed_json = fixed_json_string
# 处理repair_json可能返回列表的情况
if isinstance(parsed_json, list):
if parsed_json:
# 取列表中最后一个元素(通常是最完整的)
parsed_json = parsed_json[-1]
logger.warning(f"{self.log_prefix}LLM返回了多个JSON对象使用最后一个: {parsed_json}")
else:
parsed_json = {}
# 确保parsed_json是字典
if not isinstance(parsed_json, dict):
logger.error(f"{self.log_prefix}解析后的JSON不是字典类型: {type(parsed_json)}")
parsed_json = {}
# 提取决策,提供默认值
extracted_action = parsed_json.get("action", "no_reply")
extracted_reasoning = ""
# 将所有其他属性添加到action_data
action_data = {}
for key, value in parsed_json.items():
if key not in ["action", "reasoning"]:
action_data[key] = value
action_data["loop_start_time"] = loop_start_time
# 对于reply动作不需要额外处理因为相关字段已经在上面的循环中添加到action_data
if extracted_action not in current_available_actions:
logger.warning(
f"{self.log_prefix}LLM 返回了当前不可用或无效的动作: '{extracted_action}' (可用: {list(current_available_actions.keys())}),将强制使用 'no_reply'"
)
action = "no_reply"
reasoning = f"LLM 返回了当前不可用的动作 '{extracted_action}' (可用: {list(current_available_actions.keys())})。原始理由: {extracted_reasoning}"
else:
# 动作有效且可用
action = extracted_action
reasoning = extracted_reasoning
except Exception as json_e:
logger.warning(f"{self.log_prefix}解析LLM响应JSON失败 {json_e}. LLM原始输出: '{llm_content}'")
traceback.print_exc()
reasoning = f"解析LLM响应JSON失败: {json_e}. 将使用默认动作 'no_reply'."
action = "no_reply"
except Exception as outer_e:
logger.error(f"{self.log_prefix}Planner 处理过程中发生意外错误,规划失败,将执行 no_reply: {outer_e}")
traceback.print_exc()
action = "no_reply"
reasoning = f"Planner 内部处理错误: {outer_e}"
# 恢复到默认动作集
self.action_manager.restore_actions()
logger.debug(
f"{self.log_prefix}规划后恢复到默认动作集, 当前可用: {list(self.action_manager.get_using_actions().keys())}"
)
action_result = {"action_type": action, "action_data": action_data, "reasoning": reasoning}
plan_result = {
"action_result": action_result,
"observed_messages": observed_messages,
"action_prompt": prompt,
}
return plan_result
async def build_planner_prompt(
self,
is_group_chat: bool, # Now passed as argument
chat_target_info: Optional[dict], # Now passed as argument
observed_messages_str: str,
current_available_actions: Dict[str, ActionInfo],
) -> str:
"""构建 Planner LLM 的提示词 (获取模板并填充数据)"""
try:
chat_context_description = "你现在正在一个群聊中"
chat_target_name = None # Only relevant for private
if not is_group_chat and chat_target_info:
chat_target_name = (
chat_target_info.get("person_name") or chat_target_info.get("user_nickname") or "对方"
)
chat_context_description = f"你正在和 {chat_target_name} 私聊"
chat_content_block = ""
if observed_messages_str:
chat_content_block = f"\n{observed_messages_str}"
else:
chat_content_block = "你还未开始聊天"
action_options_block = ""
# 根据聊天类型选择不同的动作prompt模板
action_template_name = "action_prompt_private" if not is_group_chat else "action_prompt"
for using_actions_name, using_actions_info in current_available_actions.items():
using_action_prompt = await global_prompt_manager.get_prompt_async(action_template_name)
if using_actions_info["parameters"]:
param_text = "\n"
for param_name, param_description in using_actions_info["parameters"].items():
param_text += f' "{param_name}":"{param_description}"\n'
param_text = param_text.rstrip("\n")
else:
param_text = ""
require_text = ""
for require_item in using_actions_info["require"]:
require_text += f"- {require_item}\n"
require_text = require_text.rstrip("\n")
# 根据模板类型决定是否包含description参数
if action_template_name == "action_prompt_private":
# 私聊模板不包含description参数
using_action_prompt = using_action_prompt.format(
action_name=using_actions_name,
action_parameters=param_text,
action_require=require_text,
)
else:
# 群聊模板包含description参数
using_action_prompt = using_action_prompt.format(
action_name=using_actions_name,
action_description=using_actions_info["description"],
action_parameters=param_text,
action_require=require_text,
)
action_options_block += using_action_prompt
# moderation_prompt_block = "请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。"
moderation_prompt_block = ""
# 获取当前时间
time_block = f"当前时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
bot_name = global_config.bot.nickname
if global_config.bot.alias_names:
bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}"
else:
bot_nickname = ""
bot_core_personality = global_config.personality.personality_core
indentify_block = f"你的名字是{bot_name}{bot_nickname},你{bot_core_personality}"
# 根据聊天类型选择不同的prompt模板
template_name = "simple_planner_prompt_private" if not is_group_chat else "simple_planner_prompt"
planner_prompt_template = await global_prompt_manager.get_prompt_async(template_name)
prompt = planner_prompt_template.format(
time_block=time_block,
chat_context_description=chat_context_description,
chat_content_block=chat_content_block,
action_options_text=action_options_block,
moderation_prompt=moderation_prompt_block,
indentify_block=indentify_block,
)
return prompt
except Exception as e:
logger.error(f"构建 Planner 提示词时出错: {e}")
logger.error(traceback.format_exc())
return "构建 Planner Prompt 时出错"
init_prompt()

View File

@@ -0,0 +1,306 @@
import json
from typing import Dict, Any
from rich.traceback import install
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
from src.common.logger import get_logger
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.individuality.individuality import get_individuality
from src.chat.planner_actions.action_manager import ActionManager
from src.chat.message_receive.message import MessageThinking
from json_repair import repair_json
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
import time
import traceback
logger = get_logger("normal_chat_planner")
install(extra_lines=3)
def init_prompt():
Prompt(
"""
你的自我认知是:
{self_info_block}
请记住你的性格,身份和特点。
你是群内的一员,你现在正在参与群内的闲聊,以下是群内的聊天内容:
{chat_context}
基于以上聊天上下文和用户的最新消息选择最合适的action。
注意除了下面动作选项之外你在聊天中不能做其他任何事情这是你能力的边界现在请你选择合适的action:
{action_options_text}
重要说明:
- "no_action" 表示只进行普通聊天回复,不执行任何额外动作
- 其他action表示在普通回复的基础上执行相应的额外动作
你必须从上面列出的可用action中选择一个并说明原因。
{moderation_prompt}
请以动作的输出要求,以严格的 JSON 格式输出,且仅包含 JSON 内容。不要有任何其他文字或解释:
""",
"normal_chat_planner_prompt",
)
Prompt(
"""
动作:{action_name}
动作描述:{action_description}
{action_require}
{{
"action": "{action_name}",{action_parameters}
}}
""",
"normal_chat_action_prompt",
)
class NormalChatPlanner:
def __init__(self, log_prefix: str, action_manager: ActionManager):
self.log_prefix = log_prefix
# LLM规划器配置
self.planner_llm = LLMRequest(
model=global_config.model.planner,
request_type="normal.planner", # 用于normal_chat动作规划
)
self.action_manager = action_manager
async def plan(self, message: MessageThinking) -> Dict[str, Any]:
"""
Normal Chat 规划器: 使用LLM根据上下文决定做出什么动作。
参数:
message: 思考消息对象
sender_name: 发送者名称
"""
action = "no_action" # 默认动作改为no_action
reasoning = "规划器初始化默认"
action_data = {}
try:
# 设置默认值
nickname_str = ""
for nicknames in global_config.bot.alias_names:
nickname_str += f"{nicknames},"
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
personality_block = get_individuality().get_personality_prompt(x_person=2, level=2)
identity_block = get_individuality().get_identity_prompt(x_person=2, level=2)
self_info = name_block + personality_block + identity_block
# 获取当前可用的动作使用Normal模式过滤
current_available_actions = self.action_manager.get_using_actions_for_mode("normal")
# 注意:动作的激活判定现在在 normal_chat_action_modifier 中完成
# 这里直接使用经过 action_modifier 处理后的最终动作集
# 符合职责分离原则ActionModifier负责动作管理Planner专注于决策
# 如果没有可用动作直接返回no_action
if not current_available_actions:
logger.debug(f"{self.log_prefix}规划器: 没有可用动作返回no_action")
return {
"action_result": {
"action_type": action,
"action_data": action_data,
"reasoning": reasoning,
"is_parallel": True,
},
"chat_context": "",
"action_prompt": "",
}
# 构建normal_chat的上下文 (使用与normal_chat相同的prompt构建方法)
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
chat_id=message.chat_stream.stream_id,
timestamp=time.time(),
limit=global_config.chat.max_context_size,
)
chat_context = build_readable_messages(
message_list_before_now,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="relative",
read_mark=0.0,
show_actions=True,
)
# 构建planner的prompt
prompt = await self.build_planner_prompt(
self_info_block=self_info,
chat_context=chat_context,
current_available_actions=current_available_actions,
)
if not prompt:
logger.warning(f"{self.log_prefix}规划器: 构建提示词失败")
return {
"action_result": {
"action_type": action,
"action_data": action_data,
"reasoning": reasoning,
"is_parallel": False,
},
"chat_context": chat_context,
"action_prompt": "",
}
# 使用LLM生成动作决策
try:
content, (reasoning_content, model_name) = await self.planner_llm.generate_response_async(prompt)
logger.info(f"{self.log_prefix}规划器原始提示词: {prompt}")
logger.info(f"{self.log_prefix}规划器原始响应: {content}")
if reasoning_content:
logger.info(f"{self.log_prefix}规划器推理: {reasoning_content}")
# 解析JSON响应
try:
# 尝试修复JSON
fixed_json = repair_json(content)
action_result = json.loads(fixed_json)
action = action_result.get("action", "no_action")
reasoning = action_result.get("reasoning", "未提供原因")
# 提取其他参数作为action_data
action_data = {k: v for k, v in action_result.items() if k not in ["action", "reasoning"]}
# 验证动作是否在可用动作列表中,或者是特殊动作
if action not in current_available_actions:
logger.warning(f"{self.log_prefix}规划器选择了不可用的动作: {action}, 回退到no_action")
action = "no_action"
reasoning = f"选择的动作{action}不在可用列表中回退到no_action"
action_data = {}
except json.JSONDecodeError as e:
logger.warning(f"{self.log_prefix}规划器JSON解析失败: {e}, 内容: {content}")
action = "no_action"
reasoning = "JSON解析失败使用默认动作"
action_data = {}
except Exception as e:
logger.error(f"{self.log_prefix}规划器LLM调用失败: {e}")
action = "no_action"
reasoning = "LLM调用失败使用默认动作"
action_data = {}
except Exception as outer_e:
logger.error(f"{self.log_prefix}规划器异常: {outer_e}")
# 设置异常时的默认值
current_available_actions = {}
chat_context = "无法获取聊天上下文"
prompt = ""
action = "no_action"
reasoning = "规划器出现异常,使用默认动作"
action_data = {}
# 检查动作是否支持并行执行
is_parallel = False
if action in current_available_actions:
action_info = current_available_actions[action]
is_parallel = action_info.get("parallel_action", False)
logger.debug(
f"{self.log_prefix}规划器决策动作:{action}, 动作信息: '{action_data}', 理由: {reasoning}, 并行执行: {is_parallel}"
)
# 恢复到默认动作集
self.action_manager.restore_actions()
logger.debug(
f"{self.log_prefix}规划后恢复到默认动作集, 当前可用: {list(self.action_manager.get_using_actions().keys())}"
)
# 构建 action 记录
action_record = {
"action_type": action,
"action_data": action_data,
"reasoning": reasoning,
"timestamp": time.time(),
"model_name": model_name if "model_name" in locals() else None,
}
action_result = {
"action_type": action,
"action_data": action_data,
"reasoning": reasoning,
"is_parallel": is_parallel,
"action_record": json.dumps(action_record, ensure_ascii=False),
}
plan_result = {
"action_result": action_result,
"chat_context": chat_context,
"action_prompt": prompt,
}
return plan_result
async def build_planner_prompt(
self,
self_info_block: str,
chat_context: str,
current_available_actions: Dict[str, Any],
) -> str:
"""构建 Normal Chat Planner LLM 的提示词"""
try:
# 构建动作选项文本
action_options_text = ""
for action_name, action_info in current_available_actions.items():
action_description = action_info.get("description", "")
action_parameters = action_info.get("parameters", {})
action_require = action_info.get("require", [])
if action_parameters:
param_text = "\n"
# print(action_parameters)
for param_name, param_description in action_parameters.items():
param_text += f' "{param_name}":"{param_description}"\n'
param_text = param_text.rstrip("\n")
else:
param_text = ""
require_text = ""
for require_item in action_require:
require_text += f"- {require_item}\n"
require_text = require_text.rstrip("\n")
# 构建单个动作的提示
action_prompt = await global_prompt_manager.format_prompt(
"normal_chat_action_prompt",
action_name=action_name,
action_description=action_description,
action_parameters=param_text,
action_require=require_text,
)
action_options_text += action_prompt + "\n\n"
# 审核提示
moderation_prompt = "请确保你的回复符合平台规则,避免不当内容。"
# 使用模板构建最终提示词
prompt = await global_prompt_manager.format_prompt(
"normal_chat_planner_prompt",
self_info_block=self_info_block,
action_options_text=action_options_text,
moderation_prompt=moderation_prompt,
chat_context=chat_context,
)
return prompt
except Exception as e:
logger.error(f"{self.log_prefix}构建Planner提示词失败: {e}")
traceback.print_exc()
return ""
init_prompt()